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Abstract. A variety of n-groupoids (i.e. algebras with one n-ary operation f) is said to
be a primitive n-variety if it is de�ned by a system of identities of the following form:

f(xi1 ; xi2 ; . . . ; xin) = f(xj1 ; xj2 ; . . . ; xjn) (�)

Here we give a convenient description of free objects in primitive n-varieties, and several properties
of free objects are also established.

1. Introduction. Identities of the form (�) are called primitive n-identities,
where we take n to be a �xed positive integer, and i�, j� are positive integers.
We do not make any distinction between two equivalent identities, and that is the
reason why we assume 1 � i� , j� � 2n. A set � of primitive n-identities is said
to be complete if it contains every primitive n-identity which is a consequence of
�. Everywhere in this paper we suppose that � is a complete system of primitive
n-identities, and we also take n � 2, since for n = 1 the only nontrivial primitive
1-identity is f(x) = f(y), which gives rise to constant unars.

The main results obtained here are the construction of free �-objects with
given basis B and the following theorems, which are corollaries of the obtained
construction.

Theorem A. A free �-object has a unique basis. �

Theorem B. Every subobject of a free �-object is a free �-object as well. �

For any identity (�) we put I = fi1; . . . ; ing, J = fj1; . . . ; jng.

Theorem C. Assume that there is an identity (�) in � such that I \ J = ;.
If k 2 f1; 2; . . . ; n� 1g is the largest integer such that (�) is in � for I = f1g and
for every J with jJ j � k, then any free �-object with rank k has a subobject with
in�nite rank. �
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Theorem D. For every identity (�) in � let I \J 6= ; and assume that if (�)
is in � for I = f1; 2; . . . ; ng, then jJ j � 2. Then every free �-object has a subobject
with in�nite rank. �

Theorem E. The word problem is solvable in any primitive n-variety. �

2. Complete sets of primitive n-identities. As we already mentioned in
section 1, we assume that in (�) we have 1 � i� , j� � 2n = m for each �. In such
a way the primitive n-identities can be considered as transformations of the set
M = f1; 2; . . . ;mg, i.e. as elements of the set T =Mm(= f'j':M ! Mg). Next,
in this paper we will not make any distinction between the setsMm andMn�Mn,
whereMn = f j : f1; 2; . . . ; ng !Mg. Namely, if ' 2Mm and 'L, 'R 2Mn are
de�ned by

'L(i) = '(i); 'R(i) = '(n+ i)

for each i 2 f1; 2; . . . ; ng, then ('L; 'R) will be considered as another notation
of '.

We stress again that we suppose here and further on that � denotes a complete
set of primitive n-identities, where n � 2 is a given integer. By the above agreement,
we also have that � � T .

Every subset � of T induces a relation �� on Mn de�ned by

' ��  , (';  ) 2 �:

The following completeness theorem is a consequence of a result from [2]:

Proposition 2.1. A subset � of T is complete i� it satis�es the following
conditions:

(i) �� is an equivalence relation on Mn;

(ii) � is a left ideal in T , i.e. T Æ� � �, where : denotes the usual superposition
of transformations. �

The following property (shown in [2]) will be used in the next section:

Proposition 2.2. Let �, � 2 � be such that ker �R = ker�L, and denote by
T (�; �) the set of all elements � 2 T which satisfy the following conditions: �L = �L
and

�(i) = �(k + n); �(k) = �(j + n)) �(i) = �(j + n)

for every i; k; j 2 f1; 2; . . . ; ng. Then T (�; �) 6= ; and T (�; �) � � (and, further-
more, T Æ T (�; �) � �). �

Given any complete set � of primitive n-identities, by �[M ] we denote the
quotient set Mn=��, and if ' 2 Mn, then by ['] 2 �[M ] we denote the corre-
sponding class of equivalent elements. (Further on, we will write simply � instead
of ��.)

For any i 2 M , let i 2 Mn be de�ned by i(�) = i for each � 2 f1; 2; . . .ng.
We say that � is with constant if [1] = [2].
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If ' 2Mn, then the set f'(1); . . . ; '(n)g is called the content of ', and will
be denoted by cnt(').

Proposition 2.3. The following conditions are equivalent:

(i) � is with constant;

(ii) [i] = [j] for any i; j 2M ;

(iii) there exist ', � 2 Mn such that ['] = [�] and the contents of ' and � are
disjoint. �

If � is with constant, then any element of [i] is called a �-constant; � is said
to be with absolute constant if �[M ] is a singleton. Denote by " the element of
Mn de�ned by "(�) = � for each � 2 f1; 2; . . . ; ng.

Proposition 2.4. The following conditions are equivalent:

(i) � is with absolute constant;

(ii) ' � � for any ', � 2Mn;

(iii) there is a ' 2Mn such that " � ' and " and ' have disjoint contents. �

Proposition 2.5. If ' 2 Mn is not a �-constant, then there is an � 2 [']
such that cnt(�) is a subset of cnt( ) for any  2 ['].

(Then we say that � is a minimal member of ['].)

Proof. Since A = fcnt(�)j� 2 [']g is a �nite set, there is an � 2 ['] such that
cnt(�) is a minimal member in A. Assume that cnt(�) and cnt(�0) are di�erent
minimal members in A. Then cnt(�) \ cnt(�0) 6= ;, since ' is not a �-constant.
Let i 2 cnt(�) \ cnt(�0) and let j 2 cnt(�0)ncnt(�). De�ne � 2 T by �(j) = i and
�(k) = k for any k 6= j. Then � Æ (�; �0) = (�; �00) 2 � for some �00 2Mn such that
cnt(�00) = cnt(�0)nfjg. �

Now we de�ne the notion of the �-content of an element ' 2Mn, denoted by
cnt�('), as follows. We put cnt�(') = ; if ' is a �-constant, and cnt�(') = cnt(�)
is ' is not a �-constant and � is a minimal member of [']. Note that � � ' implies
cnt�(�) = cnt�(').

Proposition 2.6. There exists a ' 2 Mn such that cnt�(') is a singleton
i� � is without constant. �

� is said to be essentially k-ary i� jcnt�(")j = k.

If � is with constant, then the order of the constant of � is said to be k i�
cnt�(') = ; for each ' 2 Mn such that jcnt(')j � k, and k is the largest such
integer. Therefore we have:

Proposition 2.7. The following statements are equivalent:

(i) � is with absolute constant;

(ii) � is with constant of order n. �
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3. �-objects. Let A be a nonempty set and let � be a complete set of
primitive n-identities. De�ne a relation ��;A (shortly denoted by �A) on the set
An(= faja: f1; . . . ; ng ! Ag) as follows:

a � b() (9� 2 �)ker� = ker(a;b)

where a;b 2 An and (a;b) 2 Am is de�ned as in the preceding section, i.e.
(a;b)(i) = a(i), (a;b)(i+ n) = b(i), for each i 2 f1; 2; . . . ; ng.

The following statement is a corollary from Proposition 1.1 (and its general-
ization as well):

Proposition 3.1. (i) �A is an equivalence relation. (ii) If a �A b, c is a
transformation of A and c Æ (a;b) = (a0;b0), then a0 �A b

0. �

Proof. We will give only a sketch of the proof, and we will use the fact that
� is a complete set of identities. Let a;b; c 2 An.

(i) Then for suitably chosen ' 2 T we have ker'("; ") = ker(a; a), and also if
ker� = ker(a;b), then ker(�R; �L) = ker(b; a). The transitivity follows by
using Proposition 2.2.

(ii) If ker � = ker (a;b) and c Æ (a;b) = (a0;b0), then there is a ' 2 T such that
ker'� = ker (a0;b0), and � 2 � implies '� 2 � by Proposition 2.1. �

We denote by �[A] the quotient set An= �A and by [a] the class of equivalent
elements of a 2 An. (So, [a] = [b] i� a �A b.) If A =M = f1; 2; . . . ;mg, then �A

and � have the same meaning as in section 2.

Proposition 2.2{2.6 have obvious generalizations, and we make a summary
below.

(1) j�[A]j = 1 i� one of the following cases appears: 1.1) jAj = 1; 1.2) � is
with absolute constant; 1.3) jAj � k and � is with constant of order k.

(2) If a 2 An, then the set cnt(a) = fa(1); . . . ; a(n)g is called the content of
a. If � is with constant and jcnt(a)j = 1, then the class of equivalent elements [a]
will be denoted by o(62 A) and called the zero of �[A]. Then we also say that the
�-content of o is empty, and we denote it by cnt�(o) = ;; moreover, for each c 2 o
we put cnt�(c) = ;. Let b 2 An. If either � is without constant or [b] 6= o, then in
the family of sets fcnt(c)jc 2 [b]g there is the least member which will be denoted
by cnt�[b] and called the �-content of [b]; in this case we also let cnt�(c) = cnt�[b]
for each c 2 [b]. And, if d 2 [b] is such that cnt(d) = cnt�(d), then we say that
d is a minimal member of [b]. (We note that [b] can contain distinct minimal
members.)

(3) If � is with constant then jcnt�[a]j � 2 for each [a] 6= o, but if � is
without constant then jcnt�(a)j = 1 for every a 2 An such that jcnt(a)j = 1. If �
is essentially unary then jcnt�(a)j = 1 for every a 2 An.

(4) If A � B then the canonical mapping from �[A] into �[B] is injective,
and then we can assume that �[A] � �[B], in the following sence: if [a] 2 �[B]
and cnt�[a] � A, then we take [a] 2 �[A] as well.
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An algebra (A; f) with n-ary operation f (i.e. an n-groupoid) is called a
�-object if it satis�es all the identities belonging to �.

Proposition 3.2. An n-groupoid (A; f) is a �-object i�

a �A b) f(a) = f(b)

for every a;b 2 An. �

Denote by nat(�A) the natural mapping a 7! [a] from An into �[A]. Then
by Proposition 3.2 we have:

Proposition 3.3. An n-groupoid (A; f) is a �-object i� there is a uniquie
mapping f : �[A]! A such that f Æ nat(�A) = f . (Certainly, the existence of such

a mapping f implies its uniqueness.) �

Now we have a more convenient alternative de�nition of a �-object. Namely,
if f is a mapping from �[A] into A, then the pair (A; f) is called a �-object with
carrier A and operation f . Futher on, by a �-object we will understand the kind of
structure we have just de�ned. Thus, for subobjects and homomorphisms we have
the following characterizations:

Proposition 3.4. If A = (A; f) is a �-object and C � A, then C is a

subobject of A i� f(�[C]) � C. �

Thus, any subobject of a �-object is a �-object too.

Proposition 3.5. Let A = (A; f ) and B = (B; g) be �-objects, and let

h:A ! B be a mapping. Then h induces a unique mapping h: �[A] ! �[B] such
that h Æ nat(�A) = nat(�B) Æ h, and h is a homomorphism from A into B i�
h Æ f = g Æ h. �

(We note that h:A! B induces a mapping h(n):An ! Bn such that [a] = [b]
in �[A] implies [h(n)(a)] = [h(n)(b)] in �[B], and then h([a]) = [h(n)(a)] for each
a 2 An.)

The notion of a partial �-object can be de�ned as follows. Let A be a nonemp-
ty set, D a subset of �[A] and f a mapping from D into A. Then we say that the
triple (A;D; f) is a partial �-object. It can be easily seen that this de�nition is
compatible with Evans' de�nition of partial algebras in a variety of algebras (see
[3], where the words \incomplete" and \a class of algebras V" are used instead of
\partial" and \a variety V"). Furthermore, if (A;D; f) is a given partial �-object
and q a �xed element of A, then if we de�ne g: �[A]! A by

g([a]) =

�
f([a]); if [a] 2 D

q; if [a] 2 �[A]nD0

then (A; g) is a �-object which is an extension of (A;D; f). Now we can apply the
well known Evans' result [3, p. 68] \if V is a class of algebras having the property
that any incomplete V-algebra can be embedded in a V-algebra, then the word
problem can be solved for this class" to obtain the proof of Theorem E of section 1.
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4. A construction of free �-objects. Here we will give a construction of
free �-objects with basis B, where B is a given nonempty set. Let (Bpjp � 0) be
a sequence of sets de�ned inductively as follows:

B0 = B; Bp+1 = Bp [�[Bp];

and let
F (�; B) =

[
(Bpjp � 0):

(We will write simply F instead of F (�; B), when � and B are known.) By induc-
tion on p one can easily prove that �[F ] = FnB.

If u 2 F and if p is the least number such that u 2 Bp, then we say that p is
the hierarchy of u and write �(u) = p. It is clear that if � is with constant, then
�(o) = 1.

Proposition 4.1. Let u 2 F and let u not be a constant. Then �(u) = p+1
i� cnt�(u) = fv1; v2; . . . ; vkg is such that �(vi) � p for each i and �(vj) = p for
some j (i; j 2 f1; 2; . . . ; kg). �

De�ne an operation f : �[F ] ! F by f(u) = u for each u 2 �[F ]. Then we
have:

Proposition 4.2. (F; f) is a �-object generated by the set B. �

Let (C; g) be an arbitrary �-object and let h:B ! C be a mapping. Put
h0 = h and suppose that hr:Br ! C is a well de�ned mapping for each r � p
in such a way that hr is an extension of hr�1, and if r > 0, �(u) = r, then
hr(u) = g Æ hr�1(u), where hr�1: �[Br�1] ! �[C] is de�ned as in Proposition 3.5.

Now de�ne hp+1:Bp+1 ! C to be the extension of hp such that hp+1(u) = gÆhp(u)
for each u with �(u) = p+1. (Note that if �(u) = p+1, then u 2 �[Bp], and thus
hp(u) 2 �[C] is well de�ned by Proposition 3.5.) In such a way we have de�ned a

chain of mappings (hpjp � 0), and its union h =
S
(hpjp � 0) is an extension of h

and a homomorphism from (F; f ) into (C; g) as well. Thus we have the following

Theorem 4.3. If B is a nonempty set, then (F; f) is a free object with basis
B. �

The preceding construction of free �-objects is somewhat obscure, but in
some cases it can be considerably simpli�ed.

Example 4.4. If � is with constant and a; b 2 B, then we have [an] =
[bn] = o, where o is the zero of F . (Here, and later on, an: i 7! a for each a 2 A,
i 2 f1; . . . ; ng.) Clearly, o 2 B1nB and if � is with absolute constant, then
F = B[fog and f(u) = o for each u 2 �[B[fog]. Therefore, if � is with absolute
constant, then every constant n-groupoid is freely generated by the set of elements
distinct from the constant (i.e. o). We have the same result if � is with constant,
of order k and jBj < k. (Moreover, if � is with constant, then any one-element
groupoid can be considered as free �-object with empty basis.) �

Example 4.5. Assume that � is essentially unar, i.e. for each ' 2 Mn there
is an i 2 f1; 2; . . . ; ng such that ('; j) 2 � for j = '(i). Then the class of �-objects
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can be viewed as the class of unars. Namely, if (G; h) is a unar and if we de�ne a
mapping g: �[G] ! G by g(a) = h(a(i)), then we get a �-object (G; g), and any
�-object can be obtained in such a manner. Moreover, (G; g) is a free �-object

with basis B i� (G; h) is a free unar with basis B. �

We note that a subunar of a �nitely generated free unar is �nitely generated
too, and thus Example 4.5 shows that the assumptions of Theorem D are essential.

Example 4.6. Let n = 3 and let V be a variety de�ned by the identities

f(x; x; x) = f(x; x; y) = f(y; y; y); f(x; y; z) = f(y; x; z) = f(x; z; y):

If B = fbg, o 6= b and if we put G = fo; bg and g(u; v; w) = o for each u; v; w 2 G,
then (G; g) is a free object in V with basis B of rank 1. Now, take B = fb; cg, b 6= c
and o 62 B, and de�ne the sets Bp inductively by

B0 = B [ fog; Bp+1 = Bp [ ffu; v; wgju 6= v 6= w 6= u; u; v; w 2 Bpg

Let H =
S
(Bpjp � p) and let

h(u; v; w) =

�
fu; v; wg; if u 6= v 6= w 6= u:

o; otherwise

Then H = (H;h) is a free object in V with basis B. The subset D of H , where D =
fdiji � 0g and the elements di are de�ned inductively by d0 = fo; b; cg; dp+1 =
fo; b; dpg is a basis of in�nite rank of the subobject L of H generated by D. �

Example 4.7. There exist exactly 6 nonequivalent primitive 2-identities:
xy = xy, xy = yx, xy = xx, xy = yy, xx = yy, xy = zw. (Here a usual notation
of identities is used.) One can form 7 primitive 2-varieties, 6 of them being de�ned
by a single identity of the above ones, and V = Var(fxy = yx; xx = yyg). In the
variety V we can describe a free object with nonempty basis B by F =

S
(Bpjp �

0); where B0 = B, B1 = B [ fog [ ffu; vgju; v 2 B; u 6= vg, o 62 B, and
Bp+1 = Bp [ ffu; vgju; v 2 Bp; u 6= vg when p � 1. �

5. Some properties of free �-objects. Here we will give proofs of Theo-
rems A, B, C and D of section 1. Although one can prove these theorems by using
an induction on hierarchy, we will rather use the ideas involved in [1].

Assume that G = (G; g) is a �-object. An element a 2 G is said to be prime
in G if a 6= g([b]) for any [b] 2 �[G]. If � is with constant, then each element of

G is said to be an improper divisor of the zero o 2 �[G]. If c 2 G is nonzero and
nonprime element, then there is a [b] 2 �[G] such that c = g([b]), and let a be a

minimal member of [b]. Then each element d 2 cnt(a) = cnt�[a] is called a proper
divisor of c. A sequence (�nite or in�nite) of elements a1; a2; . . . of G is said to be
a divisor chain in G i� for every i > 1 ai is a proper divisor of ai�1.
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Now we have another characterization of free �-objects:

Theorem 5.1. A �-object H = (H;h) is a free �-object with a nonempty
basis B � H i� the following conditions hold:

(i) B is the set of prime elements in H.

(ii) If c 2 H is nonprime, then there is a unique [b] 2 �[B] such that c = h([b]).

(iii) Every divisor chain in H is �nite.

Proof. It is clear that (F; f) satis�es (i), (ii) and (iii).

Conversely, if H satis�es (i), (ii) and (iii), then it is easy to show by induction
on hierarchy that there is an isomorphism g: (F; f)! (H;h) such that g(b) = b for
each b 2 B. �

Now, Theorem A is a direct consequence of Theorem 5.1, for the set of prime
elements of a free �-object is its unique basis. (We should emphasize here that we
do not need Theorem 5.1 to prove Theorem A, since it follows directly from the
de�nition of primitive n-identities.)

Assume that G is a subobject of (F; f ). The set of prime elements in G

(considered as a �-object) is empty only if � is with zero and G = fog, and then
G is free with an empty basis. If the set C of prime elements in G is nonempty,
then C is a basis of G, since conditions (ii) and (iii) of Theorem 5.1 are hereditary.
This completes the proof of Theorem B.

Now, let � be with constant of order k < n, and let B = fa1; a2; . . . ; akg.
Then B1 = B [ fog and cnt�(a1a2 . . . ako

n�k) = fa1; a2; . . . ; ak;og. Consid-
er the subset C = fc1; c2; . . . ; cp; . . . g of F , where c1 = [a1 . . . ako

n�k], cp+1 =
[a1 . . . akc

n�k
p ]. Let Q be the subobject of (F; f ) generated by C. Clearly, C is the

set of prime elements in Q. (Namely, cp is a divisor of cp+1 in F , but this does
not hold in Q.) This completes the proof of Theorem C, since the conditions for �
stated in Theorem C show that � is with constant of order k.

It remains to show Theorem D. First we note that the assumption in this
Theorem can be expressed by jcnt�(")j = k � 2. Take ' to be a minimal member
in ["], and i 2 cnt�('). Let B be a nonempty set, b 2 B and de�ne a sequence
a1; a2; . . . ; an by a1 = b, ai+1 = [ani ] for 0 < i < n, and an in�nite sequence
c1; c2; . . . ; cp; . . . by c1 = an; cp+1 = [a1a2 . . .ai�1cpai+1 . . .an]: Then ai 6= aj for
i 6= j and cr 6= cs for r 6= s. This implies that C = fcrjr � 1g is an in�nite basis of
the subobject Q of (F; f ) generated by C.
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