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SOME REMARKS ON GENERALIZED MARTIN'S AXIOM

Z. Spasojevi�c

Abstract. Let GMA denote that if P is well-met, strongly !1-closed and !1-centered
partial order and D a family of < 2!1 dense subsets of P then there is a �lter G � P which
meets every member of D. The consistency of 2! = !1 + 2!1 > !2 + GMA was proved by
Baumgartner [1] and in [13] many of its consequences were considered. In this paper we give
a consequence and present an independence result. Namely, we prove that, as a consequence of
2! = !1+2!1 > !2+GMA, every ��-increasing !2-sequence in (!!1

1
;��) is a lower half of some

(!2; !2)-gap and show that the existence of an !2-Kurepa tree is consistent with and independent
of 2! = !1 + 2!1 > !2 +GMA.

1. Introduction. With the discovery of Martin's Axiom [8] and its many
consequences a number of set-theorists considered the problem of generalizing Mar-
tin's Axiom to higher cardinals. Their aim actually was to generalize the conse-
quences of MA to higher cardinals. One of the �rst generalizations of Martin's
Axiom is due to Baumgartner [1] and one of the strongest generalizations is due to
Shelah [9]. We will return to Shelah's version in the last section but now we state
Baumgartner's result. A partial order P is well-met if any two compatible elements
in P have the greatest lower bound. We denote compatibility of p; q 2 P by p 6? q

and their incompatibility by p ? q. P is !1-closed if any decreasing !-sequence in
P has a lower bound and it is strongly !1-closed if the greatest lower bound exists
for any such sequence. P is centered if any �nite sub-collection of P has a lower
bound and it is !1-centered if it is a union of !1 many centered partial orders.
Baumgartner [1] constructed a model for

(BA) 2! = !1 + 2!1 > !2 +GMA

and thus obtained the consistency of one of the �rst versions of Generalized Martin's
Axiom. In fact, Baumgartner considered a somewhat bigger class of partial orders,
but in this paper we will only consider partial orders which are well-met, strongly
!1-closed, !1-centered and of size < 2!1 , where 2!1 is computed in the �nal model.

Many consequences of (BA) were considered in [13]. The object of this paper
is to present one more consequence and an independence result. We show that every
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��-increasing !2-sequence in (!!11 ;��) is a lower half of some (!2; !2)-gap (see x2
for notation and terminology). As usual, this result will be obtained by applying
GMA to suitably chosen partial orders. It will be fairly straight-forward to show
that this partial order is well-met and strongly !1-closed. Somewhat harder will
be to show that it is !1-centered. For this we �rst need to recall the notion of a
complete embedding.

De�nition 1.1. Let P and Q be partial orders. An i:P ! Q is a complete
embedding if

(a) 8p; p0 2 P(p0 � p! i(p0) � i(p)),

(b) 8p; p0 2 P(p0 ? p$ i(p0) ? i(p)),

(c) 8q 2 Q9p 2 P8p0 2 P(p0 � p! i(p0) 6? i(p)).

We also recall a result from [13].

Proposition 1.2. Assume 2! = !1. Then any countable support iteration
of length � 2!1 with well-met, strongly !1-closed and !1-centered partial orders
yields an !1-centered partial order.

At this stage we also point out that 2! = !1 is assumed throughout this
paper. Now, let P be a partial order which is well-met and strongly !1-closed and
suppose that all the conditions in P are countable. To show that P is !1-centered,
it suÆces to exhibit a sequence hP�: � � � � 2!1i of sub-orders of P such that
P� = P and each P�, for � < �, is well-met, strongly !1-closed and !1-centered,
as well as a sequence hi�� : � � � � �i, with i�� :P� ! P�, of complete embeddings
such that 8�; �; �(� � � � � � � ! i�� = i�� Æ i��). Then P can be viewed as
a countable support iteration of length � � 2!1 with well-met, strongly !1-closed
and !1-centered partial orders so that by Proposition 1.2 P is also !1-centered.

It is well known that 2! = !1 implies the existence of an !2-Aronszajn tree
(see [6]). The results of Laver and Shelah [7] and Shelah and Stanley [10] show that
the existence of an !2-Suslin tree is consistent with and independent of (BA). In the
�nal section we consider the inuence of (BA) on the existence of !2-Kurepa trees.
Our result is that the existence of such trees is consistent with and independent of
(BA).

2. Gaps. Let �� be the set of all function from � to �. If f; g 2 �� then
f �� g if and only if 9n < �8i < �(i � n ! f(i) � g(i)) and f(i) < g(i) on a set
of size �. A (�+; �+)-pregap in (��;��) is a pair (a; b) where a = ha� : � < �+i and
b = hb� : � < �+i are subsets of �� such that 8�; � < �+(a� �

� b�) and 8� < � <

�+(a� �
� a� ^ b� �

� b�). If there is a c 2 �� such that 8�; � < �+(a� �
� c �� b�)

then c splits the pregap (a; b). If no such c exists then (a; b) is a (�+; �+)-gap.

Hausdor� [4] showed (in ZFC) that (!!;��) contain an (!1; !1)-gap. Herink
[5] and independently Blaszczyk and Szymanski [2] generalized Hausdor�'s result
to higher cardinals by proving that if � is a regular cardinal then (��;��) contains
a (�+; �+)-gap. Hausdor�'s result was re�ned in [11] by showing that MA implies
that every ��-increasing !1-sequence in (!!;��) is a lower half of some (!1; !1)-
gap. And this last result was further improved in [12] by establishing that t > !1 is
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in fact equivalent to the statement that every��-increasing !1-sequence in (!
!;��)

is a lower half of some (!1; !1)-gap. The goal of this section is to show that (BA)
implies that every ��-increasing !2-sequence in (!!11 ;��) is a lower half of some
(!2; !2)-gap and thus re�ne the results of Herink [5] and Blaszczyk and Szyman-
ski [2].

Let a = ha� : � < !2i be an ��-increasing !2-sequence in (!!11 ;��). A ��-
decreasing !2-sequence b = hb�: � < !2i on top of a, such that (a; b) is an (!2; !2)-
gap, will be obtained from an application of GMA to a suitably de�ned partial
order Pa. In order to guarantee that (a; b) is in fact a gap, the elements of the
sequences a and b have to satisfy the following condition:

(?) 8� < !28i < !1(a�(i) � b�(i)) ^ 8�; � < !2(� < � ! 9i < !1(b�(i) < a�(i))):

This condition is a re�nement of the following condition due to Kunen for
(!1; !1)-gaps in (!!;��) (unpublished work):

8� < !18i < !(a�(i) � b�(i)) and

8�; � < !1(� 6= � ! 9i < !(a�(i) 6� b�(i) _ a�(i) 6� b�(i))):

Now we show that if 2! = !1 then every (!2; !2)-pregap in (!!11 ;��) satisfy-
ing (?) is in fact a gap.

Lemma 2.1. Assume 2! = !1 and let (a; b) = ha�; b�: � < !2i be an (!2; !2)-
pregap in (!!11 ;��) whose elements satisfy (?). Then (a; b) is a gap.

Proof. By way of contradiction, assume (a; b) is split by c:!1 ! !1. Then

(Æ) 8� < !29n� < !18n � n�(a�(n) � c(n) � b�(n)):

By a �rst thinning process we may assume that 8� < !2(n� = m), for some �xed
m < !1. Since 2

! = !1 and m is a countable ordinal, we have j !m1 j= !1. Hence,
by another thinning process we may assume that

(�) 8�; � < !2(a� � m = a� � m ^ b� � m = b� � m):

But then (Æ),(�) and the �rst clause of (?) imply that 8�; � < !28i < !1(a�(i) �
b�(i)), which contradicts the second clause of (?). Hence, (a; b) is a gap and the
Lemma is proved. �

Therefore, the de�nition of Pa has to incorporate the requirements in (?).

De�nition 2.2. Let a = ha� : � < !2i be an ��-increasing !2-sequence in
(!!11 ;��).

Pa = fhx; y; n; si: fx; y 2 [!2]
<!1 ^ n < !1 ^ s: y ! !n1^

f8� 2 y((� 2 x! 8i < n(a�(i) � s(�)(i)))^

f8� 2 x(� > � ! 9i < n(s(�)(i) < a�(i))))g

where hx2; y2; n2; s2i � hx1; y1; n1; s1i if and only if

(1) x1 � x2; y1 � y2; n1 � n2;
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(2) 8� 2 y1(s2(�) � n1 = s1(�));

(3) 8�; � 2 y18i < !1(� � � ^ n1 � i < n2 ! s2(�)(i) � s2(�)(i));

(4) 8� 2 x18� 2 y18i < !1(n1 � i < n2 ! a�(i) � s2(�)(i)):

Clearly Pa is a partial order and the next step is to show that Pa is well-met,
strongly !1-closed and !1-centered so that GMA can be applied to it.

So let hx1; y1; n1; s1i; hx2; y2; n2; s2i 2 Pa and suppose hu; v; k; ti 2 Pa is their
lower bound. We may assume that u = x1 [ x2 and v = y1 [ y2. Then there is
the least m such that max(n1; n2) � m � k and hu; v;m; t � mi 2 Pa, where t � m
is a function with domain v such that 8� 2 v((t � m)(�) = t(�) � m). Then it is
easily seen that hu; v;m; t � mi is the greatest lower bound of hx1; y1; n1; s1i and
hx2; y2; n2; s2i so that Pa is well-met.

Now let hx0; y0; n0; s0i � hx1; y1; n1; s1i � � � � be a decreasing !-sequence in
Pa. Let u =

S
i<! xi, v =

S
i<! yi, m = supi<!(ni) and let t be a function with

domain v such that 8� 2 v(t(�) =
S
fsi(�): � 2 yig). Then hu; v;m; ti is the greatest

lower bound in Pa of the above sequence so that Pa is strongly !1-closed.

As indicated in x1, to show that Pa is !1-centered it suÆces to show that
there is a sequence hP�:� � !2i of sub-orders of Pa such that P!2 = Pa and a
sequence hi�� :� � � � !2i, with i�� :P� ! P�, of complete embeddings such that
8�; �; (� � � �  � !2 ! i� = i� Æ i��) and such that each P�, for � < !2, is
well-met, strongly !1-closed and !1-centered. Then Pa can be viewed as a countable
support iteration of length !2 with well-met, strongly !1-closed and !1-centered
partial orders, since Pa consists of countable conditions. Then, by Proposition 1.2,
Pa is also !1-centered.

For each � � !2 let P� = fhx; y; n; si 2 Pa: y � �g and for each � � � � !2
let i�� :P� ! P� be the inclusion map i(p) = p. Then Pa = P!2 , each P� is
a sub-order of Pa with the ordering relation inherited from Pa, and 8� � � �
 � !2(i� = i� Æ i��). Analogous proof can be used to show that each P�, for
� < !2, is well-met and strongly !1-closed as the one used to show that Pa has
these properties.

Lemma 2.3. For each � � � � !2, i�� is a complete embedding.

Proof. Properties (a) and (b) of De�nition 1.1 are satis�ed in a trivial way.
For (c), let q = hxq ; yq; nq ; sqi 2 P�. Then p = hxq ; yq \ �; nq ; sq � (yq \ �)i has the
required property. �

Lemma 2.4. Assume 2! = !1. Then for each � < !2, P� is !1-centered.

Proof. Let � < !2 and for each y 2 [�]<!1 ; n < !1; s 2 (!n1 )
y let P�yns =

fhx; z;m; ti 2 P�: z = y ^m = n ^ t = sg. Then P� =
S
fP�yns: y 2 [�]<!1 ^ n <

!1 ^ s 2 (!n1 )
yg and since 2! = !1, hence !

!
1 = !1, we have that P� is a union

of !1 many sub-orders. Furthermore, if hx1; y; n; si; :::; hxk; y; n; si 2 P�yns then
hx1 [ :::[xk ; y; n; si 2 P�yns and hx1 [ :::[xk ; y; n; si � hx1; y; n; si; :::; hxk; y; n; si.
Thus, each P�yns is centered so that P� is !1-centered. �
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Therefore, Lemmas 2.3 and 2.4 imply that Pa can be viewed as a countable
support iteration of length !2 with partial orders which are well-met, strongly
!1-closed and !1-centered. Thus, by Proposition 1.2, Pa is also !1-centered.

Now we come to the main result of this section.

Theorem 2.5 Assume (BA). Then every ��-increasing !2-sequence in
(!!11 ;��) is a lower half of some (!2; !2)-gap.

Proof. Let a = ha� : � < !2i be an ��-increasing !2-sequence in (!!11 ;��).
Then by the previous results, Pa is well-met, strongly !1-closed and !1-centered.
Let G be a �lter in Pa and for each � < !2 let

b� =
[
fs(�): 9p 2 G(p = hxp; yp; np; spi ^ s = sp)g:

Condition (4) of De�nition 2.2 together with the requirement that for each �; � < !2
and each m < !1 the �lter G has a nonempty intersection with the following dense
sets

D��m = fhx; y; n; si 2 Pa: � 2 x ^ � 2 y ^ n � mg

will guarantee that 8�; � < !2(a� �
� b�). In addition, condition (3) of De�nition

2.2 together with the requirement that for each � < � < !2 and each m < !1 the
�lter G has a nonempty intersection with the following dense sets

E��m = fhx; y; n; si 2 Pa: �; � 2 y^ j fi: s(�)(i) < s(�)(i)g j� mg

will guarantee that 8� < � < !2(b� �
� b�). Then the total number of these dense

sets D��m and E��m is !2. Therefore, to satisfy the requirements that 8�; � <

!2(a� �
� b�) and 8� < � < !2(b� �

� b�) the �lter G needs to intersect !2 dense
subsets of Pa and by (BA) there is one such �lter. In addition, the de�nition of Pa
implies that 8� < !28i < !1(a�(i) � b�(i)) and 8�; � < !2(� < � ! 9i < !1(b�(i) <
a�(i))) so that (a; b) is in fact an (!2; !2)-gap in (!!11 ;��). �

3. Trees. It is well known that 2! = !1 implies the existence of an !2-
Aronszajn tree (see [6]). Since 2! = !1 is a part of (BA), it follows that (BA)
sattles the existance of an !2-Aronszajn tree. By the results of Laver and Shelah
[7] and Shelah and Stanley [10] the existence of an !2-Suslin tree is consistent with
and independent of (BA). In this section we consider the inuence of (BA) on the
existence of !2-Kurepa trees. We show that the existence of such trees is consistent
with and independent of a stronger version of Generalized Martin's Axiom, due to
Shelah [9], than the one we have considered so far. Recall that an !2-Kurepa tree
is a tree T = (T;�T ) of hight !2 such that any level of T is of size < !2. If x 2 T

let x̂ = fy 2 T : y <T xg. We also assume that T = !2 and that all our trees have
the following properties:

1) j Lev0(T) j= 1,

2) 8� < � < hight(T)8x 2 Lev�(T)9y1; y2 2 Lev�(T)(y1 6= y2 ^x <T y1; y2),

3) 8� < hight(T)8x; y 2 Lev�(T)(limit �! (x = y $ x̂ = ŷ)).
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We begin by formulating Shelah's version of Generalized Martin's Axiom. A
partial order P is !2-normal if fp�:� < !2g � P then there is a club C � !2
and a regressive function f :!2 ! !2 such that for �; � 2 C if cf(�) = cf(�) = !1
and f(�) = f(�) then p� and p� are compatible. Note that !2-normality is a
strengthening of !2-Knaster condition, which states that if fp�:� < !2g � P then
there is an A 2 [!2]

!2 such that any two elements in fp�:� 2 Ag are compatible.
Let GMA� denote the statement that if P is a partial order such that j P j< 2!1 ,
it is well-met, strongly !1-closed and !2-normal and D is a family of < 2!1 dense
subsets of P then there is a �lter G � Pmeeting all the elements of D. The following
Lemma is due to Shelah [9].

Lemma 3.1. Suppose 2! = !1, 2
<� = � and � is a regular cardinal. Let

hhP�:� � �i; hQ� :� < �ii be a countable support iteration such that

1 P� \ Q� is well-met, strongly !1-closed and !2-normal ":

Then P� is strongly !1-closed and !2-normal.

This Lemma is essentially all that is needed in Shelah's proof [9] of the con-
sistency of

(SA) 2! = !1 + 2!1 > !2 +GMA�:

This Lemma will also play a role in the analysis below.

To obtain a model for (SA) in which there is an !2-Kurepa tree, we start
with a ground model V for ZFC +GCH in which there is an !2-Kurepa tree. For
example, the constructible universe L has this property. Then iterate, as in [9],
to obtain a model for (SA). By Lemma 3.1 co�nalities and hence cardinals are
preserved by the iteration so that any !2-Kurepa tree in the ground model remains
an !2-Kurepa tree in the extension. Thus, the existence of an !2-Kurepa tree is
consistent with (SA).

The construction of a model for 2! = !1 +2!1 = !3 +GMA� in which there
are no !2-Kurepa trees requires the existence of a strongly inaccessible cardinal
and it is analogous to Devlin's construction [3] of a model for 2! = !2 +MA in
which there are no !1-Kurepa trees. Therefore we only present an outline of our
construction.

The construction will proceed as follows. Start with a model for ZFC+GCH

in which � is a strongly inaccessible cardinal. Then collapse � to !3 by the Levy
collapse L� (see below). In the extension, there are no !2-Kurepa trees. Then
iterate, as in [9], to obtain a model for 2! = !1 + 2!1 = !3 + GMA�. We use
Lemma 3.1 to show that in the �nal model there are no !2-Kurepa trees.

Now, we de�ne the Levy collapse L� and present some of its properties whose
proofs are standard.

De�nition 3.2. L� = fp: j p j� !1 ^ p is a function ^ dom(p) � � � !2^
8(�; �) 2 dom(p)(p(�; �) 2 �)g, where p � q if and only if p � q.

For � < � let L� = fp 2 L� : dom(p) � � � !2g and L� = fp 2 L� : dom(p) �
(� n �) � !2g. then L� � L� is isomorphic to L� .
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Lemma 3.3. L� is !2-closed. If � is strongly inaccessible, then L� has the
�-cc.

Lemma 3.4. Let M be a countable transitive model (c.t.m.) for ZFC+GCH

and suppose � is strongly inaccessible in M and G is L� -generic over M . Then

!
M [G]
1 = !M1 , !

M [G]
2 = !M2 , !

M [G]
3 = � and, in M [G], there are no !2-Kurepa

trees.

So, by extending with L� , !1 and !2 remain unchanged and � gets collapsed
to !3 and if GCH holds in M it also holds in M [G].

The idea now is to start with a model M [G], as above, and iterate, as in [9],
!3 times to obtain a model for 2! = !1 + 2!1 = !3 + GMA�. But we need to
know that the iteration does not introduce any new !2-Kurepa trees. The next two
Lemmas are toward this end. We omit the proofs as the Lemmas and their proofs
are the analogues of the corresponding Lemmas for !1-trees. The �rst one is the
analogue of Lemma 3.6 in [3] and the second one is the analogue of Theorem 8.5
in [1].

Lemma 3.5. Let M be a c.t.m. for ZFC and suppose that, in M , P and
Q are partial orders such that P is strongly !1-closed and !2-normal and Q is
!2-closed. Let G be P � Q-generic over M . Let GP = fp 2 P: (p; 1) 2 Gg and
GQ = fq 2 Q: (1; q) 2 Gg. Then if T is an !2-tree in M [GP] and b is an !2-branch

of T in M [G], then b 2M [GP]. In addition !
M [G]
1 = !M1 and !

M [G]
2 = !M2 .

Lemma 3.6. Suppose T is an !2-tree and P is strongly !1-closed and !2-
normal partial order. Then forcing with P adds no new !2-branches through T.

Now we state and prove the main result of this section.

Theorem 3.7. Let M be a c.t.m. for ZFC + GCH and � strong-
ly inaccessible in M . Then there is an extension of M which is a model for
2! = !1 + 2!1 = !3 +GMA� in which there are no !2-Kurepa trees.

Proof. Let M be as above and G L� -generic over M . Then, by Lemma
3.4, in N = M [G] there are no !2-Kurepa trees and GCH still holds. In N , we
perform a countable support iteration of length !3, as in [9], to obtain a model for
2! = !1 + 2!1 = !3 +GMA�. Let hhP�:� � !3i; hQ� :� < !3ii be such iteration
and H P!3-generic over N . Then N [H ] is a model for 2! = !1+2!1 = !3+GMA�

and we now show that there are no !2-Kurepa trees in N [H ]. In N , let � be a
nice P!3-name for an !2-tree in N [H ] (see [6] for the de�nition of a nice name).
Since, by Lemma 3.1, P!3 has !2-cc there is an � < !3 such that � is in fact a
P�-name. Then H�, the restriction of H to P�, is P� generic over N . Since � < !3,
the iteration is with countable supports, we are considering only partial orders of
size < !3 (i.e. 1 P� \ j Q� j< �!3 j "), GCH holds in M [G], hence the density
of P� is < !3, we may assume that j P� j< !3. Now, in M , L� has the �-cc (by
Lemma 3.3), so there is some � < � such that if G� is the restriction of G to L�
then P� 2 M [G�] and H� is P�-generic over M [G�]. Now T = � [G] 2 M [G�][H�]
and, by Lemma 3.5, any !2-branch of T which is in M [G�][H�][G

�] is already in
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M [G�][H�]. So, in M [G�][H�], T has at most 2!2 = � such branches and since
� is still strongly inaccessible we have that � < �. But, in M [G�][H�][G

�], � is
collapsed to !3. So T can have at most @2 many !2-branches in M [G�][H�][G

�].
ButM [G�][H�][G

�] =M [G�][G
�][H�] =M [G][H�] = N [H�]. So T has at most @2

many !2-branches in N [H�]. However, by Lemma 3.1, P� is !2-normal so that, by
Lemma 3.6, T does not obtain any new !2-branches in the extension N [H�][H

�].
But N [H�][H

�] = N [H ]. So T can not be an !2-Kurepa tree in N [H ] which proves
that in the model N [H ] there are no !2-Kurepa trees. This �nishes the proof of
the Theorem. �

Therefore, the existence of an !2-Kurepa tree is consistent with and indepen-
dent of (SA) and hence consistent with and independent of (BA).
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