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A FEW REMARKS ON REDUCED IDEAL-PRODUCTS

Milan Z. Grulovi�c and Milo�s S. Kurili�c

Abstract. A nicer shape of the condition (�	) (which ensures preservation of separation

axioms Tk, k = 0; 1; 2; 3; 3 1
2
, in reduced ideal-products) is given. If an reduced-ideal products is

T0, T1 or T2 then \almost all" coordinate spaces have this property. This implication holds for
T3-property if the condition (�	) is satis�ed. Some results on mappings and homogenicity of r.i.
products are obtained. Finally, it is proved that r.i.p. of topological groups (rings) is a topological
group (ring).

1. Preliminaries

The notation and some of the remarks made here were already given in our
previous papers on this subject. Thus, they are o�ered more for the reader's con-
venience.

Throughout the paper fXi j i 2 Ig will be a family of topological spaces,
where Xi = (Xi;Oi). � and 	 will be respectively an ideal and a �lter on I and
�j :

Q
i2I Xi �! Xj , j 2 I , will be the canonical projections.

The topology O� on
Q

i2I Xi is given by its base B� consisting of all sets

of the form
T
i2L �

�1
i (Oi), where L 2 � and Oi 2 Oi, for all i 2 L. The space

(
Q

i2I Xi;O�) will be denoted by
Q� Xi. The equivalence relation � on

Q
i2I Xi

de�ned by: f � g i� fi 2 I j fi = gig 2 	 determines the quotient spaceQ� Xi=�, which will be called the reduced ideal-product (r.i.p.) of the family of

spaces fXi j i 2 Ig and denoted by
Q�

	 Xi. The natural mapping q :
Q

i2I Xi �!Q
i2I Xi=� is given by q(f) = [f ] (= fg 2

Q
i2I Xi j f � gg). Since q is an open

mapping, B�	 = fq(B) j B 2 B�g is a base for the topology O�
	 on

Q�
	 Xi.

To simplify the notation, for an arbitrary A �
Q

i2I Xi we put A� =

q�1(q(A)). The following facts will be used in the sequel (see [3]).

Lemma 1.1. If Ai; Bi � Xi for all i 2 I, L � I and F 2 	, then:

(a) (
Q

i2I Ai)
� � (

Q
i2I Bi)

� i� fi 2 I j Ai � Big 2 	;
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(b) (
Q

i2I Ai)
� = (

Q
i2I Bi)

� i� fi 2 I j Ai = Big 2 	;

(c) f 2 (
Q

i2I Ai)
� i� fi 2 I j fi 2 Aig 2 	;

(d) (
Q

i2I Ai)
� \ (

Q
i2I Bi)

� 6= ; i� fi 2 I j Ai \ Bi 6= ;g 2 	;

(e) (
T
i2L �

�1
i (Ai))

� = (
T
i2L\F �

�1
i (Ai))

�;

(f) q(
T
i2L �

�1
i (Ai)) = q(

T
i2L\F �

�1
i (Ai));

Lemma 1.2. If A 2 	 then:

(a) 	A = fF \A j F 2 	g is a �lter on A and 	A � 	;

(b) �A = fL \ A j L 2 �g is an ideal on A and �A � �;

(c) the mapping � :
Q�

	Xi �!
Q�A

	A
Xi, given by �([f ]) = [f jA], where

[f jA] = fg 2
Q

i2AXi j g �	A f jAg, is a homeomorphism.

Lemma 1.3. If, for all i 2 I, Bi is a base for the topology Oi then the sets of
the form

q

 \
i2L

��1i (Bi)

!
;

where L 2 � and, for all i 2 L, Bi 2 Bi, form a base for the topology O�
	:

It is proved in [3] that the r.i.p. preserves the separation axioms T0, T1, T2,
T3 and T3 1

2

if and only if:

8A 2 	8B 62 	 9L 2 � (L � A nB and Lc 62 	) (�	)

A part of the proof was the following

Lemma 1.4. If an ideal � and a �lter 	 satisfy the condition (�	), then:

(a) if fi 2 I j Ai 2 Fig 2 	 , then (
Q

i2I Ai)
� 2 F� and q(

Q
i2I Ai) 2 F�

	

(of course, Fi, F� and F�
	 are the families of closed sets of the spaces Xi,

Q� Xi;

and
Q�

	 Xi, respectively);

(b) q(
Q

i2I Ai) = q(
Q

i2I Ai).

R.i. products which satisfy the condition (�	) were also investigated in [6]
and [ 7]. Special (�	)-r.i. products are: the Tychono� product (for � = [I ]<! and
	 = fIg), the full box product (for � = P (I) and 	 = fIg), the ultraproduct (for
� = P (I) and 	 an arbitrary ultra�lter on I) and the Knight's box product (for
� = [I ]<� and 	 = fA � I j Ac 2 [I ]<�g, where � and � are cardinals satisfying
jI j � � > � � !).
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2. A nicer shape of (�	)

For a �lter 	 on a nonempty set I , let � be the (well-known) congruence
relation of the Boolean algebra hP (I);[;\; c; ;; Ii, de�ned by: A � B i� for
some F 2 	, A \ F = B \ F . The equivalence class of an element A 2 P (I)
will be denoted by [A]. Clearly, hP (I)=�;_;^;0 ;0;1i, where: [A] _ [B] = [A [ B],
[A] ^ [B] = [A \ B], [A]0 = [Ac], 0 = [;] and 1 = [I ], is a Boolean algebra.

It is easy to verify that �= �= f[L] j L 2 �g is an ideal on P (I)=�. Also,
for each A 2 P (I) we have:

[A] > 0 : i� Ac 62 	: (*)

Theorem 2.1. An ideal � and a �lter 	 on I satisfy the condition (�	) i�

8x 2 P (I)=� (x > 0) 9y 2 �=� (0 < y � x)):

Proof. ()) If x = [C] 2 P (I)=� nf0g, then (by (�)), B = Cc 62 	 and (�	)
gives an L 2 � satisfying L � Bc = C and Lc 62 	. Now y = [L] 2 �=� and
(again by (�)) y > 0. Finally, because of L � C, [L] � [C], i.e. y � x.

(() Let A 2 	 and B 62 	. By (�) we have x = [Bc] > 0 and the observed
condition implies the existence of y = [D] 2 �=�, whereD 2 � and 0 < [D] � [Bc].
Now, [D] = [D]^ [Bc] = [D\Bc], so there is F 2 	 such that D\F = D\Bc \F .
For L = D \ F \ A = D \ F \ (A n B) we have L � A n B and from L � D it
follows that L 2 �. Suppose Lc 2 	. Then D \ F \ A \ Lc = L \ Lc = ; and
F \ A \ Lc 2 	 gives Dc 2 	. But [D] > 0 and, by (�), Dc 62 	, a contradiction.
Thus Lc 62 	 and (�	) is true.

In set theory a subset � of a partially ordered set P is called dense i�

8x 2 P 9y 2 � (y � x):

Hence, by the previous theorem we have: (�	) i� � is dense in P; where P =
P (I)=� nf0g and � = �=� nf0g.

3. On separation axioms

By [3], for each family fXi j i 2 Ig of topological spaces and each k 2
f0; 1; 2; 3; 3 12g we have:

fi 2 I j Xi is a Tk-spaceg 2 	 )
Y�

	
Xi is a Tk-space

i� the condition (�	) is satis�ed. Naturally, the following question arises: when
the following implication holds?Y�

	
Xi is a Tk-space ) fi 2 I j Xi is a Tk-spaceg 2 	 (**)
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Theorem 3.1. Let � be an arbitrary ideal and 	 an arbitrary �lter on a
nonempty set I. Then (��) is true for each family of spaces fXi j i 2 Ig and each
k 2 f0; 1; 2g.

Proof. We will give the proof for k = 2. For k = 0; 1 the proof is similar.
Suppose H = fi 2 I j Xi is T2g 62 	 and for i 2 H choose fi = gi 2 Xi. For
i 2 I nH we pick fi; gi 2 Xi satisfying fi 6= gi and

8U; V 2 Oi (fi 2 U ^ gi 2 V ) U \ V 6= ;): (1)

Now fi 2 I j fi = gig = H 62 	, so [f ] 6= [g]. Let [f ] 2 q(Bf ) and [g] 2 q(Bg),
where Bf ; Bg 2 B� and Bf =

Q
i2I Si, Bg =

Q
i2I Ti. Then, according to Lemma

1.1(c), for Af = fi 2 I j fi 2 Sig and Ag = fi 2 I j gi 2 Tig we have Af ; Ag 2 	,
thus A = Af \ Ag 2 	. If i 2 A \ H , then fi = gi 2 Si \ Ti. If i 2 A n H ,
then fi 2 Si, gi 2 Ti and, by (1), Si \ Ti 6= ;. So A � fi 2 I j Si \ Ti 6= ;g = D
and D 2 	. Due to lemma 1.1(d), (

Q
i2I Si)

� \ (
Q

i2I Ti)
� 6= ; and obviously

q(Bf ) \ q(Bg) 6= ;. Hence [f ] and [g] cannot be separated by basic open sets andQ�
	 Xi is not a Hausdor� space.

Let us now consider the case k = 3. Clearly, a space X = (X;O) is regular
i� for each x 2 X and each basic open set B containing x there is a basic open set
B1 containing x and satisfying B1 � B.

Theorem 3.2. Let � and 	 satisfy the condition (�	). Then:

(i)
Q�

	 Xi is regular ) fi 2 I j Xi is regularg 2 	;

(ii)
Q�

	 Xi is a T3-space ) fi 2 I j Xi is a T3-spaceg 2 	.

Proof. (i) If H = fi 2 I j Xi is regularg 62 	, then (�	) gives L 2 � where
L � Hc and Lc 62 	. For i 2 L, the space Xi is not regular, so we can pick Oi 2 Oi
and fi 2 Oi such that

8U 2 Oi (fi 2 U ) U 6� Oi): (2)

For i 2 Lc we choose an arbitrary fi 2 Xi. Let B =
T
i2L �

�1
i (Oi) =

Q
i2I Ti.

Then f 2 B and [f ] 2 q(B) 2 B�	. Assume W =
T
i2L1

��1i (Ui) =
Q

i2I Gi 2 B�

and [f ] 2 q(W ). Then f 2 (
Q

i2I Gi)
� and E = fi 2 I j fi 2 Gig 2 	. By lemma

1.1(f), for L2 = L1\E and B1 =
T
i2L2

��1i (Ui) we have q(W ) = q(B1). According

to lemma 1.4 q(B1) = q(
T
i2L2

��1i (Ui)) = q(
Q

i2I Si). If i 2 L \L2, then Ti = Oi,

Si = Ui and fi 2 Gi = Ui. So, by (2), Ui 6� Oi, that is Si 6� Ti. If i 2 L n L2,
then Ti = Oi 6= Xi = Si and again Si 6� Ti. Now fi 2 I j Si � Tig � Lc 62 	, thus

fi 2 I j Si � Tig 62 	 and by 1.1(a), (
Q

i2I Si)
� 6� (

Q
i2I Ti)

�, i.e. q(W ) 6� q(B).

It follows that: [f ] 2 q(B) 2 B�	 and for all q(W ) 2 B�	 if [f ] 2 q(W ) then

q(W ) 6� q(B), whence
Q�

	 Xi is not a regular space.

(ii) is a consequence of (i) and the previous theorem.
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Note. The previous theorem does not hold for T3 1
2

-spaces. One counter-

example is given in [6, Remark 3.1].

4. Mappings of reduced ideal-products

Let, for i 2 I , Xi = (Xi;OXi ) and Yi = (Yi;OYi ) be topological spaces and
'i a mapping of Xi into Yi. The usual product of the mappings 'i, i 2 I , denoted
by '�, is the mapping of the topological space

Q� Xi into the topological spaceQ� Yi; we recall: '�(hfi j i 2 Ii) = h'i(fi) j i 2 Ii:

Lemma 4.1. If each 'i, i 2 I, is onto (1 � 1, continuous, open and onto)
then '� has the same property.

Proof. Supposing the mappings 'i, i 2 I , are continuous, the continuity of
'� follows from the equality:

('�)�1

 \
i2L

p�1i (Oi)

!
=
\
i2L

��1i ('�1i (Oi));

where �j :
Q

i2I Xi �! Xj and pj :
Q

i2I Yi �! Yj are the canonical projections

and Oi 2 OYi . When the openness is in question we use the relation

'�(
\
i2L

��1i (Oi)) =
\
i2L

p�1i ('i(Oi));

where Oi 2 OXi :

It is easy to check that the mapping '�	 :
Q�

	Xi �!
Q�

	 Yi, given by
'�	([f ]) = ['�(f)] is well-de�ned. Moreover:

Theorem 4.2. Let P be one of the properties: to be onto, \1�1", continuous,
open and onto, homeomorphism. If A = fi 2 I j 'i has the property P g 2 	 then
'�	 has the property P.

Proof. By Lemma 1.2, there are homeomorphisms �X and �Y described by
the following diagram Q�

	
i2I

Xi
'�
	����!

Q�
	

i2I

Yi

�X

??y ??y�Y
Q�A

	A
i2A

Xi
'
�A
	A����!

Q�A
	A

i2A

Yi

where �X([f ]) = [f jA] and �Y ([g]) = [gjA]. Obviously, '�	 = ��1Y Æ'
�A
	A
Æ�X ; so it is

enough to prove that '�A	A has the desired property. In other words we can assume
A = I . Firstly, we note that the diagram
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Q� Xi
'�

����!
Q� Yi

qX

??y ??yqY
Q�

	 Xi
'�
	����!

Q�
	 Yi

commutes, i.e. '�	 Æ qX = qY Æ'
�. Now, the veri�cation of the �rst two properties

is elementary.

The continuity of '�	 follows from the relation

('�	)
�1(O) = qX(('

�)�1(q�1Y (O)))

(where O is open in
Q�

	 Yi), the continuity of qY , the openness of qX and the
continuity of '� (proved in the previous lemma).

If O is an arbitrary open set in
Q�

	 Xi, then '�	(O) = qY ('
�(q�1X (O))); and

by the continuity of qX , the openness of '� (proved in the previous lemma) and
the openness of qY we have the openness of '�	:

Corollary 4.3. If fi 2 I j Xi is a homogeneous spaceg 2 	, then
Q�

	 Xi is
a homogeneous space.

5. Iterated reduced ideal-products

Let I be a nonempty set, fJi j i 2 Ig a family of nonempty, disjoint sets, �
an ideal and 	 a �lter on I and for each i 2 I , �i an ideal and 	i a �lter on Ji.
Then �0 = f

S
i2LLi j L 2 �; Li 2 �i for i 2 L g and 	0 = fA � J j fi 2 I j

A \ Ji 2 	ig 2 	g are respectively an ideal and a �lter on the set J =
S
i2I Ji.

Moreover:

Theorem 5.1. If the pairs �;	 and �i;	i, i 2 I, satisfy the condition
(�	), then the pair �0;	0 satis�es this condition as well.

Proof. For A � J let us de�ne IA = fi 2 I j A \ Ji 2 	ig. Let A 2 	0 and
B 62 	0. Then IA 2 	 and IB 62 	 and, since the pair �;	 satis�es the condition
(�	), there is an L 2 � such that L � IA n IB and Lc 62 	. For each i 2 L
we have A \ Ji 2 	i and B \ Ji 62 	i. Thus, since the pair �i;	i satis�es the
condition (�	), we can pick Li 2 �i such that Li � (A nB) \ Ji and Ji nLi 62 	i.
Now, L0 =

S
i2L Li is an element of �0 and L0 � A n B. It remains to prove

that J n L0 62 	0, i.e. I
0 = fi 2 I j Ji n L0 2 	ig 62 	: For i 2 L we have

Ji n L0 � Ji n Li 62 	, so Ji n L0 62 	i proved L � I n I 0. Thus I 0 � I n L 62 	 and
I 0 62 	:

Let the preceeding assumptions, without the condition (�	), hold and let
f(Xj ; Oj) j j 2 Jg be a family of topological spaces.
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Theorem 5.2. The mapping F :
Q�0

	0

j2J

Xj �!
Q�

	
i2I

Q�i
	i

j2Ji

Xj , given by

F ([f ]	0
) = [h[f jJi ]	i j i 2 Ii]	

is a homeomorphism.

Proof. F is a well-de�ned injection since for arbitrary f; g 2
Q

j2J Xj ,

F ([f ]	0
) = F ([g])	0

) i� [f ]	0
= [g]	0

.

For y = [h'i j i 2 Ii]	 from
Q�

	

Q�i
	i
Xj , where 'i = [f i]	i and f i 2Q

j2Ji
Xj , de�ne f 2

Q
j2J Xj by f =

S
i2I f

i. Then y = F ([f ]	0
) and F is onto.

We introduce the notation for the projections and quotient mappings consid-
ered below by the following diagram

Q�i
	i

j2Ji

Xj
�i ����

Q�

i2I

(
Q�i

	i
j2Ji

Xj)
q

����!
Q�

	
i2I

(
Q�i

	i
j2Ji

Xj)

qi

x?? x??FQ�i

j2Ji

Xj
Q�0

	0

j2J

Xj

pj

??y x??q	0
Xj

Q�0

j2J

Xjrj
 ������������������������

According to Lemma 1.3 the sets of form

q

 \
i2L

��1i

 
qi

 \
j2Li

p�1j (Bi
j)

!!!
;

where L 2 �, Li 2 �i for i 2 L and Bi
j 2 Bj for i 2 L and j 2 Li, form a topology

base of the space
Q�

	(
Q�i

	i
Xj) and the sets

q	0

 \
j2[i2LLi

r�1j (Bj)

!
;

where L 2 �, Li 2 �i for i 2 L and Bj 2 Bj for j 2
S
i2L Li, form a base for the

topology on
Q�0

	0
Xj . It is easy to check that

q	0

 \
j2[i2LLi

r�1j (Bj)

!
= F�1

 
q

 \
i2L

��1i

 
qi

 \
j2Li

p�1j (Bj)

!!!!
;

which proves that F is a continuous mapping. Using direct images of both sides of
the last equality we get that F is open.
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6. Reduced ideal-product of topological algebras

The aim of this section is (roughly speaking) to prove that the r.i.p. of
topological groups (rings, . . . ) is a topological group (ring, . . . ). We will consider a
more general situation when the \coordinate spaces" are equipped with an arbitrary
continuous n-ary operation.

Lemma 6.1. Let f(Xk
i ;O

k
i ) j i 2 Ig be a family of topological spaces for

k 2 f1; . . . ; ng. Then the mapping

� :

nY
k=1

 Y�
Xk
i

!
�!

Y�

 
nY

k=1

Xi

!
;

given by �(hf1i i; . . . ; hf
n
i i) = h(f

1
i ; . . . ; f

n
i )i is a homeomorphism.

Proof. � is obviously a bijection. Let us prove the continuity of �. A base for
the topology on

Qn
k=1Xi consists of sets of the form

Qn
k=1 U

k
i , where U

k
i 2 O

k
i for

each k 2 f1; . . . ; ng. By Lemma 1.3, the sets of the form

\
i2L

��1i

 
nY

k=1

Uk
i

!
;

where L 2 �, form a topology base on
Q�

(
Qn

k=1X
k
i ). The proof of the equality

��1

 \
i2L

��1i

 
nY

k=1

Uk
i

!!
=

nY
k=1

 \
i2L

��1i (Uk
i )

!
(1)

is direct. Since the sets
T
i2L �

�1
i (Uk

i ), k = 1; . . . ; n, are open in
Q�Xk

i , � is
continuous.

Since � is a bijection, from (1) we have:

�

 
nY

k=1

\
i2L

��1i (Uk
i )

!
=
\
i2L

��1i

 
nY

k=1

Uk
i

!

which gives the openness of �:

Lemma 6.2. Let f(Xi;Oi) j i 2 Ig be a family of topological spaces, � an
ideal on I and let �i : Xn

i �! Xi, i 2 I, be continuous n-ary operations. Then the

operation � : (
Q�

Xi)
n �!

Q�
Xi, given by �(f1; . . . ; fn) = h�i(f

1
i ; . . . ; f

n
i )i is

continuous.

Proof. By Lemma 4.1, the direct product �� =
Q

i2I �i of the family of
mappings f�i j i 2 Ig is a continuous mapping. It is easy to prove that the
diagram
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Y�
Xn
i

�
�

�!
Y�

Xi

� - % ��Y�
Xi

�n
where � is the homeomorphism from the previous lemma, commutes. Thus
�� Æ � = �, and the continuity of �� and � implies the continuity of �:

Theorem 6.3. Suppose that the conditions of the previous lemma are satis-

�ed. Then the operation �	 :
�Q�

	Xi

�n
�!

Q�
	Xi, de�ned by

�	([f
1]; . . . ; [fn]) = [�(f1; . . . ; fn)];

(where � is the operation from the previous lemma) is continuous.

Proof. It is easy to check that �	 is well-de�ned. Let us prove that the
diagram �Q�

Xi

�n qn

����!
�Q�

	Xi

�n
�

??y ??y�	Q�Xi
q

����!
Q�

	Xi

commutes, i.e. that q Æ� = �	 Æ qn. For an arbitrary (f1; . . . ; fn) 2 (
Q�

Xi)
n we

have:

(�	 Æ q
n)(f1; . . . ; fn) = �	(([f

1]; . . . ; [fn])) = [�(f1; . . . ; fn)]

= q(�(f1; . . . ; fn)) = (q Æ �)(f1; . . . ; fn):

By Lemma 6.2, � is a continuous mapping and since q is also continuous we obtain
the continuity of q Æ �. Hence, �	 Æ qn is a continuous mapping. The mapping q
is continuous, open and onto, thus the direct product qn has the same properties.
The continuity of �	 follows from the following lemma, the proof of which is rather
obviuos.

Lemma 6.4. Let (X;OX ), (Y;OY ) and (Z;OZ) be topological spaces and let
the mapping q : X �! Y be continuous, open and onto. Then for each mapping
' : Y �! Z we have:

' is continuous i� ' Æ q is continuous.

Now, since the reduced product of groups (rings) is a group (ring), we are
able to state

Corollary 6.5. The reduced ideal-product of an arbitrary family of topolog-
ical groups (rings) is a topological group (ring), where the corresponding operations
are de�ned as in the previous theorem.

Remark. Sometimes the de�nition of a topological group includes the con-
dition that the topology is T1. In this case the previous statement is valid if the
condition (�	) is satis�ed.
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