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Abstract. We prove that the quasiasymptotics (resp. S-asymptotics) in D0 implies the
quasiasymptotics (resp. S-asymptotics) in S0 under some natural assumptions.

1. Introduction

Regularly varying functions of Karamata [4] naturally appear in the theory
of generalized asymptotic behaviour of distributions. Vladimirov, Dro�z�zinov and
Zavialov [11] have introduced the notion of quasiasymptotic behaviour of tempered
distributions in connection with the Laplace transform and proved that the func-
tions for comparison must be regularly varying ones. Pilipovi�c and Stankovi�c [8]
introduced the notion of S-asymptotic behaviour of distributions and proved that
the functions for comparison are of the form �(ex) where � is a regularly varying
function.

Note that the properties of regularly varying functions proved by Professor
Aljan�ci�c and his collaborators, especially in [1], are used very much in the theory
of asymptotic behaviour of distributions.

We will give in this article assertions concerning the relations between the
quasiasymptotics in the sense of D0 and S 0 convergences. We will answer the
question whether the quasiasymtotis (resp. S{asimptotics) in D0 implies the quasi-
asimptotics (resp. S{asimptotics) in S 0 ? Such partial results appear in several
papers but they are not justi�ed in all the details.

2. Notions

The Schwartz spaces of test functions and distributions on the real line R are
denoted by D and D0; S is the space of rapidly decreasing functions, its dual S 0
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is the space of tempered distributions and S 0+ is the subspace of S 0 with elements
supported by [0;1).

Let K be a compact set of the real line. Recall [9],

DK =
\
p2N0

DpK and D0K =
[
p2N0

D0
p

K

have topological meaning. This implies that a sequence fn in D0K converges to
f 2 D0K i� it belongs to some D0

p0
K , and in the dual norm of D0

p0
K converges to

f 2 D0
p0
K .

The Fourier transformation F of S and S 0 is de�ned as usual (cf. [9] or [10]).

The space of exponentially growing distributions were introduced and studied
by Hasumi [3] and many others after him. Recall [3], K1 is equal to the space of
smooth functions � on R for which all the norms

sup
��k;x2R

fekjxjj�(�)(x)jg; k 2 N0;

are �nite. The topological properties of this space are the same as for S 0. We only
note that K01 consists of distribution of the form

f =

mX
�=0

(ekjxj f�)
(�) (1)

for some m; k 2 N and some continuous bounded functions f�; � = 1; . . . ;m,
where (�) is the distributional derivative.

A real valued continuous function L de�ned on (0; a) (resp. (a;1)), a > 0, is
called slowly varying at zero (resp. at in�nity) (cf. [2]) if for every � > 0,

lim
x!0+

L(�x)

L(x)
= 1

�
resp. lim

x!1

L(�x)

L(x)
= 1

�
:

We refer to [2] and [1] for the properties of slowly varying functions. Let � 2 R.
Recall [9],

f�+1(x) =

(
H(x)x�

�(�+1) ; � > �1

f
(n)
�+n+1(x); � � �1;

x 2 R;

where n is the smallest integer for which �+n > �1 and H is Heaviside's function.

De�nition 1. Let f 2 D0, L be a function which is slowly varying at zero
(resp. 1) and � 2 R. If for every ' 2 D there exists the limit

lim
"!0+

�
f("x)

"�L(")
; '(x)

� �
resp. lim

k!1

�
f(kx)

k�L(k)
; '(x)

��
(2)

which is di�erent from zero for some ', then it is said that f has the quasiasymp-
totics at 0 (resp. 1) in D0 with respect to "�L(") (resp. k�L(k)).
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If in the limits given above the spaces D and D0 are substituted by S and S 0

respectively, then it is said that f has the quasiasymptotics at 0 (resp. at 1) in S 0

with respect to "�L(") (resp. k�L(k)).

Banach{Steinhaus theorem implies that the existance of the limit in (2) when
"! 0+ (resp. k !1) implies that there exists g 2 D0, g 6= 0, such that

lim
"!0+

D f("x)
"�L(")

; '(x)
E
= hg(x); '(x)i; ' 2 D

�
resp. lim

k!1

D f(kx)

k�L(k)
; '(x)

E
= hg(x); '(x)i; ' 2 D

�
:

It is easy to prove [11, p. 73] that the existence of limit (2) in D0 implies that
g is homogenous with the order of homogenity � 2 R. Thus,

g(x) = C+f�+1(x) + C�f�+1(�x); x 2 R; (C+; C�) 6= (0; 0):

3. Relations between quasiasymptotics

The main part of the next assertion belongs to Zavialov ([12], see also [6])
His proof is original and powerful. We will present it and make some changes in
relation (59) in [12] which have certain consequences in the rest of the proof.

Theorem 1. Let f 2 S 0 and � be regularly varying at 0+ of order � 2 R

(�(") = "�L(")). Assume that lim"!0+(1=�(")) hf("x); �(x)i exists for every � 2 D,

and it is di�erent from zero for some �. Then, there is (C1; C2) 6= (0; 0) such that

lim
"!0+

(1=�(")) hf("x); �(x)i = hC1f�+1(x) + C2f�+1(�x); �(x)i ; � 2 S:

Proof. It is enough to prove that for every � 2 S, such that �j[�1;1]
= 0, there

exists the limit

lim
"!0+

1

�(")
hf("x); �(x)i : (3)

The following construction is given by Zavialov. Let � 2 C10 such that
supp � � [�1;�1=2][ [1=2; 1] and � > 0 in (�1;�1=2)[ (1=2; 1): Put

(x) =

Z 1

0

�(x=t)dt; x 2 R:

This is a smooth function with polynomially bounded derivatives as jxj ! 1 or
jxj ! 0: Moreover, there are constants a1; b1; a2; b2 > 0 and �1; �2; �1; �2 2 R such
that

a1jxj
�1 � (x) � b1jxj

�1 ; jxj � 1;

a2jxj
�2 � (x) � b2jxj

�2 ; jxj � 1:
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We have

1

�(")
hf("x); �(x)i =

1

�(")

�
f("x);

1

(x)

Z 1

0

�(x)�(
x

t
)dt

�

=

Z 1

0

1

�(")

�
f("x);

1

(x)
�(x)�(

x

t
)

�
dt: (4)

The limit (as " ! 0) of the integrand in (4) exists for every �xed t 2 [0;1).
Thus (3) will be proved if we show���� 1

�(")

�
f("x);

1

(x)
�(x)�(

x

t
)

����� � s(t); t 2 R;

where s 2 L1(0;1): There holds

F (t) =
1

�(")

�
f("x);

1

(x)
�(x)�(

x

t
)

�
=

t

�(")

�
f("tx);

�(tx)

(tx)
�(x)

�

= t
�("t)

�(")

�
f("tx)

�("t)
;
�(tx)

(tx)
�(x)

�
; t 2 R:

We will use the following estimate

�("t)

�(")
�

1 + tn1

tn2
for " < "0 and t <

"0
"
; (5)

which holds for suitable positive numbers n1; n2 and �0 (cf. [2]) and�
f("tx)

�("t)
; "t 2 (0; "1)

�
is bounded in D0: (6)

Let a � jxj � b, where 0 < a < b. One can easily prove that for every k > 0 and
every � 2 N0

j�(�)(tx)j = o(jtj�k) as jtj ! 1;

j�(�)(tx)j = o(jtjk) as jtj ! 0:
(7)

Let "2 = minf"0; "1g. We will estimate the function F de�ned by (4) in the
following cases: (a) "t � "2 and (b) "t > "2:

(a) Then (5) and (6) hold. Thus (7) implies that jF j is bounded by an
integrable function on (0;1) which does not depend on ":

(b) There exists N 2 N such that
�
("t)�N�(x)f("tx); "t > "2; " < "2

	
is

bounded in D0. Then we have�
tf("tx)

�(")
;
�(tx)

(tx)
�(x)

�
=
t("t)N

�(")

�
f("tx)

("t)N
�(x);

�(tx)

(tx)

�
:

Taking N large enough and 1=L(") � Cs="
s, " < "2; which holds for every s and

suitable Cs > 0 (cf. [2]), it follows that there exist C > 0 and n1; n2 > 0 such that

t("t)N

�(")
� C

1 + tn1

tn2
; "t > "2; " < "2:



Quasiasymptotics and S-asymptotics in S0 and D0 17

Note that there exist a; b > 0 and k 2 N such that����
�
f("tx)

("t)N
�(x);

�(tx)

(tx)

����� � sup

(�����
�
�(tx)

(tx)

�(�)
����� ; 0 < a � x � b; � � k

)
:

Thus (7) implies that jF j is bounded by an integrable function on (0;1) which
does not depend on ": The proof is completed. �

Theorem 2. Let f 2 D0 and � be regularly varying at 1 of order �. Assume

limk!1 hf(kx); �(x)i =�(k) exists for every � 2 D: Then: (a) f 2 S 0. (b) there
exists (C1; C2) 6= (0; 0) such that

lim
k!1

1

�(k)
hf(kx); �(x)i = hC1f�+1(x) + C2f�+1(�x); �(x)i ; � 2 S:

Proof. (a) This is proved in [5]. We present a sketch of the proof. The
set ff(kx)=(k�L(k)); k > 0g is a bounded subset of D0. Let 
 = (�2; 2) and
K = [�"; "]. From Theorem XXII in [9, T. II, Ch. VI] it follows that there exists
a non-negative integer m such that for any ' 2 DmK


 3 x! ((f(kt)=(k�L(k))) � '(t))(x); k 2 (k0;1);

is a family of functions which are continuous and uniformly bounded on 
: Since
the weakly bounded family is strongly bounded in (DmK)

0, it follows that for every
bounded set A � Dm[�";"], the set of functions

f
 3 x! ((f(kt)=(k�L(k))) � '(t))(x); k > 0; ' 2 Ag

is a bounded family of continuous functions on 
. Let  2 Dm[�";"] and 'k(x) =

 (kx)=km, x 2 R, k � 1. Then A = f'k(x); k � 1g is a bounded family in Dm[�";"]
and

f((f(kt)=(k�L(k))) � 'r(t))(x); k > 0; r � 1g

is a bounded family of continuous functions on 
: Taking r = k; we obtain that for
some M > 0

j((f(kt)=(k�L(k))) � ( (kt)=km))(x)j �M; x 2 (�2; 2); k � 1:

Since (f(kt) �  (kt))(x) = k�1(f �  )(kx), it follows that

j(f �  )(kx)=(k�+m+1L(k))j < M for x 2 (�2; 2); k � 1:

By taking x = 1 and x = �1 it follows that for any  2 Dm[�";"] there existsM > 0

such that
j(f �  )(x)j �M (1 + jxj�+m+1L(jxj)); x 2 R:

By (6; 22) in [9, T. II Ch. VI], we obtain

f =
d2s

dx2s
('1 � f)� '2 � f;
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where '1 2 D
m
[�";"] and '2 2 D[�";"]: This implies that f 2 S 0:

(b) The proof is the same as the proof of the second part of Theorem 1 except
that we use

�(kt)

�(k)
� C

1 + tn1

tn2
fork > k0; t >

k0
k
;

instead of (5), and at the end, consider separately the cases: (a) kt � T , and (b)
kt < T .

4. Relations between the S-asymptotics

De�nition 2. A distribution f 2 D0 has the S�asymptotics inD0 with respect
to a positive measurable function c(h), h > h0 if for every � 2 D there exists the
limit

lim
h!1

�
f(x+ h)

c(h)
; �(x)

�
: (8)

If f 2 S 0 (resp. K01(R)) and (8) exists for every � 2 S (resp K1), then f has the
S-asymptotics in S 0(resp. K01) with respect to c(h):

It is well known that in the case of S-asymptotics in D0 there exist C 6= 0
and � 2 R such that

lim
h!1

f(x+ h)

c(h)
!Ce� x in D0 (9)

c(h) = e�hL(eh); h > h0; (10)

where L is a slowly varying function. If f has the S-asymptotics in S 0, then � = 0
in (8) and (9).

The following theorem is a part of the results given in [7].

Theorem 3. Let �; � 2 R, c1(h) = h�L(h) and c2(h) = h�L(h)e�h, h > h0:

(a) Let T 2 S 0 (resp. K01): If

fT (x+ h)=c1(h); h > h0g (resp. fT (x+ h)=c1(h);h > h0g) (11)

is bounded in D0, then this set is bounded in S 0 (resp. K01):

(b) Let T 2 D0 such that suppT � [0;1): If the set in (10) is bounded in D0,
then this set is bounded in S 0 (resp. K01):

(c) Let T 2 D0 such that suppT � [0;1): If T has the S-asymptotics in D0

with respect to c1(h) (resp. with respect to c2(h)), then T has the S-asymptotics in

S 0 (resp. K01) with respect to c1(h) (resp. c2(h)):

Proof. We will prove only the assertion (b) for a family ff(x + h)=c2(h),
h > h0g, where c2(h) is of the given form.

As in the proof of Theorem 2, the use of a suitable parametrix implies that
there exists m 2 N such that for every  2 Dm[�1;1]

h 7!
(T �  )(h)

c2(h)
; h > h0
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is a bounded function and that for large enough N 2 N,

T (x) =
� d

dx

�2N
T1(x) + T2(x); x 2 R;

where T1 and T2 are contionuous functions such that

maxfjT1(x)j; jT2(x)jg � c2(x); x > h0:

The structural theorem for K01 given in (1) implies that there is k 2 N such that

maxfjT1(x)j; jT2(x)jg � ekjxj; x 2 R: (12)

Let � 2 K1, We have to estimate�
T (x+ h)

c2(h)
; �(x)

�
=

�
T1(x+ h)

c2(h)
; �(2N)(x)

�
+

�
T2(x+ h)

c2(h)
; �(x)

�
:

We will estimate only the �rst member on the right-hand side because the estimate
for the second one is the same. By (11) we have

Z 1

�1

���T (x+ h)

c2(h)

���j�(2N)(x)jdx =
�Z h0�h

�1

+

Z 1

h0�h

�� jT (x+ h)j

c2(h)

�
j�(2N)(x)jdx

�

Z h0�h

�1

ekjx+hj

c2(h)
j�(2N)(x)jdx +

Z 1

h0�h

���T1(x+ h)

c2(x+ h)

���c2(x+ h)

c2(h)
j�(2N)(x)jdx:

Note that jx + hj � jxj � jh� h0j+ jh0j, for x < h0 � h; and for every " > 0
there is h1(> h0) such that L(eh) � (eh)�� for h > h1, which implies that there
exist C1 > 0 and k1 > 0 such that

1=c2(h) � C1e
�k1h; h > h1: (13)

Also, there exist C2 > 0 and k2 > 0 such that

c2(x+ h)

c2(h)
� C2e

k2jxj for x > h0 � h > 0:

Since
���T1(x+h)c2(x+h)

��� is bounded for x + h > h0, (11), (12) and (13) imply the

boundedness of integrals given above because �(2N)(x) decreases faster than any
negative power of ejxj as jxj ! 1.
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