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A FEW REMARKS ON REDUCED IDEAL-PRODUCTS

Milan Z. Grulovié and Milos S. Kurilié

Abstract. A nicer shape of the condition (A¥) (which ensures preservation of separation

axioms Ty, £k =0,1,2,3, 3%, in reduced ideal-products) is given. If an reduced-ideal products is

To, T1 or T» then “almost all” coordinate spaces have this property. This implication holds for
T3-property if the condition (AV) is satisfied. Some results on mappings and homogenicity of r.i.
products are obtained. Finally, it is proved that r.i.p. of topological groups (rings) is a topological

group (ring).
1. Preliminaries

The notation and some of the remarks made here were already given in our
previous papers on this subject. Thus, they are offered more for the reader’s con-
venience.

Throughout the paper {X; | i € I'} will be a family of topological spaces,
where X; = (X;,0;). A and ¥ will be respectively an ideal and a filter on I and
7+ [Lier Xi — Xj, j € I, will be the canonical projections.

The topology O* on [I,c; X: is given by its base BA consisting of all sets
of the form ;. 7; 1(0;), where L € A and O; € O;, for all i € L. The space
(IT;cs Xi, ©*) will be denoted by HA A;. The equivalence relation ~ on [],.; X;
defined by: f ~ g iff {i € T | fi = gi} € ¥ determines the quotient space
HA X;/ ~, which will be called the reduced ideal-product (r.i.p.) of the family of
spaces {X; | i € I} and denoted by Hf}, X;. The natural mapping ¢ : [[;c; Xi —
[I;cr Xi/ ~is given by q(f) = [f] (= {9 € [L;c; Xi | f ~ g}). Since ¢ is an open
mapping, B} = {q(B) | B € B} is a base for the topology O4 on Hé, X;.

To simplify the notation, for an arbitrary A C [];.; X; we put A* =
q 1(q(4)). The following facts will be used in the sequel (see [3]).

LEMMA 1.1. If A;,B; C X, foralli €I, LCI and F € VU, then:
(a)  (ILier 40" € (ILiey Bi)™ iff {ieI| Ai C Bi} € ¥;
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(b)  (ILier A" = (ILier Bo)" f {i €| Ai= Bi} € ¥;

(©) fe(liesA)" if {iel] fic A} e¥;

(d) (TLierA)* N([Licr Bi)* #0 iff {iel| AinB; #0} € ¥;
@ (Mierm  (A)* = (Miepnrm  (A2)%

) a(Mier ™ (A0)) = a(Niepar 77 (A0);

LEMMA 1.2. If A € VU then:

() Ta={FNA|FeU} isa filter on A and ¥4 C ¥;

(b) Aa={LNA| LeA} isanideal on A and Ay CA;

(c) the mapping 1 : Ty Xi — TIg* Xi, given by n([f]) = [fla], where
[f1a] = {9 € [Lica Xi| g ~w, fla}, is a homeomorphism.

LemMA 1.3. If, for alli € I, B; is a base for the topology O; then the sets of

the form
(]( ﬂ 7ri_1(Bi)>v
iel

where L € A and, for alli € L, B; € B;, form a base for the topology O{I\,.

It is proved in [3] that the r.i.p. preserves the separation axioms Ty, T1, T5,
T3 and T3y if and only if:

VAcUVYB¢U3LeA(LC A\B and L° ¢ ) (AT)
A part of the proof was the following
LEMMA 1.4. If an ideal A and a filter © satisfy the condition (AV), then:

(a) if{icl|AieF}YeV, then ([[;c; A)* € FA and q([T;e; Ai) € F§
(of course, Fi, F» and ]—'{I,\ are the families of closed sets of the spaces X, HA X,
and H@, X;, respectively);

() a(ITier 4i) = aTier 4i)-

R.i. products which satisfy the condition (A¥) were also investigated in [6]
and [ 7]. Special (AP)-r.i. products are: the Tychonoff product (for A = [I]<% and
U = {I}), the full box product (for A = P(I) and ¥ = {I}), the ultraproduct (for
A = P(I) and ¥ an arbitrary ultrafilter on I) and the Knight’s box product (for
A=[I1<Fand ¥ = {A CI| A° € [I]<M}, where k and p are cardinals satisfying
1> 5> 5> w)
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2. A nicer shape of (A7)

For a filter ¥ on a nonempty set I, let = be the (well-known) congruence
relation of the Boolean algebra (P(I),U,N, ¢ 0,I), defined by: A = B iff for
some F' € ¥, ANF = BN F. The equivalence class of an element A € P(I)
will be denoted by [A]. Clearly, (P(I)/=,V,A,,0,1), where: [A]V [B] =[AU B],
[AIA[B] =[ANB], [A]' =[4°], 0 =[0] and 1 = [I], is a Boolean algebra.

It is easy to verify that A/ == {[L]| L € A} is an ideal on P(I)/ =. Also,
for each A € P(I) we have:

[A] > 0: iff A°¢ 0. (*)
THEOREM 2.1. An ideal A and a filter U on I satisfy the condition (A¥) iff
Vee P(I)/= (z>0=3yecA/= (0<y <x)).

Proof. (=) If z =[C] € P(I)/=\{0}, then (by (%)), B=C° ¢ ¥ and (AYP)
gives an L € A satisfying L C B = C and L° ¢ ¥. Now y = [L] € A/ = and
(again by (x)) y > 0. Finally, because of L C C, [L] < [C], i.e. y < z.

(<) Let A € ¥ and B ¢ 9. By () we have x = [B°] > 0 and the observed
condition implies the existence of y = [D] € A/ =, where D € A and 0 < [D] < [B“].
Now, [D] = [D]A[B°] = [DNB], so there is F' € ¥ such that DNF = DNB°NF.
For L=DNFNA=DNFN(A\B) wehave L C A\ B and from L C D it
follows that L € A. Suppose L° € ¥. Then DNFNANL  =LNL° =0 and
FNANL® eV gives D° € ¥. But [D] > 0 and, by (x), D° ¢ ¥, a contradiction.
Thus L¢ ¢ ¥ and (A7) is true.

In set theory a subset A of a partially ordered set P is called dense iff
Vee Py eA(y<u).

Hence, by the previous theorem we have: (AU) iff A is dense in P, where P =

P(I)/= \{0} and A =A/= \{0}.
3. On separation axioms

By [3], for each family {X; | i € I} of topological spaces and each k €
{0,1,2,3,31} we have:

A
{iel]| X is a Ty-space} € ¥ = qu?c'i is a Ty-space

iff the condition (AW) is satisfied. Naturally, the following question arises: when
the following implication holds?

A
quz’\fi is a Ty-space = {i € I | &} is a Tj-space} € ¥ (*%)
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THEOREM 3.1. Let A be an arbitrary ideal and ¥ an arbitrary filter on a
nonempty set I. Then (xx) is true for each family of spaces {X; | i € I} and each
k€ {0,1,2}.

Proof. We will give the proof for £k = 2. For &k = 0,1 the proof is similar.
Suppose H = {i € I | X; is T»} ¢ U and for i € H choose f; = g; € X;. For
i € I'\ H we pick f;,g; € X; satisfying f; # g; and

VU,VeO, (ficUNg eV =TUNV £0D). (1)

Now {i € I'| fi =g} = H & ¥, so [f] # [g]. Let [f] € q(By) and [g] € q(By),
where By, B, € BA and B; = [Licr Sis By = [l;c; Ti- Then, according to Lemma
1.1(c), for Ay ={ieI| f;€S;} and Ay ={i €| g; € T;} we have Ay, A, € T,
thus A = AyNA;, € ¥. Ifie ANH, then f =g; € S;NT;. Ifi e A\ H,
then fz € S, g; €T; and, by (1), SlﬂTﬁé(Z) SOAg {Z EI| S; NT; #@}:D
and D € ¥. Due to lemma 1.1(d), ([I,c;S:)* N (I1;c; Ti)* # @ and obviously
q(By) Nq(By) # 0. Hence [f] and [g] cannot be separated by basic open sets and

Hi\p A; is not a Hausdorff space.

Let us now consider the case k = 3. Clearly, a space X = (X, ) is regular
iff for each € X and each basic open set B containing x there is a basic open set
B; containing z and satisfying By C B.

THEOREM 3.2. Let A and ¥ satisfy the condition (AV). Then:
(i) Hi\p X; is regular = {i € I| X} is regular} € U;
(ii) Hé, X is a Tz-space = {ie€l| X; is a Ts-space} € U.

Proof. (i) If H = {i € I| X is regular} ¢ ¥, then (AP) gives L € A where
L C H¢ and L¢ ¢ U. For i € L, the space & is not regular, so we can pick O; € O;
and f; € O; such that
For i € L° we choose an arbitrary f; € X;. Let B = [, 7 0;) = [Lic: Ti-
Then f € B and [f] € ¢(B) € B}. Assume W = Nier, W (U) = [lic;Gi € BA
and [f] € ¢(W). Then f € ([[;,c;G:)* and E = {i € I | f; € G;} € ¥. By lemma
L1(f), for Ly = Ly NE and By = \;cp, m; ' (U;) we have (W) = q(Bi). According
to lemma 1.4 ¢(B;) = 9(Nicr, 7 "(U:) = a(1;e; Si)- If i € LN Ly, then T; = Oy,
S; = E and fz € G; = U;. So, by (2), 71 Z O;, that is S; Z T;. If ¢ € L\LQ,
then T; = O; # X; = S; and again S; € T;. Now {i € I | S; CT;} C L° ¢ U, thus
{i € I']Si CTi} ¢ ¥ and by 1.1(a), ([l;e; 50" € (Iie; T0)", ie. q(W) € q(B).
It follows that: [f] € ¢(B) € BL and for all ¢q(W) € B} if [f] € g(W) then
q(W) € q(B), whence Hé, X; is not a regular space.

(ii) is a consequence of (i) and the previous theorem.
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Note. The previous theorem does not hold for Ty1-spaces. One counter-
example is given in [6, Remark 3.1].

4. Mappings of reduced ideal-products

Let, fori € I, X; = (X;,0%) and Y; = (V;,0}) be topological spaces and
; a mapping of X; into Y;. The usual product of the mappings ¢;, i € I, denoted
by ¢*, is the mapping of the topological space HA A; into the topological space
[T* Vi; we recall: A ((f; | i € I)) = (ps(fi) | i € I)

LemMA 4.1. If each ;, i € I, is onto (1 — 1, continuous, open and onto)
then o™ has the same property.

Proof. Supposing the mappings ¢;, i@ € I, are continuous, the continuity of
" follows from the equality:

(™) ( N pi‘l(Oi)) = (7 (o7 (00)),
ieL icL

where 7; : [[;c; Xi — Xj and p; : [[;c;Yi — Yj are the canonical projections
and O; € (’)ZY. When the openness is in question we use the relation

M) 71 00) = [ i (9i(0:)),

€L i€L

where O; € O}X.

It is easy to check that the mapping ¢} : H$ X; — HgYi, given by
o3 ([f]) = [¢™(f)] is well-defined. Moreover:

THEOREM 4.2. Let P be one of the properties: to be onto, “1—17, continuous,
open and onto, homeomorphism. If A= {i € I | @; has the property P } € U then
cp{}, has the property P.

Proof. By Lemma 1.2, there are homeomorphisms nx and ny described by
the following diagram
A oy A
H\I/Xi —_— H\I/y i
icl icl

o | |

Ag
A ¢ A
Hq;iXi 4 ? Hq;iyi
icA icA
where nx ([f]) = [f|a] and ny ([g]) = [g]4]- Obviously, ¢} = 17{,1 ocp{},i onx, S0 it is
enough to prove that @@i has the desired property. In other words we can assume
A = 1. Firstly, we note that the diagram



160 M. Grulovié, M. S. Kurili¢

HA X; W—A> HA Vi

ox | o

A 0y A
[ToXi —— [l Vi

commutes, i.e. ga@ ogx = qy o p*. Now, the verification of the first two properties
is elementary.

The continuity of 3 follows from the relation
(93)71(0) = ax((¥") "' (ay ' (0))

(where O is open in Hi\p Vi), the continuity of gy, the openness of gx and the
continuity of ¢ (proved in the previous lemma).

If O is an arbitrary open set in Hi\p X;, then 3 (0) = gy (* (g% (0))), and
by the continuity of ¢x, the openness of ¢* (proved in the previous lemma) and
the openness of gy we have the openness of <p$.

COROLLARY 4.3. If{i € I | X; is a homogeneous space} € ¥, then H@ X; is
a homogeneous space.

5. Iterated reduced ideal-products

Let I be a nonempty set, {J; | i € I'} a family of nonempty, disjoint sets, A
an ideal and ¥ a filter on I and for each ¢ € I, A; an ideal and ¥; a filter on J;.
Then Ag = {U;ep Li | LE€A, Ly € A; for i € L} and Yo ={AC J| {iel]
ANJ; € ¥;} € ¥} are respectively an ideal and a filter on the set J = {J;c; Ji.
Moreover:

THEOREM 5.1. If the pairs A, ¥ and A;,V;, i € I, satisfy the condition
(AD), then the pair Ao, Vg satisfies this condition as well.

Proof. For AC Jlet us define In = {ieI| AnJ; € ¥;}. Let A € ¥y and
B ¢ ¥y. Then Iy € ¥ and I ¢ ¥ and, since the pair A, ¥ satisfies the condition
(A¥), there is an L € A such that L C I4 \ Ip and L° ¢ ¥. For each i € L
we have AN J; € ¥; and BN J; € ¥,;. Thus, since the pair A;, ¥; satisfies the
condition (A¥), we can pick L; € A; such that L; C (A\ B)NJ; and J; \ L; € ¥,.
Now, Lo = U;cy, Li is an element of Ag and Lo C A\ B. It remains to prove
that J\LO g ‘Ilo, ie. I' = {’L el | Jz\LO € \I’Z} g V. For i € L we have
Ji\Lo C J;\L; ¢¥,s0 J;\ Lo ¢ ¥; proved LC I'\I'' Thus I' C I\ L ¢ ¥ and
I'¢w.

Let the preceeding assumptions, without the condition (A¥), hold and let
{(X;,0;) | j € J} be a family of topological spaces.
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THEOREM 5.2. The mapping F : HQ%X]' — HQHQX], given by
JjeJ i€l jeJ;

F({flw,) = (If i€ Dlw

Ji]\I’i
is a homeomorphism.

Proof. F is a well-defined injection since for arbitrary f,g € HjeJ X,
F([flwo) = F(lg)w,) iff [flw, = [g]w,-

For y = [{p; | i € I)]y from Hé, Hi\p X;, where ¢; = [f']y, and f? €
[1;cs Xj, define f € [T;c;X; by f=U,;e; f*- Then y = F([flw,) and F is onto.

We introduce the notation for the projections and quotient mappings consid-
ered below by the following diagram

ey «—— MM x) —— a5 Y)

JjEJ; el jeJ; el jeJ;
qﬁ TF
Ai A0
H Xj pro Xj

Jj€Ji JjeJ
Pgl T‘N’o
) Ao
Xj p i H Xj
JjeJ

According to Lemma 1.3 the sets of form

(0 (0 e)))

where L € A, L, € A; for i € L and B;: € Bj fori € L and j € L;, form a topology
base of the space HQ,(H?I, AX;) and the sets

qw, ( ﬂ rj_l(Bj)>7

JjEUier L;

where L € A, L; € A; for i € L and B; € B; for j € ;¢ Li, form a base for the
topology on ng A;. It is easy to check that

(L0 7) ({6 )
JjEUier L; €L JEL;

which proves that F' is a continuous mapping. Using direct images of both sides of
the last equality we get that F' is open.
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6. Reduced ideal-product of topological algebras

The aim of this section is (roughly speaking) to prove that the r.i.p. of
topological groups (rings, ...) is a topological group (ring, ...). We will consider a
more general situation when the “coordinate spaces” are equipped with an arbitrary
continuous n-ary operation.

LEMMA 6.1. Let {(XF,OF) | i € I} be a family of topological spaces for
ke {l,...,n}. Then the mapping

() (i)

given by n((f1), ..., (f™) = ((f},... , f)) is a homeomorphism.

Proof. n is obviously a bijection. Let us prove the continuity of . A base for
the topology on [[,_, X; consists of sets of the form [],_, UF, where UF € OF for
each k € {1,...,n}. By Lemma 1.3, the sets of the form

! ( H Uf) :
iceL k=1

where L € A, form a topology base on ]_[A(]_[Z:1 XF). The proof of the equality

n n

(e (1)) = 11 (N ) 0
ieL k=1 k=1 \ieL

is direct. Since the sets ()<, W;I(Uik), k =1,...,n, are open in HA Xk nis

continuous.

Since 7 is a bijection, from (1) we have:

n (H N w;l(Ui’“)) = (L{l UZ“)

k=1i€L i€l

which gives the openness of 7.

LEMMA 6.2. Let {(X;,0;) | i € I} be a family of topological spaces, A an
ideal on I and let ®; : X' — X, © € I, be continuous n-ary operations. Then the
operation @ : (HA X" — HA Xi, given by ®(f',..., ") = (®i(f},..., 1) is
continuous.

Proof. By Lemma 4.1, the direct product ®* = [],.; ®; of the family of
mappings {®; | ¢ € I} is a continuous mapping. It is easy to prove that the
diagram
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HAXi" 2 HAXi

n~\ k)

)

where 7 is the homeomorphism from the previous lemma, commutes. Thus
@Y o n = @, and the continuity of ®* and n implies the continuity of @.

THEOREM 6.3. Suppose that the conditions of the previous lemma are satis-
n
fied. Then the operation @y : (Hg Xi) — Hg X, defined by

e[, ") =B ]

(where @ is the operation from the previous lemma) is continuous.

Proof. Tt is easy to check that ®g is well-defined. Let us prove that the
diagram

(' x)” —— (mex)”

@l l@qf
mx. —— TIX

commutes, i.e. that go @ = @y o ¢". For an arbitrary (f!,...,f") € (HA X;)" we
have:

@wod")(f'..., /M) =ou(((f'],.-. . [f"D) = [&(f,... . /)]
=q@(f',... . fM) = (@o@)(f',... . ")

By Lemma 6.2, & is a continuous mapping and since ¢ is also continuous we obtain
the continuity of ¢ o . Hence, ®g o ¢" is a continuous mapping. The mapping ¢
is continuous, open and onto, thus the direct product ¢"™ has the same properties.
The continuity of @y follows from the following lemma, the proof of which is rather
obviuos.

LEMMA 6.4. Let (X,0x), (Y,0y) and (Z,0z) be topological spaces and let
the mapping q : X — Y be continuous, open and onto. Then for each mapping
p: Y — Z we have:

p 1s continuous iff p o q is continuous.

Now, since the reduced product of groups (rings) is a group (ring), we are
able to state

COROLLARY 6.5. The reduced ideal-product of an arbitrary family of topolog-
ical groups (rings) is a topological group (ring), where the corresponding operations
are defined as in the previous theorem.

Remark. Sometimes the definition of a topological group includes the con-
dition that the topology is 77. In this case the previous statement is valid if the
condition (AP) is satisfied.
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