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IDENTITY AND PERMUTATION

A. Kron

Abstract. It is known that in the purely implicational fragment of the system TW! if
both (A ! B) and (B ! A) are theorems, then A and B are the same formula (the Anderson-
Belnap conjecture). This property is equivalent to NOID (no identity!): if the axiom-shema
(A! A) is omitted from TW! and the system TW!-ID is obtained, then there is no theorem
of the form (A! A).

A Gentzen-style purely implicational system J is here constructed such that NOID holds
for J. NOID is proved to be equivalent to NOE: there no theorem of J of the form ((A ! A)!
B)! B, i.e., of the form of the characteristic axiom of the implicational system E! of entailment.

If (p! p) is adjoined to J as an axiom-schema (ID), then there are theorems (A! B) and
(B ! A) such that A and B are distinct formulas, which shows that for J the Anderson-Belnap
conjecture is not equivalent to NOID.

The system J+ID is equivalent to RW! of relevance logic.

Introduction

By TW! we understand the system of propositional relevance logic de�ned
in the language with ! as the sole connective, by the following axiom-schemata:

ID (A! A)

ASU ((A! B)! ((B ! C)! (A! C)))

APR ((B ! C)! ((A! B)! (A! C))):

The only rule of TW! is modus ponens.

By TW!{ID we understand the system obtained from TW! by deleting
the schema ID.

It has been shown that the following propositions were equivalent (Dwyer-
Powers theorem):
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if both (A! B) and (B ! A) are provable in TW!, then A and B are the
same formula (Anderson-Belnap's conjecture)

For no formula A is (A! A) provable in TW!{ID (NOID).

Anderson-Belnap's conjecture is about an interesting property. Let us write
A � B i� both (A ! B) and (B ! A) are theorems of TW!; then the axioms
of TW! and modus ponens are suÆcient to show that (a) � is an equivalence
relation and (b) that it is a congruence with respect to !. By Anderson-Belnap's
conjecture (the antisymmetry of !) this congruence is the smallest congruence
relation i.e., equality. Thus, the identity of formulas in the language with ! as the
only connective can be characterized exclusively by logical means { by the theory
TW! of implication.

NOID (and hence the Anderson-Belnap's conjecture) has been proved true
(cf. [2], [3] and [4]).

The proof of NOID in [3] has been obtained for a proper extension L of
TW!{ID.

Let S and S' be theories of implication and let A-B and NOID be the following
claims about S and S':

A-B if both (A! B) and (B ! A) are provable in S, then A and B are the same
formula,

and

NOID there is no theorem of S' of the form (A! A).

Obviously, if S = TW! and S' = TW!{ID, then A-B and NOID are equiv-
alent.

In this paper we shall develop a proper extension J of L and prove that

(1) NOID holds for J and A-B does not hold for J+ID;

(2) NOID is equivalent to the following proposition: ((A ! B) ! B) is a
theorem of J i� so is A.

The non-equivalence of A-B and NOID for J and J+ID is due to permutation
present in J in the form of the rule PERM.

The claim (2) is interesting because it shows that NOID cannot hold in any
system containing as a theorem any form of the E! axiom

(((A! A)! B)! B):

Also, (2) will enable us to prove that there are in J some restricted forms
of contraction: any formula ((A ! (A ! B)) ! (A ! B)) is a theorem of J i�
so is A.

(3) We shall show than NOE can be extended to formulas of a certain type.
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The system J

Some of the basic de�nitions given below are taken from [3].

Let p, q, r, . . . stand for propositional variables. The letters A, B, C, . . .
range over the set of formulas. Instead of (A ! B) we shall write (AB). Also, we
omit parentheses, with the association to the left. Thus, ABC stands for (AB)C.

Let R, S, T , U , V , W , X , Y , Z, . . . range over �nite (possibly empty)
sequences of formulas. If X consists of a single formula A, we shall write A for X .
If X is empty, let X:B denote B. If X = hA1; . . . ; Ani, n � 1, then X:B denotes
the formula

A1 ! (A2 ! � � � ! (An ! B) . . . ):

Notice that any formula is of the form W:p, for some W and a variable p.
Very often we shall write WA:p for A, for any formula A.

By �(X) we denote any permutation of X , and by �(X):B we denote any
formula Y:B such that Y is a permutation of X .

Let C:DE be a subformula of A; suppose that B is obtained from A by
substitution of D:CE for C:DE, at a single occurrence of C:DE in A; then we
shall say that B is obtained from A by the rule PERM. Let us write A � B i�
B can be obtained from A by a �nite (possibly zero) number of applications of
PERM. It is clear that � is an equivalence relation. We shall write X � Y i� Y

can be obtained from a permutation Z of X by a �nite (possibly zero) number of
applications of PERM to some members of Z. For any A by A� we shall denote
any formula B such that A � B. Also, for any X by X� we denote any Y such
that X � Y . It is clear that (�(X))� � �(X�).

The axioms of J are given by the following schema:

ASU �((AB)�; Bp;A):p:

The rules of J are:

JSU From �(X;Y ):p to infer �(X�; (Y �:p)q):q:

JPR From �(X;B):p to infer �(X�; (AB)�; A):p:

JG From �(X;Y ):p and �(Z;B):q to infer

�(X�; Z�; ((Y:p)B)�):q:

The rule JG is to be understood as follows: if there are permutations V andW
of the sequences X;Y and Z;B, respectively, such that V:p and W:q, are derivable
in J, so is W 0:q, for any permutaion W 0 of the sequence X�; Z�; ((Y:p)B)�. In a
similar way we understand JSU and JPR.

We shall assume that derivations in J are given in forms of trees, with usual
properties. The weight w of a node in a derivation, derivability with weight w and
the combined weight are de�ned as in [5, p. 113]. By the degree of A (of X) we
understand the number of occurrences of ! in A (in X).

Let us de�ne Apn as follows: Ap0 = A;Apn+1 = (Apn)p.
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J is closed under modus ponens

We start with

Theorem 1. If A is derivable in J with weight w, so is A�; if X:p is derivable

in J, so is �(X):p, for any permutation �(X) of X .

Proof. By an easy induction on the weight of A in a given derivation of A.

Theorem 1 shows that J is closed under PERM; it enables us to identify A and
A�, X and X�, and X and �(X) in derivations in J. In the sequel this identi�cation
is assumed.

Theorem 2. If (a) �(X;Y ):p is derivable in J, so is (b) �(X; �(Y:p; Z):q:Z):q.

Proof. By JSU we obtain �(X; (Y:p)q):q from (a); hence, (b) is obtained by
using JPR.

Theorem 2 and JG show that J is closed under the following assertion rules:

ASS1 From A to infer ABB.
ASS2 From A and �(X;B):p to infer �(X;AB):p.

Theorem 3. (TRANSITIVITY, JTR) If (a) �(X;Y ):p and (b) �(Y:p; Z):q are

derivable in J, so is (c) �(X;Z):q.

Proof. Proceed by double induction. Suppose that (a) and (b) are derivable
with combined weight w and that Y:p is of degree d. Our induction hypotheses are:

Hyp 1 The theorem holds for any Y 0:p of degree d0 < d and any combined
weight w;

Hyp 2 The theorem holds for Y:p and any combined weight w0 < w.

Case I (b) is an instance of ASU; hence, �(Y:p; Z) � �(AB;Bq;A) for some
A, B and q.

I.1 Y:p � AB � �(A;WB):p, and Y � �(A;WB). From (a) we obtain (c)
by using JSU.

I.2 Y:p � Bq; hence, Y � B and p � q. From (a) we obtain (c) by using
JPR.

I.3 Y:p � A; hence, by Theorem 2 we obtain (c).

Case II (b) is obtained by JSU from (b1) �(V;W ):r, where �(V; (W:r)q) �
�(Y:p; Z).

II.1 V � �(V 0; Y:p); by (a), (b1) and Hyp 2 �(X;V 0;W ):r is derivable;
hence, by using JSU we obtain (c).

II.2 (W:r)q � Y:p and Z � V ; hence, Y �W:r and p � q. By (a), (b1) and
Hyp 1, (c) is derived.

Case III (b) is obtained by JPR from (b1) �(V;B):q, where �(V;AB;A) �
�(Y:p; Z).



Identity and permutation 169

III.1 V � �(V 0; Y:p) and Z � �(V 0; AB;A); by (a), (b1), and Hyp 2, we
obtain �(X;V 0; B):q, and then (c) by using JPR.

III.2 AB � Y:p. We have (a) �(X;A):B; hence, by (a), (b1), and Hyp 1, (c)
is derived.

III.3 A � Y:p. From (a) and (b1) we obtain (c) by JG.

Case IV (b) is obtained by JG from (b1) �(U; V ):r and (b2) �(W;A):q,
where

�(Y:p; Z) � �(U;W; (V:r)A):

IV.1 U � �(U 0; Y:p) and Z � �(U 0;W; (V:r)A). By (a), (b1) and Hyp 2,
�(X;U 0; V ):r is derivable. Hence (c), by using (b2) and JG.

IV.2 W � �(W 0; Y:p) and Z � �(U;W 0; (V:r)A). Now �(X;W 0; A):q is
derivable by (a), (b2) and Hyp 2; hence (c), by using (b1) and JG.

IV.3 (V:r)A � Y:p and Z � �(U;W ). It is clear that (a) is �(X;V:r):A. By
(a), (b2) and Hyp 1, (a') �(X;W; V:r):q is derivable. Now by (b1), (a'), and Hyp 1,
(c) is derivable.

A trivial consequence of this theorem is

Theorem 4 (MODUS PONENS, MP). If A and AB are derivable in J, so is B.

There is a Hilbert style formulation of J. Let K be the system with MP,
PERM, ASS1 and the axiom-schema �(AB;BC;A):C.

Theorem 5. K and J are equivalent.

Proof. It is obvious that J contains K.

The rules JTR and JPR are easily derivable in K, by using the axioms, MP
and PERM. In the same way the rules JSU and JG are easily derivable provided
that X is nonempty. The rule ASS1 plays the role of JSU when X is empty. Now
by using ASS1, JPR and JTR we derive JG when X is empty (ASS2).

The system L

The system L is obtained from J by restricting JSU and JG: in JSU and JG
X must not be empty. Let LSU and LG be JSU and JG, respectively, restricted in
this way. In [3] it is assumed that L has a single propositional variable p.

The following theorems were proved in [3].

L1 If A is derivable in L with weight w, so is A�.
L2 L is closed under the following transitivity rule:

from �(X;A; Y ):p and �(Z; Y �:p):p to infer �(X�; Z�; A�):p.
L3 L contains TW!{ID.
L4 There is no theorem of L of the form Ap.
L5 There is no theorem of L of the form �((�(X;Y ):p)p2k; Y �):p, k 2 !.
L6 There is no theorem of L of the form AA.
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L7 There is no theorem of L of the form ABB.
L8 There is no theorem of L of the form A:ABB.
L9 There is no theorem of L of the form ABBA.

L6 { L9 are consequences of L5. We shall prove or disprove theorems about
J analogous to L1 { L9 �rst.

Notice that L is not closed under MP. Let A � pp:pp:pp and B � (pp:pp)p:ppp;
AB is an instance of ASU. If L were closed under MP, applying MP to

�(AB;Bp;A):p

twice, Bpp would be obtained in L, contrary to L4.

L is not closed under ASS1 either. Otherwise, App would be derivable, con-
trary to L4.

That L is not closed under ASS2 can be seen as follows. LetA � �(pp; pp; p):p;
by using A and ASS2, in J we derive B, B � �(�(A; p):p; pp; p):p. Let us show that
B is not derivable in L.

B is not an instance of ASU.

If B is obtained by LSU from C, then C � �(�(A; p):p; p):p � (A(pp))(pp),
violating thus L7.

If B is derivable by LPR from �(X;F ):p, then

�(�(A; p):p; pp; p) � �(X;EF;E)

for some X , E, and F . It is clear that E � p.

If F � Ap, then �(Ap; pp):p is derivable in L. But this is neither an axiom nor
can it be obtained by LPR or LG. If it is obtained by LSU, then App is derivable,
contrary to L4.

If F � p, then (A(pp))(pp) is derivable, contrary to L7.

Suppose that B is derived by LG from �(X;Y ):p and �(Z;E):p; hence,

�(�(A; p):p; pp; p):p � �(X; (Y:p)E;Z):p:

If (Y:p)E � pp; then Y is empty, E � p and �(X;Z) � �(�(A; p):p; p). Now
X is not p and Z is not empty (otherwise, pp is derivable). Hence, B is obtained
from (�(A; p):p)p and �(p; p):p, which is impossible.

If (Y:p)E � �(A; p):p, then �(X;Z) � �(pp; p).

Let Z be empty; then B is obtained from �(pp; p; Y ):p and Ep, contrary to
L4.

Let Z � pp; then B is obtained from �(Y; p):p and �(E; pp):p. Obviously, Y
is not empty and E is not pp; hence, E � Ap and Y:p � p - a contradiction.

Let Z � p; then B is obtained from �(pp; Y ):p and �(E; p):p. Since Y cannot
be empty, Y:p � A and E � pp, contary to L6.

This shows that L is not closed under ASS2.

Since JSU = LSU + ASS1 and JG = LG + ASS2, we have J = L + ASS1 +
ASS2.
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J is a proper extension of L and there is no theorem about J analogous either
to L4 or L5 or L7. However, theorems analogous to L6, L8, and L9 still hold true.

No instance of AA is derivable in J

Theorem 6. (X:p)p is derivable in J i� X is nonempty and any member of

X is derivable in J.

Proof. Let X be �(A1; . . . ; An), n > 0, and let A1; . . . ; An be derivable in J.
By ASS1, Anpp is derivable; if n > 1, by using JG in the form of ASS2, we derive
(�(A1; . . .An):p)p, i.e., (X:p)p.

Suppose that (X:p)p is derivable. If X is empty, then pp is derivable; however,
this is neither an axiom nor can it be obtained by any of the rules. Hence, X is
nonempty.

Let X � �(A1; . . . ; An) and proceed by induction on the weight of the deriva-
tion of (X:p)p.

Obviously, (X:p)p is neither an instance of ASU nor can it be obtained by
JPR. If it is obtained from (a') by JSU, then (X:p)p � (V:p)pp and (a') is V:p;
hence, X � V:p � A1, X is nonempty and A1 is derivable in J.

If (X:p)p is obtained from (a') and (a") by JG, then X:p � �(U;W; (V:p)C), U
and W are empty, X � �(A1; . . . ; An) � �(V:p;WC) for some A1; . . . ; An, and (a')
and (a") are V:p and (WC :p)p, respectively. By induction hypothesis, all members
of WC , say WC � �(A1; . . . ; An�1), are derivable in J. Obviously, we can take
V:p � An.

This completes the proof of the theorem.

Since J is (as L) closed under uniform substitution, to prove the main theo-
rems of this paper it suÆces to prove them under the assumption that there is only
one variable in J, say p. Let J1 be J with just one variable p. In the sequel, if not
stated otherwise, "derivable" means "derivable in J1".

Theorem 7 (NOID). There is no theorem of J1 of the form �((X:p)p2k; X):p,
k 2 !.

Proof. If there is a theorem of J1 of this form, then

Hyp 3 there is a formula (a) �((X:p)p2k ; X):p of smallest degree
derivable in J1.

Let us consider how (a) could have been obtained. We leave to the reader the
veri�cation that (a) cannot be an instance of ASU.

Case I (a) is obtained from (a') by JSU; hence,

�((X:p)p2k; X) � �(Y; (Z:p)p)

for some Y and Z.

I.1 Y � �(Y 0; (X:p)p2k) and X � �(Y 0; (Z:p)p). Obviously, we have (a')
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�(�((Y 0; (Z:p)p):p)p2k; Y 0; Z):p.

If both Y 0 and Z are empty, then (a') is pppp2kp; hence, pp is derivable by
Theorem 6. This is impossible.

If Y 0 is empty and Z nonempty, then (a') is �((Z:p)ppp2k; Z):p, contrary to
Hyp 3.

Let Y 0 be nonempty and Z arbitrary. By using ASU and JPR we derive (b)

�(�(Y 0; Z):p; (Z:p)p; Y 0):p.

If k > 0, we use JSU to derive (c) �(�(Y 0; Z):p; (�(Y 0; (Z:p)p):p)p2k�1):p. Hence,
by (c), (a'), and JTR we derive �(�(Y 0; Z):p; Y 0; Z):p, contrary to Hyp 3.

I.2 (X:p)p2k � (Z:p)p and X � Y . If k = 0, then X � Z:p and (a') is
�(Z:p; Z):p, contrary to Hyp 3.

If k > 0, then Z:p � (X:p)p2k�1 and Z � (X:p)p2k�2. Hence, we have (a')

�((X:p)p2k�2; X):p;

contrary to Hyp 3.

Case II (a) is obtained by JPR; hence, �((X:p)p2k; X) � �(Y;AB;A) for
some Y , A and B.

II.1 Y � �(Y 0; (X:p)p2k) and X � �(Y 0; AB;A). Obviously, we have (a')

�((�(Y 0; AB;A):p)p2k ; Y 0; B):p.

Now �(Bp;AB;A):p is an instance of ASU; hence, by JPR we obtain

�(�(Y 0; B):p; Y 0; AB;A):p

and then by using JSU we derive �(�(Y 0; B):p; �(Y 0; AB;A):p)p):p. If k > 0, by
JSU we get �(�(Y 0; B):p; �(Y 0; AB;A):p)p2k�1):p. Hence, using JTR and (a') we
obtain �(�(Y 0; B):p; Y 0; B):p, contradicting thus Hyp 3.

II.2 (X:p)p2k � AB and X � �(Y;A). Hence,

(X:p)p2k � (�(Y;WA:p):p)p
2k � �(WA:p;WB):p:

If k > 0, then WB is empty and we have B � p, and WA:p � (�(Y;WA:p):p)p
2k�1;

this is impossible.

Let k = 0; then �(Y;A) � �(A;WB) and Y � WB . Thus, (a') is
�(WB :p;WB):p, contrary to Hyp 3.

II.3 (X:p)p2k � A and X � �(Y;AB); this is impossible.

Case III (a) is obtained by JG; hence, �((X:p)p2k; X) � �(Y; Z; (U:p)B) and
both (a') �(Y; U):p and (a") �(Z;B):p are derivable.

III.1 Y � �(Y 0; (X:p)p2k) and X � �(Y 0; Z; (U:p)B); hence, (a') is

�((�(Y 0; Z; (U:p)B):p)p2k; Y 0; U):p.

From (a") we obtain (b) �(U:p; Z; (U:p)B):p by using JPR. If necessary, we apply
JPR to obtain (c) �(�(Y 0; U):p; Y 0; Z; (U:p)B):p. If k > 0, by using JSU we derive
(d)

�(�(Y 0; U):p; �(Y 0; Z; (U:p)B):p)p2k�1):p.
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Hence, by (d), (a'), and JTR we derive �(�(Y 0; U):p; Y 0; U):p, contrary to Hyp 3.

III.2 Z � �(Z 0; (X:p)p2k) and X � �(Y; Z 0; (U:p)B); hence, (a") is

�((�(Y; Z 0; (U:p)B:p)p2k; Z 0; B):p.

On the other hand, from (a') we obtain (b) �(Y; (U:p)B):B, by Theorem 2.
Hence, by using JSU we derive (c) �(Bp; Y; (U:p)B):p, and if Z 0 is nonempty, we
derive (d)

�(�(Z 0; B):p; Y; Z 0; (U:p)B):p

by using JPR. Now if k > 0, we can use JSU to obtain (e)

�(�(Z 0; B):p; (�(Y; Z 0; (U:p)B):p)p2k�1):p:

In any case we can use (e), (a"), and JTR to obtain �(�(Z 0; B):p; Z 0; B):p,
contrary to Hyp 3.

III.3 (X:p)p2k � (U:p)B and X � �(Y; Z). If k > 0, then B � p, U:p �
(X:p)p2k�1 and U � (X:p)p2k�2. Obviously, we have (a') �((�(Y; Z):p)p2k�2; Y ):p
and (a") �(Z; p):p. Hence, Z is nonempty.

III.3.1 Let Y be empty; then (a') is (Z:p)p2k�1. We derive

(b) �(p; (Z:p)p2k�1):p

by using (a") and JSU. Hence, by using (a'), (b), and MP we obtain pp, which is
impossible.

III.3.2 Let Y be nonempty. By using (a") and JPR we derive

(b) �(Y:p; Y; Z):p;

hence, by applying JSU to (b) we derive (c) �(Y:p; (�(Y; Z):p)p2k�1):p, and hence
�(Y:p; Y ):p is derivable by using (a'), (c), and JTR, contrary to Hyp 3.

Let k = 0 and B � V:p; then X � �(U:p; V ).

III.3.3 Y � �(Y 0; U:p) and V � �(Y 0; Z). We have

(a') �(Y 0; U:p; U):p and (a") �(�(Y 0; Z):p; Z):p:

If Y 0 is empty, Hyp 3 is violated.

Let Y 0 be nonempty. If Z is empty, (a") becomes (Y 0:p)p and hence
�(U:p; U):p is obtained from (a') and (a") by JTR, contrary to Hyp 3.

Let Z be nonempty. By using JPR, from (a') we obtain

�(�(�(Z;U):p; U; Y 0; Z):p:

Hence, by using JTR and (a"), we obtain �(�(Z;U):p; Z; U):p, contrary to Hyp 3.

III.3.4 Z � �(Z 0; U:p) and V � �(Y; Z 0). We have

(a') �(Y; U):p and (a") �(Z 0; U:p; �(Y; Z 0):p):p:

From (a') and (a") we obtain �(�(Y; Z 0):p; Y; Z 0):p, by using JTR, contrary
to Hyp 3.

This completes the proof.

Theorem 8. There is no theorem of J of the form AA.
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Theorem 9. There is no theorem of J of the form A:ABB.

Theorem 10. There is no theorem of J of the form ABBA.

Theorems 8 { 10 are trivial consequences of NOID.

No istance of AABB is derivable in J

Theorem 11 (NOE). �(�(X;Y ):p; Y ):p is derivable in J1 i� X is nonempty

and every member of X is derivable in J1.

Proof. To prove the non-trivial part of the theorem, proceed by induction
on the degree of �(X;Y ):p. If Y is empty, we use Theorem 6. Let us accept the
induction hypothesis

Hyp 4 The theorem holds for any �(X 0; Y 0):p of degree smaller than the
degree of �(X;Y ):p.

Suppose that (a) �(�(X;Y ):p; Y ):p is derivable in J1. By NOID, X is
nonempty. The veri�cation that (a) is not an instance of ASU is left to the reader.

Case I (a) is obtained by JSU from (a') �(U; V ):p, where �(�(X;Y ):p; Y ) �
�(U; (V:p)p):

I.1 (V:p)p � �(X;Y ):p and U � Y ; obviously, either X or Y is empty. But
X is nonempty. If Y is empty, then by Theorem 6, X � �(A1; . . . ; An) for some
derivable A1; . . . ; An.

I.2 Y � �((V:p)p; Y 0) and U � �(�(X; (V:p)p; Y 0):p; Y 0). Obviously, (a) is
obtained from (a') �(�(X; (V:p)p; Y 0):p; V; Y 0):p. Since X is nonempty, there is a
member A of X . But as an instance of ASU we have �(�(A; V ):p; (V:p)p;A):p. By
using JPR we derive �(�(X;V; Y 0):p;X; (V:p)p; Y 0):p. Hence, by using JTR and
(a') we obtain �(�(X;V; Y 0):p; V; Y 0):p. By Hyp 4, X � �(A1; . . . ; An) for some
A1; . . . ; An and n, and A1; . . . ; An are derivable in J1.

Case II (a) follows by JPR from (a') �(U;D):p, where �(�(X;Y ):p; Y ) �
�(U;CD;C).

II.1 Y � �(CD;C; Y 0) and U � �(�(X;CD;C; Y 0):p; Y 0). But

�(�(X;D; Y 0):p;X;CD;C; Y 0):p

is easily derivable in J1. Hence, by using JTR and (a'), so is

�(�(X;D; Y 0):p;D; Y 0):p:

Hence, by Hyp 4, X � �(A1; . . . ; An) for some A1; . . . ; An and n, and A1; . . . ; An
are derivable in J1.

II.2 �(X;Y ):p � CD and Y � �(U;C); hence, �(X;C;U):p � CD. It is
clear that �(X;U) � WD . Now (a') is �(�(X;U):p; U):p and by Hyp 4, X �
�(A1; . . . ; An) for some A1; . . . ; An and n, and thus A1; . . . ; An are derivable in J1.

II.3 �(X;Y ):p � C and Y � �(CD; Y 0); this is impossible.
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Case III (a) follows by JG from (a') �(U; V ):p and (a") �(W;D):p, where
we have

�(�(X;Y ):p; Y ) � �(U;W; (V:p)D):

III.1 �(X;Y ):p � (V:p)D and Y � �(U;W ); hence,

�(X;U;W ) � �(V:p;WD):

III.1.1 X � �(X 0; V:p), WD � �(X 0; U;W ), and (a") is

�(�(X 0; U;W ):p;W ):p:

If U is empty, by Hyp 4 and (a"), X 0 � �(A1; . . . ; An�1) for some derivable
A1; . . . ; An�1 and n. On the other hand, (a') is V:p and we may take V:p � An.

If U is nonempty, from (a') we obtain �((V:p)p; U):p and hence

�(�(X 0; V:p;W ):p;X 0; U;W ):p

by JPR. Now by using JTR and (a"), we obtain �(�(X;W ):p;W ):p. Hence, by
Hyp 4, X � �(A1; . . . ; An) for some derivable A1; . . . ; An.

III.1.2 U � �(V:p; U 0) and WD � �(X;U 0;W ). Obviously, (a') and (a") are

�(V:p; U 0; V ):p and �(W;�(X;U 0;W ):p):p;

respectively. Hence, by using JPR and (a'), we easily derive

�(�(X;V;W ):p;X; U 0; V;W ):p:

Now by using (a") and JTR we get �(�(X;V;W ):p; V;W ):p in J1. By Hyp 4 we
have that for some derivable A1; . . . ; An, X � �(A1; . . . ; An).

III.1.3 W � �(V:p;W 0) and WD � �(X;U;W 0). Obviously, (a') and (a")
are �(U; V ):p and �(V:p;W 0; �(X;U;W 0):p):p, respectively. By JTR, we derive
�(�(X;U;W 0):p; U;W 0):p. By Hyp 4, X � �(A1; . . . ; An) and A1; . . . ; An for some
derivable A1; . . . ; An.

III.2 U � �(�(X;Y ):p; U 0) and Y � �((V:p)D;U 0;W ). Now (a') is

�((�(X;V:p)D;U 0;W ):p; U 0; V ):p:

By using (a") �(W;D):p and JPR we derive

�(�(X;U 0; V ):p;X; U 0;W; (V:p)D):p:

Hence, by using JTR and (a'), we obtain �(�(X;U 0; V ):p; U 0; V ):p. Hence, X �
�(A1; . . . ; An), by Hyp 4, for some derivable A1; . . . ; An.

III.3 W � �(�(X;Y ):p;W 0) and Y � �((V:p)D;U;W 0). Now, obviously,
(a") is

�(�(X; (V:p)D;U;W 0):p;W 0; D):p:

From (a') �(U; V ):p, we obtain �(U; (V:p)D):D by Theorem 2, and

�((V:p)D;Dp;U):p

by JSU. Now by repeatedly using JPR, we easily derive

�(�(X;W 0; D):p;X; (V:p)D;U;W 0):p;

and hence
�(�(X;W 0; D):p;W 0; D):p;
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by using JTR and (a"). By Hyp 4, X � �(A1; . . . ; An) for some derivable
A1; . . . ; An.

This completes the proof of the theorem.

COROLLARY There is no theorem of J of the form AABB.

Proof. Suppose that there are A and B such that AABB is derivable in
J. Since J is closed under uniform substitution, there are A1 and B1 such that
A1A1B1B1 is derivable in J1. By NOE, A1A1 is derivable in J1 and hence in J,
contrary to NOID.

In fact, NOE is in J equivalent to NOID. For, suppose NOE and let A be a
formula such that AA is derivable in J; then AApp is derivable, contrary to NOE.

It is known that AABB is a theorem of E!; hence the name NOE.

A corollary of NOE concerning contraction and the Reirce Law is the following

Theorem 12. (A(AB))(AB) is derivable in J i� so is A; ABAA is derivable

in J i� so is AB.

NOE can be generalized to the following theorem.

Theorem 13. (a) �((�(X;Y ):p)p2k ; Y ):p is derivable i� X is nonenmpty and

every member of X is derivable.

Proof. If k = 0, the theorem is true by NOE.

Let k > 0 and proceed by induction on k. If Y is empty, we use Theorem 6.

Suppose that (a) is derivable in J1. By NOID, X is nonempty. The veri�ca-
tion that (a) is not an instance of ASU is left to the reader.

Case I (a) is obtained by JSU from (a') �(U; V ):p, where

�((�(X;Y ):p)p2k; Y ) � �(U; (V:p)p):

I.1 (V:p)p � (�(X;Y ):p)p2k and U � Y ; obviously, either X or Y is empty.
But X is nonempty. If Y is empty, then by Theorem 6, X � �(A1; . . . ; An) for
some derivable A1; . . . ; An.

I.2 Y � �((V:p)p; Y 0) and U � �(�(X; (V:p)p; Y 0):p; Y 0). Obviously, (a) is
obtained from (a') �((�(X; (V:p)p; Y 0):p)p2k; V; Y 0):p. Since X is nonempty, there
is a member A of X . But as an instance of ASU we have �(�(A; V ):p; (V:p)p;A):p.
By using JPR we derive �(�(X;V; Y 0):p;X; (V:p)p; Y 0):p, and then by using JSU
we obtain �(�(X;V; Y 0):p; (�(X; (V:p)p; Y 0):p)p2k�1):p. Hence, by using JTR and
(a') we obtain �(�(X;V; Y 0):p; V; Y 0):p. Now we use NOE to conclude that X �
�(A1; . . . ; An) for some A1; . . . ; An derivable in J1.

Case II (a) follows by JPR from (a') �(U;D):p, where �((�(X;Y ):p)p2k; Y )
� �(U;CD;C).

II.1 Y � �(CD;C; Y 0) and U � �((�(X;CD;C; Y 0):p)p2k; Y 0). But
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�(�(X;D; Y 0):p;X;CD;C; Y 0):p

is easily derivable in J1. By JSU we derive

�(�(X;D; Y 0):p; (�(X;CD;C; Y 0):p)p2k�1):p

Hence, by using JTR and (a'), we obtain �(�(X;D; Y 0):p;D; Y 0):p. Hence, X �
�(A1; . . . ; An), by NOE, for some A1; . . . ; An and n, and A1; . . . ; An are derivable
in J1.

II.2 (�(X;Y ):p)p2k � CD and Y � �(U;C); since k > 0, D � p and Y is
empty. The theorem follows by Theorem 6.

II.3 (�(X;Y ):p)p2k � C and Y � �(CD; Y 0); this is impossible.

Case III (a) follows by JG from (a') �(U; V ):p and (a") �(W;D):p, where
we have

�((�(X;Y ):p)p2k ; Y ) � �(U;W; (V:p)D):

III.1 (�(X;Y ):p)p2k � (V:p)D and Y � �(U;W ). Hence, D � p and V �
(�(X;U;W ):p)p2k�2. We have (a') �(U; (�(X;U;W ):p)p2k�2):p and (a") �(W; p):p.
By using JTR we derive

�((�(X;U;W ):p)p2k�2; U;W ):p:

By induction hypothesis, X � �(A1; . . . ; An) for some derivable A1; . . . ; An.

III.2 U � �((�(X;Y ):p)p2k; U 0) and Y � �((V:p)D;U 0;W ). Now (a') is

�(((�(X;V:p)D;U 0;W ):p)p2k; U 0; V ):p:

By (a") �(W;D):p and JPR we derive �(�(X;U 0; V ):p;X; (V:p)D;U 0;W ):p,
and then we use JSU to obtain �(�(X;U 0; V ):p; (�(X; (V:p)D;U 0;W ):p)p2k�1):p.
Hence, by using JTR and (a'), we obtain �(�(X;U 0; V ):p; U 0; V ):p. Hence, X �
�(A1; . . . ; An), by NOE, for some derivable A1; . . . ; An.

III.3 W � �((�(X;Y ):p)p2k;W 0) and Y � �((V:p)D;U;W 0). Now, obvious-
ly, (a") is

�((�(X; (V:p)D;U;W 0):p)p2k;W 0; D):p:

From (a') �(U; V ):p, we obtain �(U; (V:p)D):D by Theorem 2, and

�((V:p)D;Dp;U):p

by JSU. Now by repeatedly using JPR and JSU, we easily derive

�(�(X;W 0; D):p; (�(X; (V:p)D;U;W 0):p)2k�1):p;

and hence �(�(X;W 0; D):p;W 0; D):p; by using JTR and (a"). Now we use NOE to
conclude that X � �(A1; . . . ; An) for some derivable A1; . . . ; An.

This completes the proof of the theorem.

The di�erence between L and J1 is now clear: by L5, there is no theorem
of L of the form �((�(X;Y ):p)p2k; Y ):p; by Theorem 13, �((�(X;Y ):p)p2k; Y ):p is
derivable in J1 i� X is nonempty and every member of X is derivable in J1.
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Two open problems

Let us adjoin to J the axiom-schema pp. It is easy to prove that ASU, JSU,
and JPR are redundant. The system J+ID is equivalent to RW!, de�ned by MP
and the following axiom-schemata:

ID AA

ASS A:ABB

TR AB:BC:AC

(the proof is omitted). It is then easy to show that A-B is not true for J+ID.
From A:ABB, by Theorem 2 we obtain ABB(AB):A:AB. On the other hand,
A(AB):ABB:AB is an instance of ASU. Thus there are distinct formulas C and D
such that both CD and DC are derivable in J+ID. It is therefore natural to raise
the following two questions:

Question 1. Is there any proper extension EX of TW! such that A-B holds
for EX?

Question 2. Is there any proper extension EX of J such that NOID holds for
EX?
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