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Abstract. Making use the notion of generalized Euclidean algorithm (as in [1] or [5]) we
describe Euclidean rings whose algorithms satisfy the conditions (T ), (N) or (Z) below.

In this paper every ring has a unit-element (denoted by 1) and at least two
elements. The units group of a given ring A will be denoted by A� = U(A). If
S � A, then: S0 = S r f0g, S0 = S [ f0g, K = U(A)0.

Right Euclidean algorithm of a ring A is each mapping �:A ! W of a ring
A into some well ordered set W so that the following is valid: for any a 2 A and
b 2 A0, there exist q; r 2 A such that

a = bq + r; �(r) < �(b):

Besides �(0) = min �(A) holds. A right Euclidean algorithm � is monotone if,
for each a; b 2 A (ab 6= 0), �(ab) � �(a) is valid. Left (monotone) Euclidean
algorithm of a ring A is similarly de�ned. If � is a right and a left Euclidean
algorithm of a ring A we say that � is Euclidean algorithm of that ring. An
Euclidean algorithm � of a ring A is �nite, if the type of the well ordered set �(A)
is not greater than !; otherwise algorithm �:A ! W is said to be trans�nite ([2]
or [5]).

A ring A is a right (left) Euclidean ring if it has at least one right (left) Eu-
clidean algorithm �. In that case the ordered pair (A; �) is called a right Euclidean
pair. Right Euclidean pairs (A; �) and (B; ) are isomorphic if there is at least one
ring isomorphism f :A! B and at least one ordered isomorphism h:�(A)!  (B),
such that h Æ � =  Æ f (Samuel [4], for A = B and f = IdA).

Since isomorphic Euclidean pairs have the same properties, we can limit our-
selves to Euclidean algorithms whose codomains are certain ordinals. Each right
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Euclidean pair (A; �) is isomorphic to some right Euclidean pair (A; ) with mono-
tone Euclidean algorithm  . If � is a monotone right Euclidean algorithm of domain
A, then for each a; x 2 A0 the following is valid:

�(0) < �(a); �(1) = min�(A0); �(ax) = �(a) , x 2 A�: (1)

Let � be an ordinal and ~� = f�1g[� (with the usual meaning and the properties
of the symbol �1). Each right Euclidean algorithm �:A ! ~� of a given ring A
satisfying the conditions

�(a+ b) � max
�
�(a); �(b)

	
(a; b 2 A) (M)

�(a � b) = �(a) + �(b) (a; b 2 A); (L)

is called the degree algorithm of the ring. Ring A having at least one degree al-
gorithm is an integral domain, and K = U0(A) is an sub�eld of a ring A. From
the conditions (L) it follows that each degree algorithm is right (and left) mono-
tone. If a ring A has at least one �nite right Euclidean degree-algorithm �, then
for K = U0(A), there exists X 2 ArK such that A = K[X; f; Æ], where f is a
monomorphism, and Æ is a right f -derivation of �eld K. Then �(a) is just degree of
a (as a right polynomial with respect to X , with coeÆcients from K) (Cohn [1]).
A similar assertion is valid if the condition (L) is substituted by the condition of
monotoneity of algorithm � (which is weaker than (L)). In the present paper we
will deal more with the right Euclidean algorithms �:A ! ~� (� being an ordinal)
satisfying some of the conditions:

�(a+ b) � �(a) + �(b); (T )

�(a � b) = �(a) � �(b); (N)

�(a) = �(b) , (9e 2 A�)(a = be); (Z)

where + and � at the right-hand sides in (T) and (N) denote the sum and product of
ordinals. It is obvious that for each right Euclidean algorithm � the condition (T)
follows from the condition (M). The example of ring Z shows that integral domain
A can have an Euclidean algorithm satisfying all the conditions (T), (N) and (Z),
and have not Euclidean algorithm satisfying the condition (M) (because U(Z)0 is
not a sub�eld of the ring Z).

Lemma 1. Let �:A ! W be a monotone right Euclidean algorithm, and
a 2 A right regular element of a ring A. If �(1) < �(a), then the sequence �(an)
is strictly increasing.

Proof. Let x = an and q 2 A so that �(x� xaq) < �(xa). Then c = 1� aq
is not 0 and monotoneity of algorithm � implies: �(xa) > �(xc) � �(x). �

Lemma 2. Let A be a domain and let �:A ! W be a monotone right
Euclidean algorithm satisfying the condition (M). Then for each a; b 2 A and
c 2 A0 we have:

1Æ K = U(A)0 is a sub�eld of the ring A,
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2Æ �(a) < �(b) ) �(ca) < �(cb).

Proof. From (1) it follows that K = fa 2K:�a < �1g, and for a; b 2 K we
have �(a� b) � maxf�a; �bg, i.e. a� b 2 K, so that K is a sub�eld of the ring A.

Let us prove the implication 2Æ. Clearly, 2Æ is valid for a = 0 and each b 2 A
and c 2 A0. Let us assume that 2Æ is valid for each x 2 A for which �(x) < �
(� > 0 is the given element from W ), and let a; b; c 2 A such that �(a) = � and
�(a) < �(b), c 6= 0. There exist q; r 2 A such that b = aq + r and �(r) < �(a).
Since �(r) < �, we have �(cr) < �(ca), and therefore

cb = caq + cr; �(cr) < �(ca): (2)

It must be q 6= 0 (because on the contrary it would be �b < �a). Further, from
�a < �b it follows �(a+ b) � �(b) and

�(b) = �(a+ b� a) � max
�
�(a+ b); �(a)

	
;

so that �(a+ b) = �(b). In other words, the implication

�(a) < �(b) ) �(a+ b) = �(b) (P)

is valid. Since � is right monotone, it will be �(caq) � �(ca) > �(cr), and thus
�(caq + cr) = �(caq), which together with (2) yields �(cb) � �(ca). If �(cb) =
�(ca), then from �(caq) = �(ca) would follow q 2 A�, and thereby �(b) = �(aq +
r) = �(aq) = �(a), which is contrary to �(a) < �(b). Summing up, we have:
�(cb) > �(ca). �

If �:A ! W is a right Euclidean algorithm of a ring A and x 2 A, let us
denote by A(x; �) the subset of A determined by:

a 2 A(x; �) , (9n 2 N )
�
�(a) � �(xn)

�
:

So, for example, if K is a �eld and � a degree algorithm of the ring A = K[X ],
then we have A(1; �) = K, A(X;�) = A. Similarly we have Z(1; �) = f�1; 0; 1g
and Z(2; �) = Z, where �(m) = jmj is the standard Euclidean algorithm of the ring
Z.

Lemma 3. Let �:A ! W be a monotone right Euclidean algorithm of a
domain A satisfying the condition (M), and let x be any element from ArK such
that B = fb 2 A : �b < �xg is a subring of the ring A. Then A(x; �) is a subring
of the ring A, and a 2 A belongs to the set A(x; �) if and only if it is uniquely
expressible in the form

a = xnan + � � �+ xa1 + a0 (ai 2 B): (3)

Proof. Let us put V = A(x; �) and let us prove �rst that each a 2 V has (at
least one) decomposition of the form (3). It is obvious that it is true for a 2 B. If
a 2 V rB, then for some n 2 N we have

�(xn) � �(a) < �(xn+1): (4)
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There exist c; a0 2 A such that a = xc + a0 and �a0 < �x. Since � satis�es the
condition (P), from xc = a�a0 and �a0 < �x � �a it follows �(xc) = �(a), as well
as a0 2 B. If we prove that �(c) < �(xn), then the assertion will follow directly by
induction with respect to n for which (4) holds. Let c = xnq + r, �(r) < �(xn). If
q 6= 0, then we have

�(xn+1q) � �(xn+1) > �(a):

On the other hand, by Lemma 2, from �r < �xn it follows �(xr) < �(xn+1), and
since � also satis�es the condition (P), multiplying the equality c = xnq + r from
the left-hand side by x, we get

�(xc) = �(xn+1q + xr) = �(xn+1q) � �(xn+1);

i.e. �(xc) > �(a), which is contrary to �(xc) = �(a). Hence q = 0, and thereby
�(c) = �(r) < �(xn). Therefrom c has a decomposition the form (3), so that from
a = xc+ a0 and a0 2 B it follows that a is expressible in the form (3).

If m;n 2 N 0, then for m > n and any elements p 2 B0; q 2 B we have
�(xm�np) � �(x) > �(q), and thereby �(xmp) > �(xnq) the (by Lemma 2).
Besides � satis�es the condition (P), so that for each a 2 A of form (3) it holds
�(a) = �(xnan). Particularly, in (3) for a = 0 we have ai = 0 for each i � 0.

Let a be given by (3) and let a = xnbn + � � � + b0 be valid for some bi 2 B.
If we put ci = ai � bi, it will be 0 = xncn + � � � + c0. But, since B is a subring
of the ring A, together with ai; bi 2 B we have ci 2 B, so that from the last
equality it follows that it must be ci = 0, and thereby ai = bi for each 1 � i � n.
On the other side, since �(c) < �(x) (c 2 B), by Lemma 2 we conclude that
�(xnc) < �(xn+1) for each c 2 B and n 2 N 0. Hence for each a of the form (3)
it follows �(a) = �(xnan) < �(xn+1), and therefore a 2 V . Thus V = A(x; �) is a
right B-modul (in a natural way) with the basis fxn : n 2 N 0g.

Finally, let us prove that V is a subring of the ring A, i.e. that ab 2 V for
each a; b 2 V . Let at �rst be b = x. There exist q; r 2 A such that x = aq + r,
�(r) < �(a). Then �(x) = �(aq). If �(q) > �(x), then by Lemma 2 we have
�(x) = �(aq) > �(ax), and thus ax 2 V . In the case �(q) = �(x), let us put
q = xu + s, �(s) < �(x). From �(q) = �(x) > �(s) it follows that u 6= 0, so
that �(xu) > �(s), and thereby �(q) = �(xu) = �(x). Hence u 2 A�, and since
�(s) < �(x) implies �(as) < �(ax) � �(axu) (Lemma 2), we have

�(x) = �(aq) = �(axu+ as) = �(axu) = �(ax);

and thereby ax 2 V . At the end, if it were �(q) < �(x), i.e. q 2 B, then, together
with a; q; r 2 B , it would be x = aq + r 2 B, a contradiction. Thus ax 2 V for
each a 2 B. Hence, by induction on n, we have axn 2 V (a 2 V; n 2 N 0). Hence,
for any elements a = xrar + � � �+ a0 and b = xsbs + � � �+ b0 (ai; bi 2 B) from V .
the product ab is the sum of a �nitely many summands of form xm(uxn)v with
u; v 2 B, and thus ab 2 V . �

If, with the assumption and symbolism of Lemma 2, B = K 6= A and x is
any element from ArK such that �(x) = min�(ArK), then V = A(x; �) is
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a subring of the ring A. If, besides the algorithm � is �nite (which will certainly
be if the ring A is commutative), then it will be a(x; �) = A. Similarly to Cohn
[1], we infer that for some monomorphism f and right f -derivation Æ of �eld K
we have A(x; �) = K[x; f; Æ]. Besides that, if  is the restriction of � on V , and
� degree algorithm of the ring K[x; f; Æ], then the right Euclidean pair (V;  ) is
isomorphic to the right Euclidean pair

�
K[x; f; Æ]; �

�
. In general, for the ring

V = A(x; �) from Lemma 2 it follows that there exist an endomorphism f and a
right f -derivation Æ of the domain B such that V = K[x; f; Æ] and f(B) � K.

Lemma 4. If a right Euclidean algorithm �:A! � of a ring A satis�es the
conditions (N) and (T), then it satis�es the condition (M), i� U(A)0 is a sub�eld
of the ring A.

Proof. Since � satis�es the condition (N), it is clear that A is an integral
domain, that the algorithm � is monotone, and that �(0) = 0, �1) = 1 (� is
some ordinal). It is obvious that the condition is necessary. Let us prove that it is
suÆcient. If K = U(A)0 is a sub�eld of the ring A, then for each a; b 2 A we have

�(a) � �(b) ) �(a + b) � �(b): (5)

Let at �rst, �(a) = 1, and thus a 2 K0. Since � satis�es the condition (N),
we have �(a + b) = �(a(1 + a�1b)) = �(a)�(c), with c = a�1b, and thereby
�(c) = �(a�1)�(b) = �(b). Hence for �(a) = 1 the implication (5) reduces to
1 � �(c) ) �(1 + c) � �(c) (c 2 A0). Since K is a �eld, we have k1 2 K,
and thereby �(kc) = �(k1)�(c) � �(c) for each k 2 N . Besides, � satis�es the
condition (T) too, so: (1+ c)n =

P�
n
r

�
cr and�

�(1+ c)
�n

= �
�
(1+ c)n

�
�

P
�(c)r : (6)

for any n 2 N and each c 2 A0. Let us put �(c) = �. Then � � 1. If � < !, then
from (6) it follows that for each c 2 A0 and n 2 N we have �(1 + c) � (1 + n)1=n

(for � = 1) and

�(1+ c) �

�
�n+1 � 1

�� 1

�1=n

(for � 6= 1):

Allowing that n!1 we get �(1+ c) � �. Hence �(a+ b) � �(b) for each a 2 K
and each b 2 A for which 1 � �(b) < !. If �(b) = � � !, it will be 1 + � = �, so
that we have directly: �(a+ b) � �(a) + �(b) = 1 + � = � = �(b).

Suppose now that (5) is valid for each a 2 A such that �(a) < � (� is a �xed
ordinal, � > 1), and let a be any element from A for which �(a) = minf�(c): c 2 A,
�(c) � �g. There exist q; r 2 A such that b = aq + r and �(r) < �(a). Hence
a+ b = r+ c with c = a(1+ q). If 1+ q 6= 0, then we have �(c) = �(a)�(1+ q) �
�(a) > �(r). Besides, since �(r) < �, it will be �(r + c) � �(c), and for q 6= 0 we
have �(a + b) � �(r + c) � �(c) and �(c) = �(a)�(1 + q) � �(a)�(q) = �(aq) =
�(b� r), Finally, if �(a) � �(b), we have �(r) < �(b), and then �(a+ b) � �(b). �

Lemma 5. Let A be an integral domain which is not a �eld, �:A ! � a
right Euclidean algorithm satisfying the conditions (N) and (T), K = U(A)0 and
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x any element from ArK such that �(x) = min�(ArK). Then each element
a 2 A is expressible in the form

a = xnan + � � �+ xa1 + a0 (ar 2 K; n 2 N 0): (7)

Besides, a = 0 has exactly one decomposition of the form (7), and it is valid for
each a 2 A provided that K is a sub�eld of A.

Proof. Let �(a) = � > 1 and a = xb+ c, �(c) < �(x). Then c 2K. Since �
satis�es the conditions (N) and (T), we have �(xb) = �(a�c) � �(c)+�(a) � 1+�.
Hence

�(x)�(b) � 1 + �: (8)

If �(b) � �, then �(x)�(b) � (1 + 1)� > 1 + �, a contradiction. Thus �(b) < �.
Now by (trans�nite) induction on � = �(a) it follows that each a 2 A is expressible
in the form (7). Besides, for each n 2 N 0 and ar 2 K we have

�(�0 + � � �+ xnan) < �(xn+1): (9)

Namely, if K is a �eld, then (9) follows directly by Lemma 4. If K is not a �eld,
then 1 < �(u+ v) � �(u) + �(v) � 2 for some u; v 2 K . Hence �(x) = 2, so that
we have

�(�0 + � � �+ xnan) � 1 + �(x) + � � �+ �(x)n < 2n+1; (10)

and thus (13) is proved. Now, by (10), for a = 0, from (7) it follows �(�xnan) <
�(xn). Hence an = 0, and similarly ar = 0 for each 0 � r � n. If K is a �eld,
then the remaining part of the assertion follows by lemmas 3, 4. �

By Lemma 5, each right Euclidean algorithm � of a ring A, satisfying the
conditions (N) and (T), is �nite. Therefore for such algorithms we may restrict our
attention to the case �(A) � N 0.

Theorem 1. If a ring A has a right Euclidean algorithm �:A ! N 0 satis-
fying the conditions (N) and (T), then for K = U(A)0 we have

1Æ If K is a sub�eld of A, then either A = K, or, for some monomorphism
f and some right f-derivation Æ of the �eld K, the right Euclidean pair (A; �) is
isomorphic to the right Euclidean pair (B; �), where � is a degree algorithm of the
ring B = K[X; f; Æ];

2Æ If K is not a sub�eld of A, then the right Euclidean pair (A; �) is isomor-
phic to the Euclidean pair (Z; �), with �(m) = jmj.

Proof. 1Æ It is clear that A is a domain, that algorithm � is monotone and
that �(0) = 0, �(1) = 1. Since K is a sub�eld of A, by Lemma 4 the algorithm
� satis�es the condition (M), as well. Now by Lemma 3, �(A) � N 0 implies that
A = K or A = A(x; �), so the assertion follows directly by Lemma 3.

2Æ Since K is not a sub�eld of A, there exist u; v from K such that 1 <
�(u + v) � �(u) + �(v) � 2. Hence for e = u�1v we have u + v = u(1 + e),
e 2 K0 and 2 = �(u + v) = �(u)�(1 + e) = �(1 + e). It particularly means that
�(1+ e) = 2 at least for one e 2 K0 . For such an e 2 K let us put

a = 1+ e; b = 1� e; c = 1+ e2: (11)
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Then �(a) = 2, �(a2) = �(a)2 = 4, �(c) � �(1) + �(e2) = 2. Since a2 = c+ 2e, it
will be 4 = �(a2) � �(c) + �(2e) � 2 + �(2e). Hence �(2e) = �(c) = 2. Further,
for each u 2 K0 it holds 2u = (2e)v with v = e�1u, so that

�(2u) = 2; (u 2 K0): (12)

Particularly, �(1+ 1) = �(2 � 1) = 2. Hence 1 6= �1. Let us prove that

K = f�1; 0; 1g and K0 = f�1; 1g: (13)

Let e 2 K0 and a; b; c be elements from A given by (11). Then from ab = 1�e2 it
follows �(a)�(b) = �(ab) = �(1 � e2) � 2. Hence �(a) � 2 or �(b) � 2. Let
us prove that a = 0 or b = 0. If it were �(a) = �(b) = 1, because of (12) and
a2 � b2 = 4e = (2 � 1)2e we would have 4 � �(a2 � b2) � �(a2) + �(b2) � 2,
a contradiction. Suppose that �(a) = 2. Then �(b) � 1. From a2 = c + 2e
it follows 4 � �(c) + 2 � 4. Thus �(c) = 2. Since abc = 1 � e4 we have
�(a)�(b)�(c) = �(1 � e4) � 2. Besides, �(a) = �(c) = 2. Hence 4�(b) � 2, and
thereby b = 0. Similarly, if �(b) = 2, then a = 0. Thus (13) is valid.

We denote the sum r1 = 1+ � � �+ 1 by �r (r 2 N ). By (12), holds

�(�r) = r (14)

for r = 2. Let us prove that (14) is valid for any r 2 N . Let n > 1 be a given natural
number and suppose that (14) is true for each r < n. If n = pq (1 < p; q < n),
then it will be �n = �p�q. Hence �(�n) = �(�p)�(�q) = pq. Let now n be a prime and
n > 2. Then n � 1 = 2p and n + 1 = 2q for some natural numbers p; q < n. If
m = n2�1, then �m = 4�p�q, �(�p) = p, �(�q) = q, �(�4) = �(�2)�(�2) = 4 and �(�n) � n.
For �(�n) < n, it follows that �(�4)�(�p)�(�q) = �(�n2 � �1) � 1+ �(�n)2 � 1+ (n� 1)2,
that is n2 � 1 � 1 + (n � 1)2, a contradiction. Thus �(�n) = n, and thereby
�(m1) = jmj for any m 2 Z. Hence the characteristic of the ring A is 0.

Finally, let us prove that

�(a) = r ) a = ��r (15)

is valid for each a 2 A. For r = 1 (15) is equivalent to (16). Let n > 1 and
suppose that (15) holds for any r < n. There exist b; c 2 A such that a = �nb+ c,
�(c) < �(�n) = n. Since �(c) = r < n, it will be c = �r or c = ��r. On the
other hand, we have n�(b) = �(�n)�(b) = �(nb) = �(a � c) � �(a) + �(c) = n� r,
that is �(b) � 1. If b = 0, then a = c, i.e. n = �(a) = �(c), a contradiction.
Hence �(b) = 1, so that from (13) and a = �nb + c it follows a = ��n � �r, that
is n = �(a) = j � n � rj, and thereby r = 0. Thus, we have a = �n or a = ��n.
Hence, by f(m) = m1 a ring isomorphism f :Z! A is de�ned. Since �: f = �,
the (right) Euclidean pair (A; �) is isomorphic to the Euclidean pair (Z; �). �

Theorem 2. Let �:A ! N 0 be a monotone right Euclidean algorithm of
an integral domain A, satisfying the conditions (T) and (Z). If K = U(A)0 and
�(1) = 1, then
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1Æ If K is not a sub�eld of the ring A, then the (right) Euclidean pair (A; �)
is isomorphic to the Euclidean pair (Z; �);

2Æ If K is a sub�eld of the ring A with at least three elements, then A = K ;

3Æ If K is a sub�eld of the ring A with two elements, and algorithm � is
two side monotone, then either A = K, or the ring A is isomorphic to the ring
B = K[X ]. Besides, the Euclidean pairs (A; �) and (B; �) are not isomorphic.

Proof. 1Æ Since K is not sub�eld of A, there exist units u; v 2 K0 such
that 1 < �(u + v) � �(u) + �(v) = 2, that is �(u + v) = 2. Let us put e = vu�1

and a = 1 + e, b = 1 � e, c = 1 + e2. Then 2 = �(u + v) = �[(1 + e)u],
i.e. �(1 + e) = �(a), �(b) � 2, �(c) � 2. Let us prove that �(2e) = 2. From
�(1) < �(a), by Lemma 1, it follows 2 = �(a) < �(a2). For 2e = 0 we have
a2 = 1+ e2, and thereby �(a2) � 2, a contradiction. Suppose now that �(2e) = 1.
Then 3 � �(a2) = �(c + 2e) � 1 + �(c) � 3, i.e. �(c) = 3. Since acb = 1 � e4,
we have �(acb) � 1 + �(e4) = 2. For �(acb) = 2 = �(a), by the condition (Z),
there exists a unit u 2 K0 such that acb = au. Hence c 2 K0, which is contrary
to �(c) = 2. Since �(a) = 2, then �(acb) 6= �(1). Finally, if �(acb) = 0, that is
acb = 0, then b = 0 since ac 6= 0. Hence e = 1. Then 2 = �(a) = �(2e), which
is contrary to �(2e) = 1. Thus �(2e) = 2. Let now u 2 K0 be any unit of the
ring A. If w = u�1e, we have w 2 K0 and �(2u) = �(2uw) = �(2e) = 2 for any
u 2 K0.

Let us put x = 1+ 1. Then �(x) = 2 = min�(ArK). Let us prove that it
must be �(x2) = 4. Indeed, since 2 = �(x) < �(x2) and x2 = 1 + 1 + 1 + 1, we
have 3 � �(x2) � 4. If �m = m1 (m 2 Z; 1 2 A), it will be x2 = �4. Then �(�3) � 3.
Since �(�3) � 1 implies �(x2) = �(�3 + �1) � 1 + 1 = 2, we conclude that �(�3) � 2.
But, if �(�3) = 2, i.e. �(�3) = �(�2), then there exist a u 2 K0 such that �3 = �2u,
i.e. 1 = x(u� 1), which is contrary to �(x) = 2. Hence �(�3) = 3. Analogously we
conclude that �(�4) 6= �(�3). Thus �(x2) = 4.

Let us prove now that K0 = f�1; 1g. Primarily, �2 6= 0 ) �1 6= 1. For
arbitrary e 2 K0 we put: a = 1 + e, b = 1 � e, c = 1 + e2. Then a = 0 or
b = 0, and thereby e = 1 or e = �1. Namely, at �rst �(a); �(b); �(c) � 2.
Since 4 = �(�4) = �(4e) = �(a2 � b2) � �(a2) + �(b2), we conclude that �(a) 6= 1
or �(b) 6= 1. If �(a) = �(b) = 2, then b = au for some u 2 K0, and thereby
1�e2 = ab = a2u. It means that �(a2) = �(a2u) = �(1�e2) � 2, which is contrary
to �(a2) > �(a) = 2. Finally, assume that �(a) = 2 and �(b) � 1. Then, for some
u from K0 we have a = �2u = 2u, so that �(a2) = �(4u2) = �(�4) = �(x2) = 4.
Hence 4 = �(a2) = �(c + 2e) � �(c) + �(2e) = 2 + �(c) � 4. Thus �(c) = 2).
On the other hand we have �(acb) = �(1 � e4) � 2. If �(acb) = 2 = �(a), then
there exists u 2 K0 such that acb = au, that is c 2 K0, which is contrary to
�(c) = 2. Similarly, �(a) = 2) implies that �(acb) 6= 1. Hence acb = 0, that is
b = 0 (because of ac 6= 0). Thus e = 1. Similarly, for �(a) � 1 and �(b) = 2 we
have e = �1, so that K0 = f�1; 1g.

Now, by the condition (Z), for any m;n 2 Z we have �( �m) = �(�n) if and
only if �m = �n or �m = ��n. Hence: �( �m) = �(�n) , m = n _ m = �n. Namely,
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the characteristic p of the ring A is not 2. If p > 2, then we have x = 1 + 1 =
1p + 1p = (1 + 1)p = xp, that is xp�2x = 1, and thus x 2 K0, which is not true.
Thus p = 0. Hence �m = �n , m = n _ m = �n. Now, by induction on n, we
conclude that �(�n) = n (n 2 N ) is valid. It is clear that for each m 2 Z the
following holds: �( �m) = jmj, i.e. �( �m) = �(m).

Finally, let a 2 A and let us put �(a) = n. Since �(�n) = n, for some unit
u 2 K0 then a = �nu. Hence a = �n or a = ��n. Thus, by f(m) = �m is de�ned a
ring isomorphism f :Z! A, and since �: f = � is valid, the (right) Euclidean pair
(A; �) is isomorphic to the Euclidean pair (Z; �).

2Æ Let 1 and e be di�erent units of the ring A. Suppose that A = K is not
true. We denote by x any element from A such that �(x) = min�(ArK). Since
� satis�es the condition (T), we have

�(1+ x) � 1 + �(x): (14)

Assume that �(1+x) = �(x). Then, by the condition (Z), for some u 2K0 we have
1+ x = xu. Hence x(u� 1) = 1, that is x 2K0, which is contrary to x 2 ArK. If
�(1+x) < �(x), then �(1+x) � �(1), i.e. 1+x 2 K, which is not possible because
of x =2 K. Thus �(1+ x) � �(x), which with (14) gives �(1 + x) = 1 + �(x). It is
clear that �(1+ x) = 1 + �(xv) (v 2 K0) is also valid. Hence for any u 2K0 and
v = u�1 holds u+ x = (1+ xv)u and

�(u+ x) = �(1+ xv) = 1 + �(xv) = 1 + �(x): (15)

From (15) it follows that �(1 + x) = �(e + x), that is e+ x = (1+ x)w for some
w 2 K0. Since 1 6= e, we have w 6= 1. Hence w � e 2 K0, that is x(1 + w) 2 K0,
which is contrary to x 2 ArK. Thus A = K.

3Æ From K0 = f1g, by (Z), it follows that the mapping �:A ! N 0 is an
injection. Since 1 + 1 = 0, the characteristic of the ring A is 2. Assume that
A 6= K and let x 2 ArK such that �(x) = min�(ArK). Similarly as in the
proof of the assertion 2Æ, we conclude that

�(1+ x) = 1 + �(x): (16)

Let a 2 A. Then there exist c; r 2 A such that a = cx + r, �(r) < �(x). From
�(r) < �(x) it follows that r 2 K. Since the algorithm � is two side monotone, we
have

�(c) � �(xc) = �(a� r) � �(a) + �(r) � 1 + �(a):

Suppose that �(a) � �(x). Then c 6= 0. If �(c) = �(xc), it will be c = xc, that
is x = 1, a contradiction. Hence �(c) < �(xc) � 1 + �(a), i.e. �(c) � �(a). Since
�(c) = �(a) implies �(r) = �[(1 � xu)a] � �(a), we conclude that �(c) < �(a).
Thus, for any a 2 A0 there exist c; r 2 A such that a = xc+r, r 2 K, �(c) < �(a).
Hence, by induction on n = �(a), it follows that any element a 2 A is expressible
in the form

a = xnan + � � �+ xa1 + a0 (ar 2 K; n 2 N 0): (17)
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Since K is sub�eld of the ring A, by (16) we conclude that each a 2 A is uniquely
expressible in the form (17). Let B = K[X ]. Hence by

F (a0 + xa1 + � � �+ xnan) = a0 +Xa1 + � � �+Xnan

is de�ned a ring isomorphism F :A! B. However, the Euclidean pairs (A; �) and
(B; �) are not isomorphic. Indeed, suppose that for some isomorphism f :A ! B
and some monomorphism h of the well ordered set �(A) into the well ordered set
�(B) we have � Æ f = h Æ �. Since x is not a unit in the ring A, p = f(x) is
not a unit in the ring B. Hence for such a p we have �(1 + p) = �(p), so that
(� Æ f)(1+ x) = (� Æ f)(x), i.e. (h Æ �)(1+ x) = (h Æ �)(x). Since h is an injection,
it follows that �(1+ x) = �(x), which is contrary to (16). �

Example 1. Let K = f0; 1g be a �eld of two elements and A = K[X ]. If
a 2 K, then let ~a denote the integer 0 for a = 0, and the integer 1 for a = 1. Then
the mapping �:A! N 0 de�ned by

�(a0 +Xa1 + � � �+Xnan) = ~a0 + 2~a1 + � � �+ 2n~an

is an Euclidean algorithm of the ring A, satisfying the conditions 3Æ of Theorem 2.
Indeed, let � be a degree algorithm of A. Since �(a0 + � � �+Xnan) < 2n+1, then,
for a; b 2 A we have �(a) < �(b), if and only if �(a) < �(b). Hence the function �
is also an Euclidean algorithm of A. Since each m 2 N 0 is uniquely expressible in
the form m = ~a0 + � � �+ 2n~an, where ~ar 2 f0; 1g, it follows that � is an injection.
Besides, K0 = f1g, so the algorithm � satis�es the condition (Z). Further, since for
u; v 2 A and w = u+ v holds ~w � ~u+ ~v, we conclude that �(a+ b) � �(a) + �(b)
(a; b 2 A). Thus the algorithm � also satis�es the condition (T).

Theorem 3. If for a ring A there exists a mapping �:A! N 0 satisfying the
conditions (T), (N) and (Z), then A is either �eld, or (A; �) is an Euclidean pair
isomorphic to Euclidean pair (Z; �).

Proof. By the condition (Z) we have �(0) 6= �(1), so that the mapping �
is not constant. Since �(a) = �(a1) = �(a) � �(1), it must be �(1) = 1. Now
�(0) = �(0)�(0) implies �(0) = 0, and hence �(a) = 0 , a = 0. Further, by
the condition (Z) holds �(a) = �(1) , a 2 K0, where K = U(A)0. Finally,
since � satis�es condition (N), we conclude that A is an integral domain, that
�(ab) � �(a); �(b), and that, �(an) < �(an+1) for �(a) > 1.

If K is sub�eld of A, then A = K. Namely, in the case that K has at
least three elements, similarly as in the proof of Theorem 2 under 2Æ, we conclude
that ArK = ?. Suppose now that K = f0; 1g and ArK 6= ?. If x 2 A
and �(x) = min�(ArK), similarly as in the proof of Theorem 2 under 3Æ we
get �(1 + x) = 1 + �(x). Hence, by the condition (N), for �(x) = n we have
�[(1 + x)2] = [�(1 + x)]2 = [1 + �(x)]2 = (1 + n)2. On the other hand, by the
condition (T), we have �[(1 + x)2] = �(1 + x2) � 1 + �(x2) = 1 + n2. Hence
(1 + n)2 � 1 + n2, i.e. �(x) = n = 0, a contradiction. Thus A = K.

Suppose now that K is not a sub�eld of A. Similarly as in the proof of
Theorem 1 we conclude that K0 = f�1; 1g, with �1 6= 1, and that �(m1) = jmj
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for every m 2 Z . Hence for every a 2 A and �(a) = n we have �(a) = �(n1), so
that a = n1 or a = �n1 by condition (Z). Therefore A = fm1: m 2 Zg, and since
the characteristic of the ring A is 0, we conclude that the Euclidean pair (A; �) is
isomorphic to the Euclidean pair (Z; �). �
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