IDENTITY AND PERMUTATION

A. Kron

Abstract

It is known that in the purely implicational fragment of the system $\mathbf{T W}_{\rightarrow}$ if both $(A \rightarrow B)$ and $(B \rightarrow A)$ are theorems, then A and B are the same formula (the AndersonBelnap conjecture). This property is equivalent to NOID (no identity!): if the axiom-shema $(A \rightarrow A)$ is omitted from $\mathbf{T} \mathbf{W}_{\rightarrow}$ and the system $\mathbf{T} \mathbf{W}_{\rightarrow-\text {-ID }}$ is obtained, then there is no theorem of the form $(A \rightarrow A)$.

A Gentzen-style purely implicational system \mathbf{J} is here constructed such that NOID holds for \mathbf{J}. NOID is proved to be equivalent to NOE: there no theorem of \mathbf{J} of the form $((A \rightarrow A) \rightarrow$ $B) \rightarrow B$, i.e., of the form of the characteristic axiom of the implicational system $\mathbf{E} \rightarrow$ of entailment.

If $(p \rightarrow p)$ is adjoined to \mathbf{J} as an axiom-schema (ID), then there are theorems $(A \rightarrow B)$ and $(B \rightarrow A)$ such that A and B are distinct formulas, which shows that for \mathbf{J} the Anderson-Belnap conjecture is not equivalent to NOID.

The system $\mathbf{J}+$ ID is equivalent to $\mathbf{R W}_{\rightarrow}$ of relevance logic.

Introduction

By $\mathbf{T} \mathbf{W}_{\rightarrow}$ we understand the system of propositional relevance logic defined in the language with \rightarrow as the sole connective, by the following axiom-schemata:

$$
\begin{aligned}
\mathrm{ID} & (A \rightarrow A) \\
\mathrm{ASU} & ((A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C))) \\
\mathrm{APR} & ((B \rightarrow C) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))) .
\end{aligned}
$$

The only rule of $\mathbf{T} \mathbf{W}_{\rightarrow}$ is modus ponens.
By $\mathbf{T} \mathbf{W}_{\rightarrow-}$ ID we understand the system obtained from $\mathbf{T} \mathbf{W}_{\rightarrow}$ by deleting the schema ID.

It has been shown that the following propositions were equivalent (DwyerPowers theorem):

[^0]if both $(A \rightarrow B)$ and $(B \rightarrow A)$ are provable in $\mathbf{T W}_{\rightarrow}$, then A and B are the same formula (Anderson-Belnap's conjecture)
For no formula A is $(A \rightarrow A)$ provable in $\mathbf{T} \mathbf{W}_{\rightarrow-\text { ID (NOID). }}$ (N)
Anderson-Belnap's conjecture is about an interesting property. Let us write $A \equiv B$ iff both $(A \rightarrow B)$ and $(B \rightarrow A)$ are theorems of $\mathbf{T} \mathbf{W}_{\rightarrow}$; then the axioms of $\mathbf{T W} \rightarrow$ and modus ponens are sufficient to show that $(\mathrm{a}) \equiv$ is an equivalence relation and (b) that it is a congruence with respect to \rightarrow. By Anderson-Belnap's conjecture (the antisymmetry of \rightarrow) this congruence is the smallest congruence relation i.e., equality. Thus, the identity of formulas in the language with \rightarrow as the only connective can be characterized exclusively by logical means - by the theory $\mathbf{T} \mathbf{W}_{\rightarrow}$ of implication.

NOID (and hence the Anderson-Belnap's conjecture) has been proved true (cf. [2], [3] and [4]).

The proof of NOID in [3] has been obtained for a proper extension \mathbf{L} of $\mathbf{T} \mathbf{W}_{\rightarrow}$-ID.

Let \mathbf{S} and \mathbf{S}^{\prime} be theories of implication and let A-B and NOID be the following claims about \mathbf{S} and \mathbf{S}^{\prime} :

A-B if both $(A \rightarrow B)$ and $(B \rightarrow A)$ are provable in \mathbf{S}, then A and B are the same formula,
and
NOID there is no theorem of \mathbf{S}^{\prime} of the form $(A \rightarrow A)$.
Obviously, if $\mathbf{S}=\mathbf{T} \mathbf{W}_{\rightarrow}$ and $\mathbf{S}^{\prime}=\mathbf{T} \mathbf{W}_{\rightarrow-}-$ ID, then $\mathrm{A}-\mathrm{B}$ and NOID are equivalent.

In this paper we shall develop a proper extension \mathbf{J} of \mathbf{L} and prove that
(1) NOID holds for \mathbf{J} and A-B does not hold for $\mathbf{J}+$ ID;
(2) NOID is equivalent to the following proposition: $((A \rightarrow B) \rightarrow B)$ is a theorem of \mathbf{J} iff so is A.

The non-equivalence of A-B and NOID for \mathbf{J} and $\mathbf{J}+$ ID is due to permutation present in \mathbf{J} in the form of the rule PERM.

The claim (2) is interesting because it shows that NOID cannot hold in any system containing as a theorem any form of the \mathbf{E}_{\rightarrow} axiom

$$
(((A \rightarrow A) \rightarrow B) \rightarrow B) .
$$

Also, (2) will enable us to prove that there are in \mathbf{J} some restricted forms of contraction: any formula $((A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B))$ is a theorem of \mathbf{J} iff so is A.
(3) We shall show than NOE can be extended to formulas of a certain type.

The system J

Some of the basic definitions given below are taken from [3].
Let p, q, r, \ldots stand for propositional variables. The letters A, B, C, \ldots range over the set of formulas. Instead of $(A \rightarrow B)$ we shall write $(A B)$. Also, we omit parentheses, with the association to the left. Thus, $A B C$ stands for $(A B) C$.

Let $R, S, T, U, V, W, X, Y, Z, \ldots$ range over finite (possibly empty) sequences of formulas. If X consists of a single formula A, we shall write A for X. If X is empty, let $X . B$ denote B. If $X=\left\langle A_{1}, \ldots, A_{n}\right\rangle, n \geq 1$, then $X . B$ denotes the formula

$$
A_{1} \rightarrow\left(A_{2} \rightarrow \cdots \rightarrow\left(A_{n} \rightarrow B\right) \ldots\right)
$$

Notice that any formula is of the form $W \cdot p$, for some W and a variable p. Very often we shall write $W_{A} \cdot p$ for A, for any formula A.

By $\pi(X)$ we denote any permutation of X, and by $\pi(X) \cdot B$ we denote any formula Y. B such that Y is a permutation of X.

Let $C . D E$ be a subformula of A; suppose that B is obtained from A by substitution of $D . C E$ for $C . D E$, at a single occurrence of $C . D E$ in A; then we shall say that B is obtained from A by the rule PERM. Let us write $A \sim B$ iff B can be obtained from A by a finite (possibly zero) number of applications of PERM. It is clear that \sim is an equivalence relation. We shall write $X \sim Y$ iff Y can be obtained from a permutation Z of X by a finite (possibly zero) number of applications of PERM to some members of Z. For any A by A^{*} we shall denote any formula B such that $A \sim B$. Also, for any X by X^{*} we denote any Y such that $X \sim Y$. It is clear that $(\pi(X))^{*} \sim \pi\left(X^{*}\right)$.

The axioms of \mathbf{J} are given by the following schema:

$$
\mathrm{ASU} \quad \pi\left((A B)^{*}, B p, A\right) \cdot p
$$

The rules of \mathbf{J} are:

$$
\begin{aligned}
\text { JSU } & \text { From } \pi(X, Y) \cdot p \text { to infer } \pi\left(X^{*},\left(Y^{*} \cdot p\right) q\right) \cdot q \cdot \\
\text { JPR } & \text { From } \pi(X, B) \cdot p \text { to infer } \pi\left(X^{*},(A B)^{*}, A\right) \cdot p . \\
\text { JG } & \text { From } \pi(X, Y) \cdot p \text { and } \pi(Z, B) \cdot q \text { to infer } \\
& \pi\left(X^{*}, Z^{*},((Y \cdot p) B)^{*}\right) \cdot q .
\end{aligned}
$$

The rule JG is to be understood as follows: if there are permutations V and W of the sequences X, Y and Z, B, respectively, such that $V \cdot p$ and $W \cdot q$, are derivable in \mathbf{J}, so is $W^{\prime} . q$, for any permutaion W^{\prime} of the sequence $X^{*}, Z^{*},((Y . p) B)^{*}$. In a similar way we understand JSU and JPR.

We shall assume that derivations in \mathbf{J} are given in forms of trees, with usual properties. The weight w of a node in a derivation, derivability with weight w and the combined weight are defined as in [5, p. 113]. By the degree of A (of X) we understand the number of occurrences of \rightarrow in A (in X).

Let us define $A p^{n}$ as follows: $A p^{0}=A ; A p^{n+1}=\left(A p^{n}\right) p$.

\mathbf{J} is closed under modus ponens

We start with
Theorem 1. If A is derivable in \mathbf{J} with weight w, so is A^{*}; if X.p is derivable in \mathbf{J}, so is $\pi(X) . p$, for any permutation $\pi(X)$ of X.

Proof. By an easy induction on the weight of A in a given derivation of A.
Theorem 1 shows that \mathbf{J} is closed under PERM; it enables us to identify A and A^{*}, X and X^{*}, and X and $\pi(X)$ in derivations in \mathbf{J}. In the sequel this identification is assumed.

Theorem 2. If (a) $\pi(X, Y) . p$ is derivable in \mathbf{J}, so is (b) $\pi(X, \pi(Y . p, Z) . q . Z) . q$.
Proof. By JSU we obtain $\pi(X,(Y \cdot p) q) . q$ from (a); hence, (b) is obtained by using JPR.

Theorem 2 and JG show that \mathbf{J} is closed under the following assertion rules:
ASS1
From A to infer $A B B$.
ASS2 \quad From A and $\pi(X, B) . p$ to infer $\pi(X, A B) . p$.
Theorem 3. (Transitivity, Jtr) If (a) $\pi(X, Y) . p$ and (b) $\pi(Y \cdot p, Z) . q$ are derivable in \mathbf{J}, so is (c) $\pi(X, Z) . q$.

Proof. Proceed by double induction. Suppose that (a) and (b) are derivable with combined weight w and that $Y . p$ is of degree d. Our induction hypotheses are:

Hyp 1 The theorem holds for any $Y^{\prime} . p$ of degree $d^{\prime}<d$ and any combined weight w;
Hyp 2 The theorem holds for Y.p and any combined weight $w^{\prime}<w$.
Case I (b) is an instance of ASU; hence, $\pi(Y . p, Z) \sim \pi(A B, B q, A)$ for some A, B and q.
I. $1 \quad Y . p \sim A B \sim \pi\left(A, W_{B}\right) . p$, and $Y \sim \pi\left(A, W_{B}\right)$. From (a) we obtain (c) by using JSU.
I. $2 \quad Y . p \sim B q$; hence, $Y \sim B$ and $p \sim q$. From (a) we obtain (c) by using JPR.
I. $3 \quad$ Y.p $\sim A$; hence, by Theorem 2 we obtain (c).

Case II (b) is obtained by JSU from ($\left.\mathrm{b}_{1}\right) \pi(V, W) \cdot r$, where $\pi(V,(W \cdot r) q) \sim$ $\pi(Y . p, Z)$.
II. $1 \quad V \sim \pi\left(V^{\prime}, Y . p\right)$; by (a), $\left(\mathrm{b}_{1}\right)$ and Hyp $2 \pi\left(X, V^{\prime}, W\right) . r$ is derivable; hence, by using JSU we obtain (c).
II. 2 (W.r) $q \sim Y . p$ and $Z \sim V$; hence, $Y \sim W . r$ and $p \sim q$. By (a), (b_{1}) and Hyp 1, (c) is derived.

Case III (b) is obtained by JPR from $\left(\mathrm{b}_{1}\right) \pi(V, B) \cdot q$, where $\pi(V, A B, A) \sim$ $\pi(Y . p, Z)$.
III. $1 \quad V \sim \pi\left(V^{\prime}, Y . p\right)$ and $Z \sim \pi\left(V^{\prime}, A B, A\right)$; by (a), (b b_{1}), and Hyp 2, we obtain $\pi\left(X, V^{\prime}, B\right) . q$, and then (c) by using JPR.
III. $2 A B \sim Y . p$. We have (a) $\pi(X, A) . B$; hence, by (a), (b_{1}), and Hyp 1 , (c) is derived.
III. 3 A \sim Y.p. From (a) and (b_{1}) we obtain (c) by JG.

Case IV (b) is obtained by JG from (b_{1}) $\pi(U, V) \cdot r$ and $\left(\mathrm{b}_{2}\right) \pi(W, A) \cdot q$, where

$$
\pi(Y \cdot p, Z) \sim \pi(U, W,(V \cdot r) A)
$$

IV. $1 U \sim \pi\left(U^{\prime}, Y . p\right)$ and $Z \sim \pi\left(U^{\prime}, W,(V . r) A\right)$. By (a), (b b_{1}) and Hyp 2, $\pi\left(X, U^{\prime}, V\right) . r$ is derivable. Hence (c), by using $\left(\mathrm{b}_{2}\right)$ and JG.
IV. $2 W \sim \pi\left(W^{\prime}, Y . p\right)$ and $Z \sim \pi\left(U, W^{\prime},(V . r) A\right)$. Now $\pi\left(X, W^{\prime}, A\right) . q$ is derivable by (a), (b_{2}) and Hyp 2; hence (c), by using (b_{1}) and JG.
IV. 3 (V.r) $A \sim Y$.p and $Z \sim \pi(U, W)$. It is clear that (a) is $\pi(X, V . r) . A$. By (a), $\left(\mathrm{b}_{2}\right)$ and Hyp 1, ($\left.\mathrm{a}^{\prime}\right) \pi(X, W, V \cdot r) \cdot q$ is derivable. Now by $\left(\mathrm{b}_{1}\right),\left(\mathrm{a}^{\prime}\right)$, and Hyp 1 , (c) is derivable.

A trivial consequence of this theorem is
Theorem 4 (MODUS ponens, MP). If A and $A B$ are derivable in \mathbf{J}, so is B.
There is a Hilbert style formulation of \mathbf{J}. Let \mathbf{K} be the system with MP, PERM, ASS1 and the axiom-schema $\pi(A B, B C, A) . C$.

Theorem 5. K and \mathbf{J} are equivalent.
Proof. It is obvious that \mathbf{J} contains \mathbf{K}.
The rules JTR and JPR are easily derivable in \mathbf{K}, by using the axioms, MP and PERM. In the same way the rules JSU and JG are easily derivable provided that X is nonempty. The rule ASS1 plays the role of JSU when X is empty. Now by using ASS1, JPR and JTR we derive JG when X is empty (ASS2).

The system L

The system \mathbf{L} is obtained from \mathbf{J} by restricting JSU and JG: in JSU and JG X must not be empty. Let LSU and LG be JSU and JG, respectively, restricted in this way. In [3] it is assumed that \mathbf{L} has a single propositional variable p.

The following theorems were proved in [3].
$\mathrm{L}_{1} \quad$ If A is derivable in \mathbf{L} with weight w, so is A^{*}.
$\mathrm{L}_{2} \quad \mathbf{L}$ is closed under the following transitivity rule:
from $\pi(X, A, Y) . p$ and $\pi\left(Z, Y^{*} . p\right) . p$ to infer $\pi\left(X^{*}, Z^{*}, A^{*}\right) . p$.
$\mathrm{L}_{3} \quad \mathbf{L}$ contains $\mathbf{T W}_{\rightarrow-}$ ID.
$\mathrm{L}_{4} \quad$ There is no theorem of \mathbf{L} of the form $A p$.
$\mathrm{L}_{5} \quad$ There is no theorem of \mathbf{L} of the form $\pi\left((\pi(X, Y) \cdot p) p^{2 k}, Y^{*}\right) \cdot p, k \in \omega$.
$\mathrm{L}_{6} \quad$ There is no theorem of \mathbf{L} of the form $A A$.
$\mathrm{L}_{7} \quad$ There is no theorem of \mathbf{L} of the form $A B B$.
L_{8} There is no theorem of \mathbf{L} of the form $A . A B B$.
$\mathrm{L}_{9} \quad$ There is no theorem of \mathbf{L} of the form $A B B A$.
$L_{6}-L_{9}$ are consequences of L_{5}. We shall prove or disprove theorems about \mathbf{J} analogous to $\mathrm{L}_{1}-\mathrm{L}_{9}$ first.

Notice that \mathbf{L} is not closed under MP. Let $A \sim p p . p p . p p$ and $B \sim(p p . p p) p . p p p ;$ $A B$ is an instance of ASU. If \mathbf{L} were closed under MP, applying MP to

$$
\pi(A B, B p, A) \cdot p
$$

twice, $B p p$ would be obtained in \mathbf{L}, contrary to L_{4}.
\mathbf{L} is not closed under ASS1 either. Otherwise, $A p p$ would be derivable, contrary to L_{4}.

That \mathbf{L} is not closed under ASS2 can be seen as follows. Let $A \sim \pi(p p, p p, p) . p ;$ by using A and ASS2, in \mathbf{J} we derive $B, B \sim \pi(\pi(A, p) . p, p p, p)$. p. Let us show that B is not derivable in \mathbf{L}.
B is not an instance of ASU.
If B is obtained by LSU from C, then $C \sim \pi(\pi(A, p) . p, p) . p \sim(A(p p))(p p)$, violating thus L_{7}.

If B is derivable by LPR from $\pi(X, F) \cdot p$, then

$$
\pi(\pi(A, p) \cdot p, p p, p) \sim \pi(X, E F, E)
$$

for some X, E, and F. It is clear that $E \sim p$.
If $F \sim A p$, then $\pi(A p, p p) . p$ is derivable in \mathbf{L}. But this is neither an axiom nor can it be obtained by LPR or LG. If it is obtained by LSU, then $A p p$ is derivable, contrary to L_{4}.

If $F \sim p$, then $(A(p p))(p p)$ is derivable, contrary to L_{7}.
Suppose that B is derived by LG from $\pi(X, Y) . p$ and $\pi(Z, E) . p$; hence,

$$
\pi(\pi(A, p) \cdot p, p p, p) \cdot p \sim \pi(X,(Y \cdot p) E, Z) \cdot p
$$

If $(Y . p) E \sim p p$, then Y is empty, $E \sim p$ and $\pi(X, Z) \sim \pi(\pi(A, p) . p, p)$. Now X is not p and Z is not empty (otherwise, $p p$ is derivable). Hence, B is obtained from $(\pi(A, p) \cdot p) p$ and $\pi(p, p) . p$, which is impossible.

If $(Y . p) E \sim \pi(A, p) . p$, then $\pi(X, Z) \sim \pi(p p, p)$.
Let Z be empty; then B is obtained from $\pi(p p, p, Y) . p$ and $E p$, contrary to L_{4}.

Let $Z \sim p p$; then B is obtained from $\pi(Y, p) . p$ and $\pi(E, p p) . p$. Obviously, Y is not empty and E is not $p p$; hence, $E \sim A p$ and $Y . p \sim p-$ a contradiction.

Let $Z \sim p$; then B is obtained from $\pi(p p, Y) . p$ and $\pi(E, p) . p$. Since Y cannot be empty, $Y . p \sim A$ and $E \sim p p$, contary to L_{6}.

This shows that \mathbf{L} is not closed under ASS2.
Since $\mathrm{JSU}=\mathrm{LSU}+$ ASS1 and $\mathrm{JG}=\mathrm{LG}+$ ASS2, we have $\mathbf{J}=\mathbf{L}+$ ASS1 + ASS2.
\mathbf{J} is a proper extension of \mathbf{L} and there is no theorem about \mathbf{J} analogous either to L_{4} or L_{5} or L_{7}. However, theorems analogous to $\mathrm{L}_{6}, \mathrm{~L}_{8}$, and L_{9} still hold true.

No instance of $A A$ is derivable in \mathbf{J}

Theorem 6. (X.p)p is derivable in \mathbf{J} iff X is nonempty and any member of X is derivable in \mathbf{J}.

Proof. Let X be $\pi\left(A_{1}, \ldots, A_{n}\right), n>0$, and let A_{1}, \ldots, A_{n} be derivable in \mathbf{J}. By ASS1, $A_{n} p p$ is derivable; if $n>1$, by using JG in the form of ASS2, we derive $\left(\pi\left(A_{1}, \ldots A_{n}\right) \cdot p\right) p$, i.e., (X.p) p.

Suppose that ($X . p$) p is derivable. If X is empty, then $p p$ is derivable; however, this is neither an axiom nor can it be obtained by any of the rules. Hence, X is nonempty.

Let $X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ and proceed by induction on the weight of the derivation of (X.p)p.

Obviously, ($X . p) p$ is neither an instance of ASU nor can it be obtained by JPR. If it is obtained from (a^{\prime}) by JSU, then (X.p)p (V.p)pp and (a') is V.p; hence, $X \sim V \cdot p \sim A_{1}, X$ is nonempty and A_{1} is derivable in \mathbf{J}.

If (X.p) p is obtained from (a') and (a") by JG, then $X . p \sim \pi(U, W,(V . p) C), U$ and W are empty, $X \sim \pi\left(A_{1}, \ldots, A_{n}\right) \sim \pi\left(V \cdot p, W_{C}\right)$ for some A_{1}, \ldots, A_{n}, and (a') and (a") are V.p and ($W_{C} \cdot p$) p, respectively. By induction hypothesis, all members of W_{C}, say $W_{C} \sim \pi\left(A_{1}, \ldots, A_{n-1}\right)$, are derivable in \mathbf{J}. Obviously, we can take $V . p \sim A_{n}$.

This completes the proof of the theorem.
Since \mathbf{J} is (as \mathbf{L}) closed under uniform substitution, to prove the main theorems of this paper it suffices to prove them under the assumption that there is only one variable in \mathbf{J}, say p. Let \mathbf{J}_{1} be \mathbf{J} with just one variable p. In the sequel, if not stated otherwise, "derivable" means "derivable in \mathbf{J}_{1} ".

Theorem 7 (NOID). There is no theorem of \mathbf{J}_{1} of the form $\pi\left((X . p) p^{2 k}, X\right) . p$, $k \in \omega$.

Proof. If there is a theorem of \mathbf{J}_{1} of this form, then
Hyp 3 there is a formula (a) $\pi\left((X . p) p^{2 k}, X\right) . p$ of smallest degree derivable in \mathbf{J}_{1}.

Let us consider how (a) could have been obtained. We leave to the reader the verification that (a) cannot be an instance of ASU.

Case I (a) is obtained from ($\mathrm{a}^{\text {' }}$) by JSU; hence,

$$
\pi\left((X . p) p^{2 k}, X\right) \sim \pi(Y,(Z . p) p)
$$

for some Y and Z.
I. $1 \quad Y \sim \pi\left(Y^{\prime},(X . p) p^{2 k}\right)$ and $X \sim \pi\left(Y^{\prime},(Z . p) p\right)$. Obviously, we have (a')

$$
\pi\left(\pi\left(\left(Y^{\prime},(Z \cdot p) p\right) \cdot p\right) p^{2 k}, Y^{\prime}, Z\right) \cdot p
$$

If both Y^{\prime} and Z are empty, then (a^{\prime}) is $p p p p^{2 k} p$; hence, $p p$ is derivable by Theorem 6. This is impossible.

If Y^{\prime} is empty and Z nonempty, then (a') is $\pi\left((Z \cdot p) p p p^{2 k}, Z\right) \cdot p$, contrary to Hyp 3.

Let Y^{\prime} be nonempty and Z arbitrary. By using ASU and JPR we derive (b)

$$
\pi\left(\pi\left(Y^{\prime}, Z\right) \cdot p,(Z \cdot p) p, Y^{\prime}\right) \cdot p
$$

If $k>0$, we use JSU to derive (c) $\pi\left(\pi\left(Y^{\prime}, Z\right) \cdot p,\left(\pi\left(Y^{\prime},(Z . p) p\right) \cdot p\right) p^{2 k-1}\right) \cdot p$. Hence, by (c), (a'), and JTR we derive $\pi\left(\pi\left(Y^{\prime}, Z\right) . p, Y^{\prime}, Z\right) . p$, contrary to Hyp 3.
I. $2(X . p) p^{2 k} \sim(Z . p) p$ and $X \sim Y$. If $k=0$, then $X \sim Z . p$ and (a') is $\pi(Z . p, Z) . p$, contrary to Hyp 3.

If $k>0$, then $Z . p \sim(X . p) p^{2 k-1}$ and $Z \sim(X . p) p^{2 k-2}$. Hence, we have (a')

$$
\pi\left((X . p) p^{2 k-2}, X\right) . p
$$

contrary to Hyp 3.
Case II (a) is obtained by JPR; hence, $\pi\left((X . p) p^{2 k}, X\right) \sim \pi(Y, A B, A)$ for some Y, A and B.
II. $1 \quad Y \sim \pi\left(Y^{\prime},(X . p) p^{2 k}\right)$ and $X \sim \pi\left(Y^{\prime}, A B, A\right)$. Obviously, we have (a')

$$
\pi\left(\left(\pi\left(Y^{\prime}, A B, A\right) \cdot p\right) p^{2 k}, Y^{\prime}, B\right) \cdot p
$$

Now $\pi(B p, A B, A) . p$ is an instance of ASU; hence, by JPR we obtain

$$
\pi\left(\pi\left(Y^{\prime}, B\right) \cdot p, Y^{\prime}, A B, A\right) \cdot p
$$

and then by using JSU we derive $\left.\pi\left(\pi\left(Y^{\prime}, B\right) . p, \pi\left(Y^{\prime}, A B, A\right) . p\right) p\right)$. p. If $k>0$, by JSU we get $\left.\pi\left(\pi\left(Y^{\prime}, B\right) \cdot p, \pi\left(Y^{\prime}, A B, A\right) \cdot p\right) p^{2 k-1}\right) \cdot p$. Hence, using JTR and (a') we obtain $\pi\left(\pi\left(Y^{\prime}, B\right) . p, Y^{\prime}, B\right) . p$, contradicting thus Hyp 3.
II. $2 \quad(X . p) p^{2 k} \sim A B$ and $X \sim \pi(Y, A)$. Hence,

$$
(X . p) p^{2 k} \sim\left(\pi\left(Y, W_{A} \cdot p\right) \cdot p\right) p^{2 k} \sim \pi\left(W_{A} \cdot p, W_{B}\right) \cdot p
$$

If $k>0$, then W_{B} is empty and we have $B \sim p$, and $W_{A} \cdot p \sim\left(\pi\left(Y, W_{A} \cdot p\right) \cdot p\right) p^{2 k-1}$; this is impossible.

Let $k=0$; then $\pi(Y, A) \sim \pi\left(A, W_{B}\right)$ and $Y \sim W_{B}$. Thus, (a') is $\pi\left(W_{B} \cdot p, W_{B}\right) . p$, contrary to Hyp 3.
II. $3 \quad(X . p) p^{2 k} \sim A$ and $X \sim \pi(Y, A B)$; this is impossible.

Case III (a) is obtained by JG; hence, $\pi\left((X . p) p^{2 k}, X\right) \sim \pi(Y, Z,(U . p) B)$ and both (a') $\pi(Y, U) . p$ and (a") $\pi(Z, B) . p$ are derivable.
III. $1 \quad Y \sim \pi\left(Y^{\prime},(X . p) p^{2 k}\right)$ and $X \sim \pi\left(Y^{\prime}, Z,(U . p) B\right)$; hence, (a') is

$$
\pi\left(\left(\pi\left(Y^{\prime}, Z,(U \cdot p) B\right) \cdot p\right) p^{2 k}, Y^{\prime}, U\right) \cdot p
$$

From (a") we obtain (b) $\pi(U \cdot p, Z,(U \cdot p) B) \cdot p$ by using JPR. If necessary, we apply JPR to obtain (c) $\pi\left(\pi\left(Y^{\prime}, U\right) \cdot p, Y^{\prime}, Z,(U \cdot p) B\right) . p$. If $k>0$, by using JSU we derive (d)

$$
\left.\pi\left(\pi\left(Y^{\prime}, U\right) \cdot p, \pi\left(Y^{\prime}, Z,(U \cdot p) B\right) \cdot p\right) p^{2 k-1}\right) \cdot p
$$

Hence, by (d), (a'), and JTR we derive $\pi\left(\pi\left(Y^{\prime}, U\right) . p, Y^{\prime}, U\right) . p$, contrary to Hyp 3 .

$$
\begin{gathered}
\text { III. } 2 \quad Z \sim \pi\left(Z^{\prime},(X \cdot p) p^{2 k}\right) \text { and } X \sim \pi\left(Y, Z^{\prime},(U \cdot p) B\right) \text {; hence, (a") is } \\
\pi\left(\left(\pi\left(Y, Z^{\prime},(U . p) B \cdot p\right) p^{2 k}, Z^{\prime}, B\right) . p .\right.
\end{gathered}
$$

On the other hand, from (a') we obtain (b) $\pi(Y,(U . p) B) . B$, by Theorem 2. Hence, by using JSU we derive (c) $\pi(B p, Y,(U . p) B) . p$, and if Z^{\prime} is nonempty, we derive (d)

$$
\pi\left(\pi\left(Z^{\prime}, B\right) \cdot p, Y, Z^{\prime},(U \cdot p) B\right) \cdot p
$$

by using JPR. Now if $k>0$, we can use JSU to obtain (e)

$$
\pi\left(\pi\left(Z^{\prime}, B\right) \cdot p,\left(\pi\left(Y, Z^{\prime},(U \cdot p) B\right) \cdot p\right) p^{2 k-1}\right) \cdot p
$$

In any case we can use (e), (a"), and JTR to obtain $\pi\left(\pi\left(Z^{\prime}, B\right) \cdot p, Z^{\prime}, B\right) \cdot p$, contrary to Hyp 3.
III. $3(X . p) p^{2 k} \sim(U . p) B$ and $X \sim \pi(Y, Z)$. If $k>0$, then $B \sim p, U . p \sim$ $(X . p) p^{2 k-1}$ and $U \sim(X . p) p^{2 k-2}$. Obviously, we have (a') $\pi\left((\pi(Y, Z) . p) p^{2 k-2}, Y\right) . p$ and (a") $\pi(Z, p) . p$. Hence, Z is nonempty.
III.3.1 Let Y be empty; then $\left(\mathrm{a}^{\prime}\right)$ is $(Z . p) p^{2 k-1}$. We derive

$$
\text { (b) } \pi\left(p,(Z \cdot p) p^{2 k-1}\right) \cdot p
$$

by using (a") and JSU. Hence, by using (a'), (b), and MP we obtain $p p$, which is impossible.
III.3.2 Let Y be nonempty. By using (a") and JPR we derive

$$
\text { (b) } \quad \pi(Y \cdot p, Y, Z) \cdot p
$$

hence, by applying JSU to (b) we derive (c) $\pi\left(Y \cdot p,(\pi(Y, Z) \cdot p) p^{2 k-1}\right) \cdot p$, and hence $\pi(Y \cdot p, Y) \cdot p$ is derivable by using (a'), (c), and JTR, contrary to Hyp 3.

Let $k=0$ and $B \sim V . p$ then $X \sim \pi(U . p, V)$.
III.3.3 $Y \sim \pi\left(Y^{\prime}, U . p\right)$ and $V \sim \pi\left(Y^{\prime}, Z\right)$. We have
(a') $\pi\left(Y^{\prime}, U \cdot p, U\right) . p$ and (a") $\pi\left(\pi\left(Y^{\prime}, Z\right) \cdot p, Z\right) \cdot p$.
If Y^{\prime} is empty, Hyp 3 is violated.
Let Y^{\prime} be nonempty. If Z is empty, (a") becomes $\left(Y^{\prime} . p\right) p$ and hence $\pi(U \cdot p, U) \cdot p$ is obtained from (a^{\prime}) and ($\mathrm{a}^{\prime \prime}$) by JTR, contrary to Hyp 3.

Let Z be nonempty. By using JPR, from (a') we obtain

$$
\pi\left(\pi\left(\pi(Z, U) \cdot p, U, Y^{\prime}, Z\right) \cdot p\right.
$$

Hence, by using JTR and (a"), we obtain $\pi(\pi(Z, U) . p, Z, U) . p$, contrary to Hyp 3.
III.3.4 $Z \sim \pi\left(Z^{\prime}, U . p\right)$ and $V \sim \pi\left(Y, Z^{\prime}\right)$. We have

$$
\text { (a') } \pi(Y, U) \cdot p \text { and (a") } \pi\left(Z^{\prime}, U \cdot p, \pi\left(Y, Z^{\prime}\right) \cdot p\right) \cdot p
$$

From (a') and (a") we obtain $\pi\left(\pi\left(Y, Z^{\prime}\right) \cdot p, Y, Z^{\prime}\right) \cdot p$, by using JTR, contrary to Hyp 3.

This completes the proof.
Theorem 8. There is no theorem of \mathbf{J} of the form $A A$.

Theorem 9. There is no theorem of \mathbf{J} of the form $A \cdot A B B$.
Theorem 10. There is no theorem of \mathbf{J} of the form $A B B A$.
Theorems 8-10 are trivial consequences of NOID.

No istance of $A A B B$ is derivable in \mathbf{J}

Theorem 11 (NOE). $\pi(\pi(X, Y) . p, Y) . p$ is derivable in \mathbf{J}_{1} iff X is nonempty and every member of X is derivable in \mathbf{J}_{1}.

Proof. To prove the non-trivial part of the theorem, proceed by induction on the degree of $\pi(X, Y) . p$. If Y is empty, we use Theorem 6. Let us accept the induction hypothesis

Hyp 4 The theorem holds for any $\pi\left(X^{\prime}, Y^{\prime}\right) . p$ of degree smaller than the degree of $\pi(X, Y) . p$.

Suppose that (a) $\pi(\pi(X, Y) \cdot p, Y) \cdot p$ is derivable in \mathbf{J}_{1}. By NOID, X is nonempty. The verification that (a) is not an instance of ASU is left to the reader.

Case I (a) is obtained by JSU from (a') $\pi(U, V) . p$, where $\pi(\pi(X, Y) . p, Y) \sim$ $\pi(U,(V . p) p)$.
I. $1 \quad(V . p) p \sim \pi(X, Y) . p$ and $U \sim Y$; obviously, either X or Y is empty. But X is nonempty. If Y is empty, then by Theorem $6, X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ for some derivable A_{1}, \ldots, A_{n}.
I. $2 \quad Y \sim \pi\left((V . p) p, Y^{\prime}\right)$ and $U \sim \pi\left(\pi\left(X,(V \cdot p) p, Y^{\prime}\right) . p, Y^{\prime}\right)$. Obviously, (a) is obtained from (a') $\pi\left(\pi\left(X,(V \cdot p) p, Y^{\prime}\right) \cdot p, V, Y^{\prime}\right) \cdot p$. Since X is nonempty, there is a member A of X. But as an instance of ASU we have $\pi(\pi(A, V) \cdot p,(V \cdot p) p, A) \cdot p$. By using JPR we derive $\pi\left(\pi\left(X, V, Y^{\prime}\right) \cdot p, X,(V \cdot p) p, Y^{\prime}\right) . p$. Hence, by using JTR and (a') we obtain $\pi\left(\pi\left(X, V, Y^{\prime}\right) \cdot p, V, Y^{\prime}\right) \cdot p$. By Hyp $4, X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ for some A_{1}, \ldots, A_{n} and n, and A_{1}, \ldots, A_{n} are derivable in \mathbf{J}_{1}.

Case II (a) follows by JPR from (a') $\pi(U, D) . p$, where $\pi(\pi(X, Y) . p, Y) \sim$ $\pi(U, C D, C)$.
II. $1 \quad Y \sim \pi\left(C D, C, Y^{\prime}\right)$ and $U \sim \pi\left(\pi\left(X, C D, C, Y^{\prime}\right) . p, Y^{\prime}\right)$. But

$$
\pi\left(\pi\left(X, D, Y^{\prime}\right) \cdot p, X, C D, C, Y^{\prime}\right) \cdot p
$$

is easily derivable in \mathbf{J}_{1}. Hence, by using JTR and (a'), so is

$$
\pi\left(\pi\left(X, D, Y^{\prime}\right) \cdot p, D, Y^{\prime}\right) \cdot p
$$

Hence, by Hyp $4, X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ for some A_{1}, \ldots, A_{n} and n, and A_{1}, \ldots, A_{n} are derivable in \mathbf{J}_{1}.
II. $2 \pi(X, Y) . p \sim C D$ and $Y \sim \pi(U, C)$; hence, $\pi(X, C, U) . p \sim C D$. It is clear that $\pi(X, U) \sim W_{D}$. Now (a') is $\pi(\pi(X, U) . p, U) . p$ and by Hyp $4, X \sim$ $\pi\left(A_{1}, \ldots, A_{n}\right)$ for some A_{1}, \ldots, A_{n} and n, and thus A_{1}, \ldots, A_{n} are derivable in \mathbf{J}_{1}.
II. $3 \pi(X, Y) . p \sim C$ and $Y \sim \pi\left(C D, Y^{\prime}\right)$; this is impossible.

Case III (a) follows by JG from (a') $\pi(U, V) . p$ and (a") $\pi(W, D) . p$, where we have

$$
\pi(\pi(X, Y) \cdot p, Y) \sim \pi(U, W,(V \cdot p) D)
$$

III. $1 \pi(X, Y) \cdot p \sim(V \cdot p) D$ and $Y \sim \pi(U, W)$; hence,

$$
\pi(X, U, W) \sim \pi\left(V \cdot p, W_{D}\right)
$$

III.1.1 $\quad X \sim \pi\left(X^{\prime}, V . p\right), W_{D} \sim \pi\left(X^{\prime}, U, W\right)$, and (a") is

$$
\pi\left(\pi\left(X^{\prime}, U, W\right) \cdot p, W\right) \cdot p
$$

If U is empty, by Hyp 4 and (a"), $X^{\prime} \sim \pi\left(A_{1}, \ldots, A_{n-1}\right)$ for some derivable A_{1}, \ldots, A_{n-1} and n. On the other hand, (a') is $V . p$ and we may take $V . p \sim A_{n}$.

If U is nonempty, from ($\left.\mathrm{a}^{\prime}\right)$ we obtain $\pi((V \cdot p) p, U) . p$ and hence

$$
\pi\left(\pi\left(X^{\prime}, V \cdot p, W\right) \cdot p, X^{\prime}, U, W\right) \cdot p
$$

by JPR. Now by using JTR and (a"), we obtain $\pi(\pi(X, W) \cdot p, W) . p$. Hence, by Hyp $4, X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ for some derivable A_{1}, \ldots, A_{n}.
III.1.2 $U \sim \pi\left(V \cdot p, U^{\prime}\right)$ and $W_{D} \sim \pi\left(X, U^{\prime}, W\right)$. Obviously, (a') and (a") are $\pi\left(V \cdot p, U^{\prime}, V\right) . p$ and $\pi\left(W, \pi\left(X, U^{\prime}, W\right) \cdot p\right) . p$,
respectively. Hence, by using JPR and (a'), we easily derive

$$
\pi\left(\pi(X, V, W) \cdot p, X, U^{\prime}, V, W\right) \cdot p
$$

Now by using (a") and JTR we get $\pi(\pi(X, V, W) \cdot p, V, W) \cdot p$ in \mathbf{J}_{1}. By Hyp 4 we have that for some derivable $A_{1}, \ldots, A_{n}, X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$.
III.1.3 $W \sim \pi\left(V \cdot p, W^{\prime}\right)$ and $W_{D} \sim \pi\left(X, U, W^{\prime}\right)$. Obviously, (a') and (a") are $\pi(U, V) \cdot p$ and $\pi\left(V \cdot p, W^{\prime}, \pi\left(X, U, W^{\prime}\right) \cdot p\right) . p$, respectively. By JTR, we derive $\pi\left(\pi\left(X, U, W^{\prime}\right) \cdot p, U, W^{\prime}\right) . p$. By Hyp $4, X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ and A_{1}, \ldots, A_{n} for some derivable A_{1}, \ldots, A_{n}.
III. $2 U \sim \pi\left(\pi(X, Y) . p, U^{\prime}\right)$ and $Y \sim \pi\left((V . p) D, U^{\prime}, W\right)$. Now (a') is

$$
\pi\left(\left(\pi(X, V \cdot p) D, U^{\prime}, W\right) \cdot p, U^{\prime}, V\right) \cdot p
$$

By using (a") $\pi(W, D) \cdot p$ and JPR we derive

$$
\pi\left(\pi\left(X, U^{\prime}, V\right) \cdot p, X, U^{\prime}, W,(V \cdot p) D\right) \cdot p
$$

Hence, by using JTR and (a'), we obtain $\pi\left(\pi\left(X, U^{\prime}, V\right) . p, U^{\prime}, V\right) . p$. Hence, $X \sim$ $\pi\left(A_{1}, \ldots, A_{n}\right)$, by Hyp 4 , for some derivable A_{1}, \ldots, A_{n}.
III. $3 W \sim \pi\left(\pi(X, Y) . p, W^{\prime}\right)$ and $Y \sim \pi\left((V \cdot p) D, U, W^{\prime}\right)$. Now, obviously, (a") is

$$
\pi\left(\pi\left(X,(V \cdot p) D, U, W^{\prime}\right) \cdot p, W^{\prime}, D\right) \cdot p
$$

From (a') $\pi(U, V) \cdot p$, we obtain $\pi(U,(V \cdot p) D) \cdot D$ by Theorem 2, and

$$
\pi((V \cdot p) D, D p, U) \cdot p
$$

by JSU. Now by repeatedly using JPR, we easily derive

$$
\pi\left(\pi\left(X, W^{\prime}, D\right) \cdot p, X,(V \cdot p) D, U, W^{\prime}\right) \cdot p
$$

and hence

$$
\pi\left(\pi\left(X, W^{\prime}, D\right) \cdot p, W^{\prime}, D\right) \cdot p
$$

by using JTR and (a"). By Hyp 4, $X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ for some derivable A_{1}, \ldots, A_{n}.

This completes the proof of the theorem.

Corollary There is no theorem of \mathbf{J} of the form $A A B B$.

Proof. Suppose that there are A and B such that $A A B B$ is derivable in \mathbf{J}. Since \mathbf{J} is closed under uniform substitution, there are A_{1} and B_{1} such that $A_{1} A_{1} B_{1} B_{1}$ is derivable in \mathbf{J}_{1}. By NOE, $A_{1} A_{1}$ is derivable in \mathbf{J}_{1} and hence in \mathbf{J}, contrary to NOID.

In fact, NOE is in \mathbf{J} equivalent to NOID. For, suppose NOE and let A be a formula such that $A A$ is derivable in \mathbf{J}; then $A A p p$ is derivable, contrary to NOE.

It is known that $A A B B$ is a theorem of \mathbf{E}_{\rightarrow}; hence the name NOE.
A corollary of NOE concerning contraction and the Reirce Law is the following
Theorem 12. $(A(A B))(A B)$ is derivable in \mathbf{J} iff so is $A ; A B A A$ is derivable in \mathbf{J} iff so is $A B$.

NOE can be generalized to the following theorem.
Theorem 13. (a) $\pi\left((\pi(X, Y) \cdot p) p^{2 k}, Y\right) . p$ is derivable iff X is nonenmpty and every member of X is derivable.

Proof. If $k=0$, the theorem is true by NOE.
Let $k>0$ and proceed by induction on k. If Y is empty, we use Theorem 6.
Suppose that (a) is derivable in \mathbf{J}_{1}. By NOID, X is nonempty. The verification that (a) is not an instance of ASU is left to the reader.

Case I (a) is obtained by JSU from (a') $\pi(U, V) . p$, where

$$
\pi\left((\pi(X, Y) . p) p^{2 k}, Y\right) \sim \pi(U,(V . p) p)
$$

I. 1 (V.p) $p \sim(\pi(X, Y) . p) p^{2 k}$ and $U \sim Y$; obviously, either X or Y is empty. But X is nonempty. If Y is empty, then by Theorem $6, X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ for some derivable A_{1}, \ldots, A_{n}.
I. $2 \quad Y \sim \pi\left((V \cdot p) p, Y^{\prime}\right)$ and $U \sim \pi\left(\pi\left(X,(V \cdot p) p, Y^{\prime}\right) . p, Y^{\prime}\right)$. Obviously, (a) is obtained from (a') $\pi\left(\left(\pi\left(X,(V \cdot p) p, Y^{\prime}\right) \cdot p\right) p^{2 k}, V, Y^{\prime}\right) \cdot p$. Since X is nonempty, there is a member A of X. But as an instance of ASU we have $\pi(\pi(A, V) . p,(V . p) p, A) . p$. By using JPR we derive $\pi\left(\pi\left(X, V, Y^{\prime}\right) \cdot p, X,(V \cdot p) p, Y^{\prime}\right) \cdot p$, and then by using JSU we obtain $\pi\left(\pi\left(X, V, Y^{\prime}\right) \cdot p,\left(\pi\left(X,(V \cdot p) p, Y^{\prime}\right) \cdot p\right) p^{2 k-1}\right) \cdot p$. Hence, by using JTR and (a') we obtain $\pi\left(\pi\left(X, V, Y^{\prime}\right) \cdot p, V, Y^{\prime}\right) \cdot p$. Now we use NOE to conclude that $X \sim$ $\pi\left(A_{1}, \ldots, A_{n}\right)$ for some A_{1}, \ldots, A_{n} derivable in \mathbf{J}_{1}.

Case II (a) follows by JPR from (a') $\pi(U, D) . p$, where $\pi\left((\pi(X, Y) . p) p^{2 k}, Y\right)$ $\sim \pi(U, C D, C)$.
II. $1 \quad Y \sim \pi\left(C D, C, Y^{\prime}\right)$ and $U \sim \pi\left(\left(\pi\left(X, C D, C, Y^{\prime}\right) . p\right) p^{2 k}, Y^{\prime}\right)$. But

$$
\pi\left(\pi\left(X, D, Y^{\prime}\right) \cdot p, X, C D, C, Y^{\prime}\right) \cdot p
$$

is easily derivable in \mathbf{J}_{1}. By JSU we derive

$$
\pi\left(\pi\left(X, D, Y^{\prime}\right) \cdot p,\left(\pi\left(X, C D, C, Y^{\prime}\right) \cdot p\right) p^{2 k-1}\right) \cdot p
$$

Hence, by using JTR and (a'), we obtain $\pi\left(\pi\left(X, D, Y^{\prime}\right) . p, D, Y^{\prime}\right) . p$. Hence, $X \sim$ $\pi\left(A_{1}, \ldots, A_{n}\right)$, by NOE, for some A_{1}, \ldots, A_{n} and n, and A_{1}, \ldots, A_{n} are derivable in \mathbf{J}_{1}.
II. $2 \quad(\pi(X, Y) . p) p^{2 k} \sim C D$ and $Y \sim \pi(U, C)$; since $k>0, D \sim p$ and Y is empty. The theorem follows by Theorem 6.
II. $3 \quad(\pi(X, Y) . p) p^{2 k} \sim C$ and $Y \sim \pi\left(C D, Y^{\prime}\right)$; this is impossible.

Case III (a) follows by JG from (a') $\pi(U, V) . p$ and (a") $\pi(W, D) . p$, where we have

$$
\pi\left((\pi(X, Y) \cdot p) p^{2 k}, Y\right) \sim \pi(U, W,(V \cdot p) D)
$$

III. $1 \quad(\pi(X, Y) \cdot p) p^{2 k} \sim(V \cdot p) D$ and $Y \sim \pi(U, W)$. Hence, $D \sim p$ and $V \sim$ $(\pi(X, U, W) \cdot p) p^{2 k-2}$. We have (a') $\pi\left(U,(\pi(X, U, W) \cdot p) p^{2 k-2}\right) \cdot p$ and (a") $\pi(W, p) \cdot p$. By using JTR we derive

$$
\pi\left((\pi(X, U, W) \cdot p) p^{2 k-2}, U, W\right) \cdot p
$$

By induction hypothesis, $X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ for some derivable A_{1}, \ldots, A_{n}.
III. $2 \quad U \sim \pi\left((\pi(X, Y) \cdot p) p^{2 k}, U^{\prime}\right)$ and $Y \sim \pi\left((V \cdot p) D, U^{\prime}, W\right)$. Now (a') is

$$
\pi\left(\left(\left(\pi(X, V \cdot p) D, U^{\prime}, W\right) \cdot p\right) p^{2 k}, U^{\prime}, V\right) \cdot p
$$

By (a") $\pi(W, D) \cdot p$ and JPR we derive $\pi\left(\pi\left(X, U^{\prime}, V\right) \cdot p, X,(V \cdot p) D, U^{\prime}, W\right) \cdot p$, and then we use JSU to obtain $\pi\left(\pi\left(X, U^{\prime}, V\right) \cdot p,\left(\pi\left(X,(V \cdot p) D, U^{\prime}, W\right) \cdot p\right) p^{2 k-1}\right) \cdot p$. Hence, by using JTR and (a'), we obtain $\pi\left(\pi\left(X, U^{\prime}, V\right) . p, U^{\prime}, V\right) . p$. Hence, $X \sim$ $\pi\left(A_{1}, \ldots, A_{n}\right)$, by NOE, for some derivable A_{1}, \ldots, A_{n}.
III. $3 W \sim \pi\left((\pi(X, Y) \cdot p) p^{2 k}, W^{\prime}\right)$ and $Y \sim \pi\left((V \cdot p) D, U, W^{\prime}\right)$. Now, obviously, (a") is

$$
\pi\left(\left(\pi\left(X,(V \cdot p) D, U, W^{\prime}\right) \cdot p\right) p^{2 k}, W^{\prime}, D\right) \cdot p
$$

From (a^{\prime}) $\pi(U, V) \cdot p$, we obtain $\pi(U,(V \cdot p) D) . D$ by Theorem 2 , and

$$
\pi((V \cdot p) D, D p, U) \cdot p
$$

by JSU. Now by repeatedly using JPR and JSU, we easily derive

$$
\pi\left(\pi\left(X, W^{\prime}, D\right) \cdot p,\left(\pi\left(X,(V \cdot p) D, U, W^{\prime}\right) \cdot p\right)^{2 k-1}\right) \cdot p
$$

and hence $\pi\left(\pi\left(X, W^{\prime}, D\right) \cdot p, W^{\prime}, D\right) \cdot p$, by using JTR and (a"). Now we use NOE to conclude that $X \sim \pi\left(A_{1}, \ldots, A_{n}\right)$ for some derivable A_{1}, \ldots, A_{n}.

This completes the proof of the theorem.
The difference between \mathbf{L} and \mathbf{J}_{1} is now clear: by L_{5}, there is no theorem of \mathbf{L} of the form $\pi\left((\pi(X, Y) \cdot p) p^{2 k}, Y\right) \cdot p$; by Theorem $13, \pi\left((\pi(X, Y) \cdot p) p^{2 k}, Y\right) \cdot p$ is derivable in \mathbf{J}_{1} iff X is nonempty and every member of X is derivable in \mathbf{J}_{1}.

Two open problems

Let us adjoin to \mathbf{J} the axiom-schema $p p$. It is easy to prove that ASU, JSU, and JPR are redundant. The system $\mathbf{J}+\mathrm{ID}$ is equivalent to $\mathbf{R W}_{\rightarrow}$, defined by MP and the following axiom-schemata:

ID	$A A$
ASS	$A \cdot A B B$
TR	$A B \cdot B C \cdot A C$

(the proof is omitted). It is then easy to show that A-B is not true for $\mathbf{J}+\mathrm{ID}$. From $A \cdot A B B$, by Theorem 2 we obtain $A B B(A B) \cdot A \cdot A B$. On the other hand, $A(A B) \cdot A B B \cdot A B$ is an instance of ASU. Thus there are distinct formulas C and D such that both $C D$ and $D C$ are derivable in $\mathbf{J}+$ ID. It is therefore natural to raise the following two questions:

Question 1. Is there any proper extension $\mathbf{E X}$ of $\mathbf{T W}_{\rightarrow}$ such that A-B holds for EX?

Question 2. Is there any proper extension EX of \mathbf{J} such that NOID holds for EX?

REFERENCES

[1] A.R. Anderson and N.D. Belnap, Entailment, the Logic of Relevance and Necessity, Vol. I, Princeton Univ. Press, 1975, §8.11.
[2] Y. Komori, Syntactical Investigations into BI Logic and BB'I Logic, Studia Logica 53 (1994), 397-416.
[3] A. Kron, A constructive proof of a theorem in relevance logic, Z. Math. Logik Grund. Math., 31 (1985), 423-430.
[4] E. Martin and R.K. Meyer, Solution to the $P-W$ problem, J. Symbolic Logic 47 (1982), 869-887.
[5] R. Smullyan, First-Order Logic, Springer-Verlag, Heidelberg - Berlin - New York, 1968.

[^0]: AMS Subject Classification (1991): Primary 11 A 05
 Research supported by the Science Fund of Serbia (grant number 0401A) through the Mathematical Institute in Belgrade.

