# SOME REMARKS ON GENERALIZED MARTIN'S AXIOM 

## Z. Spasojević


#### Abstract

Let $G M A$ denote that if $\mathbb{P}$ is well-met, strongly $\omega_{1}$-closed and $\omega_{1}$-centered partial order and $\mathcal{D}$ a family of $<2^{\omega_{1}}$ dense subsets of $\mathbb{P}$ then there is a filter $G \subseteq \mathbb{P}$ which meets every member of $\mathcal{D}$. The consistency of $2^{\omega}=\omega_{1}+2^{\omega_{1}}>\omega_{2}+G M A$ was proved by Baumgartner [1] and in [13] many of its consequences were considered. In this paper we give a consequence and present an independence result. Namely, we prove that, as a consequence of $2^{\omega}=\omega_{1}+2^{\omega_{1}}>\omega_{2}+G M A$, every $\leq^{*}$-increasing $\omega_{2}$-sequence in $\left(\omega_{1}^{\omega_{1}}, \leq^{*}\right)$ is a lower half of some $\left(\omega_{2}, \omega_{2}\right)$-gap and show that the existence of an $\omega_{2}$-Kurepa tree is consistent with and independent of $2^{\omega}=\omega_{1}+2^{\omega_{1}}>\omega_{2}+G M A$.


1. Introduction. With the discovery of Martin's Axiom [8] and its many consequences a number of set-theorists considered the problem of generalizing Martin's Axiom to higher cardinals. Their aim actually was to generalize the consequences of $M A$ to higher cardinals. One of the first generalizations of Martin's Axiom is due to Baumgartner [1] and one of the strongest generalizations is due to Shelah [9]. We will return to Shelah's version in the last section but now we state Baumgartner's result. A partial order $\mathbb{P}$ is well-met if any two compatible elements in $\mathbb{P}$ have the greatest lower bound. We denote compatibility of $p, q \in \mathbb{P}$ by $p \not \perp q$ and their incompatibility by $p \perp q$. $\mathbb{P}$ is $\omega_{1}$-closed if any decreasing $\omega$-sequence in $\mathbb{P}$ has a lower bound and it is strongly $\omega_{1}$-closed if the greatest lower bound exists for any such sequence. $\mathbb{P}$ is centered if any finite sub-collection of $\mathbb{P}$ has a lower bound and it is $\omega_{1}$-centered if it is a union of $\omega_{1}$ many centered partial orders. Baumgartner [1] constructed a model for

$$
\begin{equation*}
2^{\omega}=\omega_{1}+2^{\omega_{1}}>\omega_{2}+G M A \tag{BA}
\end{equation*}
$$

and thus obtained the consistency of one of the first versions of Generalized Martin's Axiom. In fact, Baumgartner considered a somewhat bigger class of partial orders, but in this paper we will only consider partial orders which are well-met, strongly $\omega_{1}$-closed, $\omega_{1}$-centered and of size $<2^{\omega_{1}}$, where $2^{\omega_{1}}$ is computed in the final model.

Many consequences of $(B A)$ were considered in [13]. The object of this paper is to present one more consequence and an independence result. We show that every
$\leq^{*}$-increasing $\omega_{2}$-sequence in $\left(\omega_{1}^{\omega_{1}}, \leq^{*}\right)$ is a lower half of some $\left(\omega_{2}, \omega_{2}\right)$-gap (see $\S 2$ for notation and terminology). As usual, this result will be obtained by applying $G M A$ to suitably chosen partial orders. It will be fairly straight-forward to show that this partial order is well-met and strongly $\omega_{1}$-closed. Somewhat harder will be to show that it is $\omega_{1}$-centered. For this we first need to recall the notion of a complete embedding.

Definition 1.1. Let $\mathbb{P}$ and $\mathbb{Q}$ be partial orders. An $i: \mathbb{P} \rightarrow \mathbb{Q}$ is a complete embedding if
(a) $\forall p, p^{\prime} \in \mathbb{P}\left(p^{\prime} \leq p \rightarrow i\left(p^{\prime}\right) \leq i(p)\right)$,
(b) $\forall p, p^{\prime} \in \mathbb{P}\left(p^{\prime} \perp p \leftrightarrow i\left(p^{\prime}\right) \perp i(p)\right)$,
(c) $\forall q \in \mathbb{Q} \exists p \in \mathbb{P} \forall p^{\prime} \in \mathbb{P}\left(p^{\prime} \leq p \rightarrow i\left(p^{\prime}\right) \not \perp i(p)\right)$.

We also recall a result from [13].
Proposition 1.2. Assume $2^{\omega}=\omega_{1}$. Then any countable support iteration of length $\leq 2^{\omega_{1}}$ with well-met, strongly $\omega_{1}$-closed and $\omega_{1}$-centered partial orders yields an $\omega_{1}$-centered partial order.

At this stage we also point out that $2^{\omega}=\omega_{1}$ is assumed throughout this paper. Now, let $\mathbb{P}$ be a partial order which is well-met and strongly $\omega_{1}$-closed and suppose that all the conditions in $\mathbb{P}$ are countable. To show that $\mathbb{P}$ is $\omega_{1}$-centered, it suffices to exhibit a sequence $\left\langle\mathbb{P}_{\xi}: \xi \leq \alpha \leq 2^{\omega_{1}}\right\rangle$ of sub-orders of $\mathbb{P}$ such that $\mathbb{P}_{\alpha}=\mathbb{P}$ and each $\mathbb{P}_{\xi}$, for $\xi<\alpha$, is well-met, strongly $\omega_{1}$-closed and $\omega_{1}$-centered, as well as a sequence $\left\langle i_{\xi \eta}: \xi \leq \eta \leq \alpha\right\rangle$, with $i_{\xi \eta}: \mathbb{P}_{\xi} \rightarrow \mathbb{P}_{\eta}$, of complete embeddings such that $\forall \xi, \eta, \theta\left(\xi \leq \eta \leq \theta \leq \alpha \rightarrow i_{\xi \theta}=i_{\eta \theta} \circ i_{\xi \eta}\right)$. Then $\mathbb{P}$ can be viewed as a countable support iteration of length $\alpha \leq 2^{\omega_{1}}$ with well-met, strongly $\omega_{1}$-closed and $\omega_{1}$-centered partial orders so that by Proposition $1.2 \mathbb{P}$ is also $\omega_{1}$-centered.

It is well known that $2^{\omega}=\omega_{1}$ implies the existence of an $\omega_{2}$-Aronszajn tree (see [6]). The results of Laver and Shelah [7] and Shelah and Stanley [10] show that the existence of an $\omega_{2}$-Suslin tree is consistent with and independent of $(B A)$. In the final section we consider the influence of $(B A)$ on the existence of $\omega_{2}$-Kurepa trees. Our result is that the existence of such trees is consistent with and independent of ( $B A$ ).
2. Gaps. Let $\kappa^{\kappa}$ be the set of all function from $\kappa$ to $\kappa$. If $f, g \in \kappa^{\kappa}$ then $f \leq^{*} g$ if and only if $\exists n<\kappa \forall i<\kappa(i \geq n \rightarrow f(i) \leq g(i))$ and $f(i)<g(i)$ on a set of size $\kappa$. A $\left(\kappa^{+}, \kappa^{+}\right)$-pregap in $\left(\kappa^{\kappa}, \leq^{*}\right)$ is a pair $(a, b)$ where $a=\left\langle a_{\xi}: \xi<\kappa^{+}\right\rangle$and $b=\left\langle b_{\xi}: \xi<\kappa^{+}\right\rangle$are subsets of $\kappa^{\kappa}$ such that $\forall \xi, \eta<\kappa^{+}\left(a_{\xi} \leq^{*} b_{\eta}\right)$ and $\forall \xi<\eta<$ $\kappa^{+}\left(a_{\xi} \leq^{*} a_{\eta} \wedge b_{\eta} \leq^{*} b_{\xi}\right)$. If there is a $c \in \kappa^{\kappa}$ such that $\forall \xi, \eta<\kappa^{+}\left(a_{\xi} \leq^{*} c \leq^{*} b_{\eta}\right)$ then $c$ splits the pregap $(a, b)$. If no such $c$ exists then $(a, b)$ is a $\left(\kappa^{+}, \kappa^{+}\right)$-gap.

Hausdorff [4] showed (in ZFC) that $\left(\omega^{\omega}, \leq^{*}\right)$ contain an $\left(\omega_{1}, \omega_{1}\right)$-gap. Herink [5] and independently Blaszczyk and Szymanski [2] generalized Hausdorff's result to higher cardinals by proving that if $\kappa$ is a regular cardinal then $\left(\kappa^{\kappa}, \leq^{*}\right)$ contains a ( $\kappa^{+}, \kappa^{+}$)-gap. Hausdorff's result was refined in [11] by showing that $M A$ implies that every $\leq^{*}$-increasing $\omega_{1}$-sequence in $\left(\omega^{\omega}, \leq^{*}\right)$ is a lower half of some $\left(\omega_{1}, \omega_{1}\right)$ gap. And this last result was further improved in [12] by establishing that $\mathfrak{t}>\omega_{1}$ is
in fact equivalent to the statement that every $\leq^{*}$-increasing $\omega_{1}$-sequence in ( $\omega^{\omega}, \leq^{*}$ ) is a lower half of some $\left(\omega_{1}, \omega_{1}\right)$-gap. The goal of this section is to show that ( $B A$ ) implies that every $\leq^{*}$-increasing $\omega_{2}$-sequence in $\left(\omega_{1}^{\omega_{1}}, \leq^{*}\right)$ is a lower half of some $\left(\omega_{2}, \omega_{2}\right)$-gap and thus refine the results of Herink [5] and Blaszczyk and Szymanski [2].

Let $a=\left\langle a_{\xi}: \xi<\omega_{2}\right\rangle$ be an $\leq^{*}$-increasing $\omega_{2}$-sequence in ( $\omega_{1}^{\omega_{1}}, \leq^{*}$ ). A $\leq^{*}$ decreasing $\omega_{2}$-sequence $b=\left\langle b_{\xi}: \xi<\omega_{2}\right\rangle$ on top of $a$, such that $(a, b)$ is an $\left(\omega_{2}, \omega_{2}\right)$ gap, will be obtained from an application of $G M A$ to a suitably defined partial order $\mathbb{P}_{a}$. In order to guarantee that $(a, b)$ is in fact a gap, the elements of the sequences $a$ and $b$ have to satisfy the following condition:
( $\star$ ) $\forall \xi<\omega_{2} \forall i<\omega_{1}\left(a_{\xi}(i) \leq b_{\xi}(i)\right) \wedge \forall \xi, \eta<\omega_{2}\left(\xi<\eta \rightarrow \exists i<\omega_{1}\left(b_{\xi}(i)<a_{\eta}(i)\right)\right)$.
This condition is a refinement of the following condition due to Kunen for $\left(\omega_{1}, \omega_{1}\right)$-gaps in ( $\omega^{\omega}, \leq^{*}$ ) (unpublished work):

$$
\begin{gathered}
\forall \xi<\omega_{1} \forall i<\omega\left(a_{\xi}(i) \leq b_{\xi}(i)\right) \quad \text { and } \\
\forall \xi, \eta<\omega_{1}\left(\xi \neq \eta \rightarrow \exists i<\omega\left(a_{\xi}(i) \nsucceq b_{\eta}(i) \vee a_{\eta}(i) \npreceq b_{\xi}(i)\right)\right) .
\end{gathered}
$$

Now we show that if $2^{\omega}=\omega_{1}$ then every $\left(\omega_{2}, \omega_{2}\right)$-pregap in ( $\omega_{1}^{\omega_{1}}, \leq^{*}$ ) satisfying $(\star)$ is in fact a gap.

Lemma 2.1. Assume $2^{\omega}=\omega_{1}$ and let $(a, b)=\left\langle a_{\xi}, b_{\xi}: \xi<\omega_{2}\right\rangle$ be an $\left(\omega_{2}, \omega_{2}\right)$ pregap in $\left(\omega_{1}^{\omega_{1}}, \leq^{*}\right)$ whose elements satisfy $(\star)$. Then $(a, b)$ is a gap.

Proof. By way of contradiction, assume ( $a, b$ ) is split by $c: \omega_{1} \rightarrow \omega_{1}$. Then

$$
\begin{equation*}
\forall \xi<\omega_{2} \exists n_{\xi}<\omega_{1} \forall n \geq n_{\xi}\left(a_{\xi}(n) \leq c(n) \leq b_{\xi}(n)\right) . \tag{०}
\end{equation*}
$$

By a first thinning process we may assume that $\forall \xi<\omega_{2}\left(n_{\xi}=m\right)$, for some fixed $m<\omega_{1}$. Since $2^{\omega}=\omega_{1}$ and $m$ is a countable ordinal, we have $\left|\omega_{1}^{m}\right|=\omega_{1}$. Hence, by another thinning process we may assume that

$$
\forall \xi, \eta<\omega_{2}\left(a_{\xi} \upharpoonright m=a_{\eta} \upharpoonright m \wedge b_{\xi} \upharpoonright m=b_{\eta} \upharpoonright m\right)
$$

But then ( $)$ ), $\left(\bullet\right.$ ) and the first clause of $(\star)$ imply that $\forall \xi, \eta<\omega_{2} \forall i<\omega_{1}\left(a_{\xi}(i) \leq\right.$ $\left.b_{\eta}(i)\right)$, which contradicts the second clause of $(\star)$. Hence, $(a, b)$ is a gap and the Lemma is proved.

Therefore, the definition of $\mathbb{P}_{a}$ has to incorporate the requirements in $(\star)$.
Definition 2.2. Let $a=\left\langle a_{\xi}: \xi<\omega_{2}\right\rangle$ be an $\leq^{*}$-increasing $\omega_{2}$-sequence in $\left(\omega_{1}^{\omega_{1}}, \leq^{*}\right)$.

$$
\begin{array}{r}
\mathbb{P}_{a}=\left\{\langle x, y, n, s\rangle: f x, y \in\left[\omega_{2}\right]^{<\omega_{1}} \wedge n<\omega_{1} \wedge s: y \rightarrow \omega_{1}^{n} \wedge\right. \\
f \forall \xi \in y\left(\left(\xi \in x \rightarrow \forall i<n\left(a_{\xi}(i) \leq s(\xi)(i)\right)\right) \wedge\right. \\
\left.\left.f \forall \eta \in x\left(\eta>\xi \rightarrow \exists i<n\left(s(\xi)(i)<a_{\eta}(i)\right)\right)\right)\right\}
\end{array}
$$

where $\left\langle x_{2}, y_{2}, n_{2}, s_{2}\right\rangle \leq\left\langle x_{1}, y_{1}, n_{1}, s_{1}\right\rangle$ if and only if
(1) $x_{1} \subseteq x_{2}, y_{1} \subseteq y_{2}, n_{1} \leq n_{2}$,
(2) $\forall \xi \in y_{1}\left(s_{2}(\xi) \upharpoonright n_{1}=s_{1}(\xi)\right)$,
(3) $\forall \xi, \eta \in y_{1} \forall i<\omega_{1}\left(\xi \leq \eta \wedge n_{1} \leq i<n_{2} \rightarrow s_{2}(\eta)(i) \leq s_{2}(\xi)(i)\right)$,
(4) $\forall \xi \in x_{1} \forall \eta \in y_{1} \forall i<\omega_{1}\left(n_{1} \leq i<n_{2} \rightarrow a_{\xi}(i) \leq s_{2}(\eta)(i)\right)$.

Clearly $\mathbb{P}_{a}$ is a partial order and the next step is to show that $\mathbb{P}_{a}$ is well-met, strongly $\omega_{1}$-closed and $\omega_{1}$-centered so that $G M A$ can be applied to it.

So let $\left\langle x_{1}, y_{1}, n_{1}, s_{1}\right\rangle,\left\langle x_{2}, y_{2}, n_{2}, s_{2}\right\rangle \in \mathbb{P}_{a}$ and suppose $\langle u, v, k, t\rangle \in \mathbb{P}_{a}$ is their lower bound. We may assume that $u=x_{1} \cup x_{2}$ and $v=y_{1} \cup y_{2}$. Then there is the least $m$ such that $\max \left(n_{1}, n_{2}\right) \leq m \leq k$ and $\langle u, v, m, t \upharpoonright m\rangle \in \mathbb{P}_{a}$, where $t \upharpoonright m$ is a function with domain $v$ such that $\forall \xi \in v((t \upharpoonright m)(\xi)=t(\xi) \upharpoonright m)$. Then it is easily seen that $\langle u, v, m, t \upharpoonright m\rangle$ is the greatest lower bound of $\left\langle x_{1}, y_{1}, n_{1}, s_{1}\right\rangle$ and $\left\langle x_{2}, y_{2}, n_{2}, s_{2}\right\rangle$ so that $\mathbb{P}_{a}$ is well-met.

Now let $\left\langle x_{0}, y_{0}, n_{0}, s_{0}\right\rangle \geq\left\langle x_{1}, y_{1}, n_{1}, s_{1}\right\rangle \geq \cdots$ be a decreasing $\omega$-sequence in $\mathbb{P}_{a}$. Let $u=\bigcup_{i<\omega} x_{i}, v=\bigcup_{i<\omega} y_{i}, m=\sup _{i<\omega}\left(n_{i}\right)$ and let $t$ be a function with domain $v$ such that $\forall \xi \in v\left(t(\xi)=\bigcup\left\{s_{i}(\xi): \xi \in y_{i}\right\}\right)$. Then $\langle u, v, m, t\rangle$ is the greatest lower bound in $\mathbb{P}_{a}$ of the above sequence so that $\mathbb{P}_{a}$ is strongly $\omega_{1}$-closed.

As indicated in $\S 1$, to show that $\mathbb{P}_{a}$ is $\omega_{1}$-centered it suffices to show that there is a sequence $\left\langle\mathbb{P}_{\alpha}: \alpha \leq \omega_{2}\right\rangle$ of sub-orders of $\mathbb{P}_{a}$ such that $\mathbb{P}_{\omega_{2}}=\mathbb{P}_{a}$ and a sequence $\left\langle i_{\alpha \beta}: \alpha \leq \beta \leq \omega_{2}\right\rangle$, with $i_{\alpha \beta}: \mathbb{P}_{\alpha} \rightarrow \mathbb{P}_{\beta}$, of complete embeddings such that $\forall \alpha, \beta, \gamma\left(\alpha \leq \beta \leq \gamma \leq \omega_{2} \rightarrow i_{\alpha \gamma}=i_{\beta \gamma} \circ i_{\alpha \beta}\right)$ and such that each $\mathbb{P}_{\alpha}$, for $\alpha<\omega_{2}$, is well-met, strongly $\omega_{1}$-closed and $\omega_{1}$-centered. Then $\mathbb{P}_{a}$ can be viewed as a countable support iteration of length $\omega_{2}$ with well-met, strongly $\omega_{1}$-closed and $\omega_{1}$-centered partial orders, since $\mathbb{P}_{a}$ consists of countable conditions. Then, by Proposition 1.2, $\mathbb{P}_{a}$ is also $\omega_{1}$-centered.

For each $\alpha \leq \omega_{2}$ let $\mathbb{P}_{\alpha}=\left\{\langle x, y, n, s\rangle \in \mathbb{P}_{a}: y \subseteq \alpha\right\}$ and for each $\alpha \leq \beta \leq \omega_{2}$ let $i_{\alpha \beta}: \mathbb{P}_{\alpha} \rightarrow \mathbb{P}_{\beta}$ be the inclusion map $i(p)=p$. Then $\mathbb{P}_{a}=\mathbb{P}_{\omega_{2}}$, each $\mathbb{P}_{\alpha}$ is a sub-order of $\mathbb{P}_{a}$ with the ordering relation inherited from $\mathbb{P}_{a}$, and $\forall \alpha \leq \beta \leq$ $\gamma \leq \omega_{2}\left(i_{\alpha \gamma}=i_{\beta \gamma} \circ i_{\alpha \beta}\right)$. Analogous proof can be used to show that each $\mathbb{P}_{\alpha}$, for $\alpha<\omega_{2}$, is well-met and strongly $\omega_{1}$-closed as the one used to show that $\mathbb{P}_{a}$ has these properties.

Lemma 2.3. For each $\alpha \leq \beta \leq \omega_{2}$, $i_{\alpha \beta}$ is a complete embedding.
Proof. Properties $(a)$ and $(b)$ of Definition 1.1 are satisfied in a trivial way. For $(c)$, let $q=\left\langle x_{q}, y_{q}, n_{q}, s_{q}\right\rangle \in \mathbb{P}_{\beta}$. Then $p=\left\langle x_{q}, y_{q} \cap \alpha, n_{q}, s_{q} \upharpoonright\left(y_{q} \cap \alpha\right)\right\rangle$ has the required property.

Lemma 2.4. Assume $2^{\omega}=\omega_{1}$. Then for each $\alpha<\omega_{2}, \mathbb{P}_{\alpha}$ is $\omega_{1}$-centered.
Proof. Let $\alpha<\omega_{2}$ and for each $y \in[\alpha]^{<\omega_{1}}, n<\omega_{1}, s \in\left(\omega_{1}^{n}\right)^{y}$ let $\mathbb{P}_{\alpha y n s}=$ $\left\{\langle x, z, m, t\rangle \in \mathbb{P}_{\alpha}: z=y \wedge m=n \wedge t=s\right\}$. Then $\mathbb{P}_{\alpha}=\bigcup\left\{\mathbb{P}_{\alpha y n s}: y \in[\alpha]<\omega_{1} \wedge n<\right.$ $\left.\omega_{1} \wedge s \in\left(\omega_{1}^{n}\right)^{y}\right\}$ and since $2^{\omega}=\omega_{1}$, hence $\omega_{1}^{\omega}=\omega_{1}$, we have that $\mathbb{P}_{\alpha}$ is a union of $\omega_{1}$ many sub-orders. Furthermore, if $\left\langle x_{1}, y, n, s\right\rangle, \ldots,\left\langle x_{k}, y, n, s\right\rangle \in \mathbb{P}_{\alpha y n s}$ then $\left\langle x_{1} \cup \ldots \cup x_{k}, y, n, s\right\rangle \in \mathbb{P}_{\alpha y n s}$ and $\left\langle x_{1} \cup \ldots \cup x_{k}, y, n, s\right\rangle \leq\left\langle x_{1}, y, n, s\right\rangle, \ldots,\left\langle x_{k}, y, n, s\right\rangle$. Thus, each $\mathbb{P}_{\text {ayns }}$ is centered so that $\mathbb{P}_{\alpha}$ is $\omega_{1}$-centered.

Therefore, Lemmas 2.3 and 2.4 imply that $\mathbb{P}_{a}$ can be viewed as a countable support iteration of length $\omega_{2}$ with partial orders which are well-met, strongly $\omega_{1}$-closed and $\omega_{1}$-centered. Thus, by Proposition $1.2, \mathbb{P}_{a}$ is also $\omega_{1}$-centered.

Now we come to the main result of this section.
ThEOREM 2.5 Assume $(B A)$. Then every $\leq^{*}$-increasing $\omega_{2}$-sequence in $\left(\omega_{1}^{\omega_{1}}, \leq^{*}\right)$ is a lower half of some $\left(\omega_{2}, \omega_{2}\right)$-gap.

Proof. Let $a=\left\langle a_{\xi}: \xi<\omega_{2}\right\rangle$ be an $\leq^{*}$-increasing $\omega_{2}$-sequence in $\left(\omega_{1}^{\omega_{1}}, \leq^{*}\right)$. Then by the previous results, $\mathbb{P}_{a}$ is well-met, strongly $\omega_{1}$-closed and $\omega_{1}$-centered. Let $G$ be a filter in $\mathbb{P}_{a}$ and for each $\eta<\omega_{2}$ let

$$
b_{\eta}=\bigcup\left\{s(\eta): \exists p \in G\left(p=\left\langle x_{p}, y_{p}, n_{p}, s_{p}\right\rangle \wedge s=s_{p}\right)\right\}
$$

Condition (4) of Definition 2.2 together with the requirement that for each $\xi, \eta<\omega_{2}$ and each $m<\omega_{1}$ the filter $G$ has a nonempty intersection with the following dense sets

$$
D_{\xi \eta m}=\left\{\langle x, y, n, s\rangle \in \mathbb{P}_{a}: \xi \in x \wedge \eta \in y \wedge n \geq m\right\}
$$

will guarantee that $\forall \xi, \eta<\omega_{2}\left(a_{\xi} \leq^{*} b_{\eta}\right)$. In addition, condition (3) of Definition 2.2 together with the requirement that for each $\xi<\eta<\omega_{2}$ and each $m<\omega_{1}$ the filter $G$ has a nonempty intersection with the following dense sets

$$
E_{\xi \eta m}=\left\{\langle x, y, n, s\rangle \in \mathbb{P}_{a}: \xi, \eta \in y \wedge|\{i: s(\eta)(i)<s(\xi)(i)\}| \geq m\right\}
$$

will guarantee that $\forall \xi<\eta<\omega_{2}\left(b_{\eta} \leq^{*} b_{\xi}\right)$. Then the total number of these dense sets $D_{\xi \eta m}$ and $E_{\xi \eta m}$ is $\omega_{2}$. Therefore, to satisfy the requirements that $\forall \xi, \eta<$ $\omega_{2}\left(a_{\xi} \leq^{*} b_{\eta}\right)$ and $\forall \xi<\eta<\omega_{2}\left(b_{\eta} \leq^{*} b_{\xi}\right)$ the filter $G$ needs to intersect $\omega_{2}$ dense subsets of $\mathbb{P}_{a}$ and by $(B A)$ there is one such filter. In addition, the definition of $\mathbb{P}_{a}$ implies that $\forall \xi<\omega_{2} \forall i<\omega_{1}\left(a_{\xi}(i) \leq b_{\xi}(i)\right)$ and $\forall \xi, \eta<\omega_{2}\left(\xi<\eta \rightarrow \exists i<\omega_{1}\left(b_{\xi}(i)<\right.\right.$ $\left.a_{\eta}(i)\right)$ ) so that $(a, b)$ is in fact an $\left(\omega_{2}, \omega_{2}\right)$-gap in $\left(\omega_{1}^{\omega_{1}}, \leq^{*}\right)$.
3. Trees. It is well known that $2^{\omega}=\omega_{1}$ implies the existence of an $\omega_{2^{-}}$ Aronszajn tree (see [6]). Since $2^{\omega}=\omega_{1}$ is a part of $(B A)$, it follows that $(B A)$ sattles the existance of an $\omega_{2}$-Aronszajn tree. By the results of Laver and Shelah [7] and Shelah and Stanley [10] the existence of an $\omega_{2}$-Suslin tree is consistent with and independent of $(B A)$. In this section we consider the influence of $(B A)$ on the existence of $\omega_{2}$-Kurepa trees. We show that the existence of such trees is consistent with and independent of a stronger version of Generalized Martin's Axiom, due to Shelah [9], than the one we have considered so far. Recall that an $\omega_{2}$-Kurepa tree is a tree $\mathbb{T}=\left(T, \leq_{T}\right)$ of hight $\omega_{2}$ such that any level of $\mathbb{T}$ is of size $<\omega_{2}$. If $x \in T$ let $\hat{x}=\left\{y \in T: y<_{T} x\right\}$. We also assume that $T=\omega_{2}$ and that all our trees have the following properties:

1) $\left|\operatorname{Lev}_{0}(\mathbb{T})\right|=1$,
2) $\forall \alpha<\beta<\operatorname{hight}(\mathbb{T}) \forall x \in \operatorname{Lev}_{\alpha}(\mathbb{T}) \exists y_{1}, y_{2} \in \operatorname{Lev}_{\beta}(\mathbb{T})\left(y_{1} \neq y_{2} \wedge x<_{T} y_{1}, y_{2}\right)$,
3) $\forall \alpha<\operatorname{hight}(\mathbb{T}) \forall x, y \in \operatorname{Lev}_{\alpha}(\mathbb{T})($ limit $\alpha \rightarrow(x=y \leftrightarrow \hat{x}=\hat{y})$ ).

We begin by formulating Shelah's version of Generalized Martin's Axiom. A partial order $\mathbb{P}$ is $\omega_{2}$-normal if $\left\{p_{\alpha}: \alpha<\omega_{2}\right\} \subseteq \mathbb{P}$ then there is a club $C \subseteq \omega_{2}$ and a regressive function $f: \omega_{2} \rightarrow \omega_{2}$ such that for $\alpha, \beta \in C$ if $\operatorname{cf}(\alpha)=\operatorname{cf}(\beta)=\omega_{1}$ and $f(\alpha)=f(\beta)$ then $p_{\alpha}$ and $p_{\beta}$ are compatible. Note that $\omega_{2}$-normality is a strengthening of $\omega_{2}$-Knaster condition, which states that if $\left\{p_{\alpha}: \alpha<\omega_{2}\right\} \subseteq \mathbb{P}$ then there is an $A \in\left[\omega_{2}\right]^{\omega_{2}}$ such that any two elements in $\left\{p_{\alpha}: \alpha \in A\right\}$ are compatible. Let $G M A^{*}$ denote the statement that if $\mathbb{P}$ is a partial order such that $|\mathbb{P}|<2^{\omega_{1}}$, it is well-met, strongly $\omega_{1}$-closed and $\omega_{2}$-normal and $\mathcal{D}$ is a family of $<2^{\omega_{1}}$ dense subsets of $\mathbb{P}$ then there is a filter $G \subseteq \mathbb{P}$ meeting all the elements of $\mathcal{D}$. The following Lemma is due to Shelah [9].

Lemma 3.1. Suppose $2^{\omega}=\omega_{1}, 2^{<\kappa}=\kappa$ and $\kappa$ is a regular cardinal. Let $\left\langle\left\langle\mathbb{P}_{\alpha}: \alpha \leq \kappa\right\rangle,\left\langle\mathbb{Q}_{\alpha}: \alpha<\kappa\right\rangle\right\rangle$ be a countable support iteration such that

$$
\mathbf{1} \vdash_{\mathbb{P}_{\alpha}} " \mathbb{Q}_{\alpha} \text { is well-met, strongly } \omega_{1} \text {-closed and } \omega_{2} \text {-normal ". }
$$

Then $\mathbb{P}_{\kappa}$ is strongly $\omega_{1}$-closed and $\omega_{2}$-normal.
This Lemma is essentially all that is needed in Shelah's proof [9] of the consistency of

$$
\begin{equation*}
2^{\omega}=\omega_{1}+2^{\omega_{1}}>\omega_{2}+G M A^{*} \tag{SA}
\end{equation*}
$$

This Lemma will also play a role in the analysis below.
To obtain a model for $(S A)$ in which there is an $\omega_{2}$-Kurepa tree, we start with a ground model $V$ for $Z F C+G C H$ in which there is an $\omega_{2}$-Kurepa tree. For example, the constructible universe $L$ has this property. Then iterate, as in [9], to obtain a model for $(S A)$. By Lemma 3.1 cofinalities and hence cardinals are preserved by the iteration so that any $\omega_{2}$-Kurepa tree in the ground model remains an $\omega_{2}$-Kurepa tree in the extension. Thus, the existence of an $\omega_{2}$-Kurepa tree is consistent with (SA).

The construction of a model for $2^{\omega}=\omega_{1}+2^{\omega_{1}}=\omega_{3}+G M A^{*}$ in which there are no $\omega_{2}$-Kurepa trees requires the existence of a strongly inaccessible cardinal and it is analogous to Devlin's construction [3] of a model for $2^{\omega}=\omega_{2}+M A$ in which there are no $\omega_{1}$-Kurepa trees. Therefore we only present an outline of our construction.

The construction will proceed as follows. Start with a model for $Z F C+G C H$ in which $\kappa$ is a strongly inaccessible cardinal. Then collapse $\kappa$ to $\omega_{3}$ by the Levy collapse $\mathbb{L}_{\kappa}$ (see below). In the extension, there are no $\omega_{2}$-Kurepa trees. Then iterate, as in [9], to obtain a model for $2^{\omega}=\omega_{1}+2^{\omega_{1}}=\omega_{3}+G M A^{*}$. We use Lemma 3.1 to show that in the final model there are no $\omega_{2}$-Kurepa trees.

Now, we define the Levy collapse $\mathbb{L}_{\kappa}$ and present some of its properties whose proofs are standard.

Definition 3.2. $\mathbb{L}_{\kappa}=\left\{p:|p| \leq \omega_{1} \wedge p\right.$ is a function $\wedge \operatorname{dom}(p) \subseteq \kappa \times \omega_{2} \wedge$

$$
\forall(\alpha, \xi) \in \operatorname{dom}(p)(p(\alpha, \xi) \in \alpha)\}, \text { where } p \leq q \text { if and only if } p \supseteq q
$$

For $\lambda<\kappa$ let $\mathbb{L}_{\lambda}=\left\{p \in \mathbb{L}_{\kappa}: \operatorname{dom}(p) \subseteq \lambda \times \omega_{2}\right\}$ and $\mathbb{L}^{\lambda}=\left\{p \in \mathbb{L}_{\kappa}: \operatorname{dom}(p) \subseteq\right.$ $\left.(\kappa \backslash \lambda) \times \omega_{2}\right\}$. then $\mathbb{L}_{\lambda} \times \mathbb{L}^{\lambda}$ is isomorphic to $\mathbb{L}_{\kappa}$.

Lemma 3.3. $\mathbb{L}_{\kappa}$ is $\omega_{2}$-closed. If $\kappa$ is strongly inaccessible, then $\mathbb{L}_{\kappa}$ has the $\kappa$ - $c c$.

Lemma 3.4. Let $M$ be a countable transitive model (c.t.m.) for $Z F C+G C H$ and suppose $\kappa$ is strongly inaccessible in $M$ and $G$ is $\mathbb{L}_{\kappa}$-generic over $M$. Then $\omega_{1}^{M[G]}=\omega_{1}^{M}, \omega_{2}^{M[G]}=\omega_{2}^{M}, \omega_{3}^{M[G]}=\kappa$ and, in $M[G]$, there are no $\omega_{2}$-Kurepa trees.

So, by extending with $\mathbb{L}_{\kappa}, \omega_{1}$ and $\omega_{2}$ remain unchanged and $\kappa$ gets collapsed to $\omega_{3}$ and if $G C H$ holds in $M$ it also holds in $M[G]$.

The idea now is to start with a model $M[G]$, as above, and iterate, as in [9], $\omega_{3}$ times to obtain a model for $2^{\omega}=\omega_{1}+2^{\omega_{1}}=\omega_{3}+G M A^{*}$. But we need to know that the iteration does not introduce any new $\omega_{2}$-Kurepa trees. The next two Lemmas are toward this end. We omit the proofs as the Lemmas and their proofs are the analogues of the corresponding Lemmas for $\omega_{1}$-trees. The first one is the analogue of Lemma 3.6 in [3] and the second one is the analogue of Theorem 8.5 in [1].

Lemma 3.5. Let $M$ be a c.t.m. for $Z F C$ and suppose that, in $M, \mathbb{P}$ and $\mathbb{Q}$ are partial orders such that $\mathbb{P}$ is strongly $\omega_{1}$-closed and $\omega_{2}$-normal and $\mathbb{Q}$ is $\omega_{2}$-closed. Let $G$ be $\mathbb{P} \times \mathbb{Q}$-generic over $M$. Let $G_{\mathbb{P}}=\{p \in \mathbb{P}:(p, 1) \in G\}$ and $G_{\mathbb{Q}}=\{q \in \mathbb{Q}:(1, q) \in G\}$. Then if $\mathbb{T}$ is an $\omega_{2}$-tree in $M\left[G_{\mathbb{P}}\right]$ and $b$ is an $\omega_{2}$-branch of $\mathbb{T}$ in $M[G]$, then $b \in M\left[G_{\mathbb{P}}\right]$. In addition $\omega_{1}^{M[G]}=\omega_{1}^{M}$ and $\omega_{2}^{M[G]}=\omega_{2}^{M}$.

Lemma 3.6. Suppose $\mathbb{T}$ is an $\omega_{2}$-tree and $\mathbb{P}$ is strongly $\omega_{1}$-closed and $\omega_{2}$ normal partial order. Then forcing with $\mathbb{P}$ adds no new $\omega_{2}$-branches through $\mathbb{T}$.

Now we state and prove the main result of this section.
Theorem 3.7. Let $M$ be a c.t.m. for $Z F C+G C H$ and $\kappa$ strongly inaccessible in $M$. Then there is an extension of $M$ which is a model for $2^{\omega}=\omega_{1}+2^{\omega_{1}}=\omega_{3}+G M A^{*}$ in which there are no $\omega_{2}$-Kurepa trees.

Proof. Let $M$ be as above and $G \mathbb{L}_{\kappa}$-generic over $M$. Then, by Lemma 3.4 , in $N=M[G]$ there are no $\omega_{2}$-Kurepa trees and $G C H$ still holds. In $N$, we perform a countable support iteration of length $\omega_{3}$, as in [9], to obtain a model for $2^{\omega}=\omega_{1}+2^{\omega_{1}}=\omega_{3}+G M A^{*}$. Let $\left\langle\left\langle\mathbb{P}_{\alpha}: \alpha \leq \omega_{3}\right\rangle,\left\langle\mathbb{Q}_{\alpha}: \alpha<\omega_{3}\right\rangle\right\rangle$ be such iteration and $H \mathbb{P}_{\omega_{3}}$-generic over $N$. Then $N[H]$ is a model for $2^{\omega}=\omega_{1}+2^{\omega_{1}}=\omega_{3}+G M A^{*}$ and we now show that there are no $\omega_{2}$-Kurepa trees in $N[H]$. In $N$, let $\tau$ be a nice $\mathbb{P}_{\omega_{3}}$-name for an $\omega_{2}$-tree in $N[H]$ (see [6] for the definition of a nice name). Since, by Lemma 3.1, $\mathbb{P}_{\omega_{3}}$ has $\omega_{2}$-cc there is an $\alpha<\omega_{3}$ such that $\tau$ is in fact a $\mathbb{P}_{\alpha}$-name. Then $H_{\alpha}$, the restriction of $H$ to $\mathbb{P}_{\alpha}$, is $\mathbb{P}_{\alpha}$ generic over $N$. Since $\alpha<\omega_{3}$, the iteration is with countable supports, we are considering only partial orders of size $<\omega_{3}$ (i.e. $\left.\mathbf{1} \Vdash_{\mathbb{P}_{\alpha}} "\left|\mathbb{Q}_{\alpha}\right|<\check{\omega}_{3} \mid "\right), G C H$ holds in $M[G]$, hence the density of $\mathbb{P}_{\alpha}$ is $<\omega_{3}$, we may assume that $\left|\mathbb{P}_{\alpha}\right|<\omega_{3}$. Now, in $M, \mathbb{L}_{\kappa}$ has the $\kappa$-cc (by Lemma 3.3), so there is some $\lambda<\kappa$ such that if $G_{\lambda}$ is the restriction of $G$ to $\mathbb{L}_{\lambda}$ then $\mathbb{P}_{\alpha} \in M\left[G_{\lambda}\right]$ and $H_{\alpha}$ is $\mathbb{P}_{\alpha}$-generic over $M\left[G_{\lambda}\right]$. Now $\mathbb{T}=\tau[G] \in M\left[G_{\lambda}\right]\left[H_{\alpha}\right]$ and, by Lemma 3.5, any $\omega_{2}$-branch of $\mathbb{T}$ which is in $M\left[G_{\lambda}\right]\left[H_{\alpha}\right]\left[G^{\lambda}\right]$ is already in
$M\left[G_{\lambda}\right]\left[H_{\alpha}\right]$. So, in $M\left[G_{\lambda}\right]\left[H_{\alpha}\right], \mathbb{T}$ has at most $2^{\omega_{2}}=\theta$ such branches and since $\kappa$ is still strongly inaccessible we have that $\theta<\kappa$. But, in $M\left[G_{\lambda}\right]\left[H_{\alpha}\right]\left[G^{\lambda}\right], \kappa$ is collapsed to $\omega_{3}$. So $\mathbb{T}$ can have at most $\aleph_{2}$ many $\omega_{2}$-branches in $M\left[G_{\lambda}\right]\left[H_{\alpha}\right]\left[G^{\lambda}\right]$. But $M\left[G_{\lambda}\right]\left[H_{\alpha}\right]\left[G^{\lambda}\right]=M\left[G_{\lambda}\right]\left[G^{\lambda}\right]\left[H_{\alpha}\right]=M[G]\left[H_{\alpha}\right]=N\left[H_{\alpha}\right]$. So $\mathbb{T}$ has at most $\aleph_{2}$ many $\omega_{2}$-branches in $N\left[H_{\alpha}\right]$. However, by Lemma 3.1, $\mathbb{P}^{\alpha}$ is $\omega_{2}$-normal so that, by Lemma 3.6, $\mathbb{T}$ does not obtain any new $\omega_{2}$-branches in the extension $N\left[H_{\alpha}\right]\left[H^{\alpha}\right]$. But $N\left[H_{\alpha}\right]\left[H^{\alpha}\right]=N[H]$. So $\mathbb{T}$ can not be an $\omega_{2}$-Kurepa tree in $N[H]$ which proves that in the model $N[H]$ there are no $\omega_{2}$-Kurepa trees. This finishes the proof of the Theorem.

Therefore, the existence of an $\omega_{2}$-Kurepa tree is consistent with and independent of ( $S A$ ) and hence consistent with and independent of ( $B A$ ).

## REFERENCES

[1] J. Baumgartner, Iterated Forcing, in: A.R.D. Mathias, ed., Surveys in Set Theory, London Mathematical Society Lecture Note Series 87, 1983, 1-60.
[2] A. Blaszczyk and A. Szymanski, Hausdorff's gaps versus normality, Bull. Acad. Polon. Sci. 30 (1982), 371-378.
[3] K. Devlin, $\aleph_{1}$-Trees, Ann. Math. Logic 13 (1978), 267-330.
[4] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. König. Sächs. Ges. Wiss., Math.Physis. Kl. 31 (1909), 296-334.
[5] C. Herink, Some Applications of Iterated Forcing, Ph.D. Thesis, University of WisconsinMadison, 1977.
[6] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
[7] R. Laver and S. Shelah, The $\aleph_{2}$-Suslin hypothesis, Trans. Amer. Math. Soc. 264 (1981), 411418.
[8] D. Martin and R. Solovay, Internal Cohen Extensions, Ann. Math. Logic 2 (1970), 143-178.
[9] S. Shelah, A weak generalization of MA to higher cardinals, Israel J. Math. 36 (1978), 297-304.
[10] S. Shelah and L. Stanley, Generalized Martin's axiom and Suslin's hypothesis for higher cardinals, Israel J. Math. 43 (1982), 225-236.
[11] Z. Spasojević, Some results on gaps, Topology Appl. 56 (1994), 129-139.
[12] Z. Spasojević, Gaps in $\left(\mathcal{P}(\omega), \subset^{*}\right)$ and $\left(\omega^{\omega}, \leq^{*}\right)$, Proc. American Math. Soc., to appear.
[13] F. Tall, Some applications of generalized Martin's axiom, Topology Appl. 57 (1994), 215-248.
[14] S. Todorčević, Trees, Subtrees and Order Types, Ann. Math. Logic 20 (1980), 233-268.

| Institute of Mathematics | (Received 0107 | 07 |
| :--- | ---: | :--- |
| The Hebrew University of Jerusalem | (Revised 26 | 08 |
| 1995 ) |  |  |
| Jerusalem, Israel | (Revised 28 | 11 |

