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DECOMPOSITIONS OF SEMIGROUPS WITH ZERO

S. Bogdanovi�c and M. �Ciri�c

Abstract. We give a general theory of decompositions of semigroups with zero into an
orthogonal, right, left and matrix sum of semigroups. The lattices of such decompositions are
characterized by some sublattices of the lattice of equivalence relations on a semigroup with zero,
and also by some lattices obtained from the lattices of (left, right) ideals of a semigroup with zero.
Using the obtained results we decompose the lattice of (left, right) ideals of a semigroup with zero
into a direct product of directly indecomposable lattices.

Introduction and preliminaries

It is well known that many of the \classical" methods of decompositions of
semigroups degenerate when a semigroup has zero. For example, any semigroup
with zero is matrix indecomposable. This requires some new methods of decom-
positions speci�c to semigroups with zero. Some of such methods we meet in a
number of papers. The main tools of Dieudonn�e [9], in the theory of rings, and
Schwarz [19], in the theory of semigroups, were the socle and 0-minimal ideals
(two-sided and one-sided). Lallement and Petrich [12], studied decompositions of
semigroups with zero by congruences whose corresponding factors are 0-rectangular
bands. Some types of decompositions of semigroups with zero, similar to matrix
decompositions of semigroups without zero, one can �nd in the book of Steinfeld
[17].

Decompositions into an orthogonal sum (called also 0-direct union) of semi-
groups were �rst de�ned and studied by Lyapin [13,14], 1950, and Schwarz [19],
1951. After that, orthogonal decompositions have been studied by a number of au-
thors, mainly as othogonal sums of (completely) 0-simple semigroups (see [3,8,17]).
A general theory of orthogonal decompositions was developed by Bogdanovi�c and
�Ciri�c [4]. They proved that every semigroup with zero has a greatest orthogonal
decomposition and that summands in this decomposition are orthogonally indecom-
posable. Also, they proved that 0-consistent ideals of a semigroup with zero form
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a complete atomic Boolean algebra, whose atoms are summands in the greatest
orthogonal decomposition of a semigroup with zero, and that any complete atomic
Boolean algebra can be represented by 0-consistent ideals of some semigroup with
zero.

In this paper we give a general theory of decompositions of semigroups with
zero into an orthogonal, right, left and matrix sum of semigroups. The lattices
of such decompositions will be characterized by some sublattices of the lattice of
equivalence relations on a semigroup with zero, and also by some lattices obtained
from the lattices of (left, right) ideals of a semigroup with zero. Also, using the
obtained results, we decompose the lattice of (left, right) ideals of a semigroup with
zero into a direct product of directly indecomposable lattices.

A lattice L is complete for joins (complete for meets) if every nonempty subset
of L has a join (meet) and it is complete if it is complete both for joins and for meets.
A sublattice (Boolean subalgebra) K of a complete lattice (Boolean algebra) L is a
closed sublattice (Boolean subalgebra) of L ifK contains the meet and the join of any
its nonempty subset. Note that all the closed sublattices (Boolean subalgebras) of
a complete lattice (Boolean algebra) form a complete lattice. A lattice L, complete
for joins, is in�nitely distributive for meets if a ^ (

W
�2Y x�) =

W
�2Y (a ^ x�), for

every a 2 S and every nonempty subset fx� j � 2 Y g of L. A nontrivial lattice L
is directly indecomposable if it has the property: If L is a direct product of lattices
L�; � 2 Y , then there exists � 2 Y such that L� is isomorphic to L and jL�j = 1,
for every � 2 Y; � 6= �. If a lattice L is a direct product of lattices L�; � 2 Y ,
then we will write L =

Q
�2Y L�, and for � 2 Y , �� will denote the projection

homomorphism of L onto L�.

An element a of a lattice L with the zero 0 is an atom of L, if a > 0 and there
exists no x 2 L such that a > x > 0. A complete Boolean algebra B is atomic if
every element of B is the join of some set of atoms of B. If L is a distributive lattice
with zero and unity, then the set B(L) of all elements of L having a complement
in L is a Boolean algebra and it will be called the greatest Boolean subalgebra of L.

Throughout this paper, Z+ will denote the set of all positive integers, J(a)
(L(a), R(a)) will denote the principal ideal (left ideal, right ideal) of a semigroup
S generated by an element a 2 S, and L; R and J will denote the well known
Green's relations of S. Further, S = S0 means that S is a semigroup with the
zero 0. If S = S0, we will write 0 instead f0g and if A is a subset of S, then
A� = A� 0; A0 = A [ 0; A0 = (S �A)0.

For a semigroup S, Id(S) will denote the lattice of all ideals of S. If S = S0,
then Id(S) is a complete lattice, in�nitely distributive for meets, with the zero 0
and the unity S. Also, LId(S) will denote the lattice of left ideals of a semigroup
S de�ned in the following way: if S = S0, then LId(S) consists of all the left
ideals of S, and if S is without zero, then LId(S) consists of the empty set and all
the left ideals of S. In both of these cases LId(S) is a complete lattice, in�nitely
distributive for meets. Clearly, for a semigroup S without zero, the lattice LId(S)
is isomorphic to LId(S0), where S0 denotes S with the zero adjoined. Dually we
de�ne the lattice of right ideals of S, in notation RId(S). In any closed sublattice
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K of Id(S) (LId(S); RId(S) ) which contains the unity, the intersection of all the
elements of K containing an element a of S is also in K, and it will be called the
principal element of K generated by a.

A subset A of a semigroup S is right (left) consistent if for x; y 2 S, xy 2 A
implies y 2 A (xy 2 A implies x 2 A), and A is consistent if it is both left
and right consistent. If S = S0, then a subset A of S is (right, left) 0-consistent
subset of S if A� is (right, left) consistent subset of S. For a semigroup S = S0,
Idc(S) (LIdrc(S),RIdlc(S) ) will denote the set of all 0-consistent ideals (right
0-consistent left ideals, left 0-consistent right ideals) of S.

For a binary relation � on a set X and n 2 Z+, �n will denote the n-th power
of � in the semigroup of binary relations on X , and �1 will denote the transitive
closure of �. For an equivalence relation � on a set X , x� will denote the equivalence
class of X containing an element x. For a set X , E(X) will denote the lattice of
equivalences (equivalence relations) on X . It is well known that E(X) is a complete
lattice (see Theorem 67 in [18]). An equivalence relation � on a semigroup S = S0

is 0-restricted if 0 is a �-class. The set E�(S) of all 0-restricted equivalences on a
semigroup S = S0 is a lattice isomorphic to the lattice E(S�), and it is a principal
ideal of E(S) generated by the equivalence � determine by the partition f0; S�g.

For unde�ned notions and notations we refer to [1], [2], [8], [16], [17] and
[18].

2. Lattices of 0-restricted (right, left) 0-consistent equivalences

In analogy with subsets of a semigroup with zero, an equivalence relation �
on a semigroup S = S0 will be called right (left) 0-consistent if for x; y 2 S, xy 6= 0
implies xy � y (xy 6= 0 implies xy � x), and it will be called 0-consistent if it is both

right 0-consistent and left 0-consistent. For example, for the relations
`
s and

r
s

de�ned in [12] (see also [10,11]) and the relation s de�ned in [4] by:

x
`
s y () L(x) \ L(y) 6= 0; for x; y 2 S�; 0

`
s 0;

x
r
s y () R(x) \ R(y) 6= 0; for x; y 2 S�; 0

r
s 0;

x s y () J(x) \ J(y) 6= 0; for x; y 2 S�; 0 s 0;

their transitive closures � =
`
s
1, � =

r
s
1 and Æ =s1 are right 0-consistent, left

0-consistent and 0-consistent equivalence, respectively (for an equivalent de�nition
of Æ see [4]). By the following theorem we characterize all equivalence relations
with these properties.

Theorem 1. The following conditions for an equivalence � of a semigroup
S = S0 are equivalent:

(i) � is (right, left) 0-consistent;

(ii)
�

`
s� �;

r
s� �

�
s� �;

(iii) (a�)0 is a (right, left) 0-consistent subset of S, for any a 2 S�;
(iv) (a�)0 is a (left, right) ideal of S, for any a 2 S�.
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Proof. It is suÆcient to prove the part of the theorem characterizing right
0-consistent equivalences.

(i) =) (ii). Let � be right 0-consistent. If a; b 2 S and a
`
s b, then xa = yb 2

S�, for some x; y 2 S, whence a � xa = yb � b. Thus,
r
s� �.

(ii) =) (i). This follows by the fact that
`
s is right 0-consistent.

(i) =) (iii). Assume a 2 S� and x; y 2 S such that xy 2 a�; xy 6= 0. Then
xy � y, whence y � a, i.e. y 2 a�. Thus, (a�)0 is right 0-consistent.

(iii) =) (iv). Assume a 2 S�; x 2 S; y 2 (a�)0. If xy = 0, then clearly
xy 2 (a�)0. Assume that xy 6= 0. Then y 6= 0 and y � a, and xy � y, so xy � a, i.e.
xy 2 a�. Thus, (a�)0 is a left ideal of S.

(iv) =) (i). Assume x; y 2 S such that xy 6= 0. Then y 6= 0 and (y�)0 is a
left ideal of S, whence xy 2 (y�)0, i.e. xy � y. �

For a semigroup S = S0, Ec(S), Erc(S) and E lc(S) will denote the sets of
0-consistent, right 0-consistent and left 0-consistent equivalences on S, respectively.
A relation between these sets in E(S) is given by the following theorem.

Theorem 2. For a semigroup S = S0, Ec(S); Erc(S) and E lc(S) are princi-
pal dual ideals of E(S) generated by Æ; � and �, respectively, and � _ � = Æ.

Proof. Clearly, Æ is a 0-consistent equivalence on S and by Theorem 1,
Ec(S) = f� 2 E(S) j s� �g = f� 2 E(S) j Æ � �g, so Ec(S) is the principal
dual ideal of E(S) generated by Æ. Analogously we prove the assertions concerning
Erc(S) and E lc(S).

Further, by Theorem 1, any equivalence relation on S containing a right and a
left 0-consistent equivalence is both right and left 0-consistent, i.e. it is 0-consistent.
Thus, � _ � is 0-consistent, so Æ � � _ �. On the other hand, by �; � � Æ it follows
� _ � � Æ. Hence, � _ � = Æ. �

Theorem 3. For any semigroup S = S0, Idc(S), LIdrc(S) and RIdlc(S)
are complete atomic Boolean algebras and Idc(S) = B(Id(S)), LIdrc(S) =
B(LId(S)) and RIdlc(S) = B(RId(S)).

Proof. The assertions for Idc(S) were proved in [4]. Analogously one can
prove the remaining cases. �

For a semigroup S = S0, let E�c(S) ( E�rc(S); E�lc(S) ) denote the set of all
0-restricted (right, left) 0-consistent equivalences on S.

Theorem 4. For any semigroup S = S0, E�c(S) (E�rc(S), E�lc(S)) is a
closed sublattice of E(S) and it is dually isomorphic to the lattice of closed Boolean
subalgebras of Idc(S) (LIdrc(S), RIdlc(S)).

Proof. We will prove the assertion concerning E�c(S). Analogously we prove
the remaining assertions. By Theorem 2 and Lemma 1, E�c(S) is equal to the
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(closed) interval [Æ; �] of E(S), so it is a complete sublattice of E(S). For � 2 E�c(S),
let B� be a subset of Idc(S) de�ned by:

B� =
n
A 2 Idc(S)

��� A =
[
a2A

(a�)0
o
: (1)

Clearly, 0; S 2 B�. Let A 2 B� and x 2 A \
�S

a2A0(a�)0
�
. Then x 2 a�, for some

a 2 A0; a 6= 0, whence a 2 x� � A, which is in contradiction with a 2 A0; a 6= 0.
Thus,

S
a2A0(a�)0 � A0, whence A0 2 B� .

Assume fA� j � 2 Y g � B� . Clearly,
S
�2Y A� 2 B�. Let A =

T
�2Y A� and

x 2
S
a2A(a�)

0. If x 6= 0, then clearly x 2 A. Assume that x 6= 0. Then x 2 a�, for

some a 2 A�, and since a 2 A�, for each � 2 Y , then x 2
S
a2A�

(a�)0 = A�, for

each � 2 Y , whence x 2 A, Thus,
S
a2A(a�)

0 � A, whence A =
T
�2Y A� 2 B� .

Therefore, B� is a closed Boolean subalgebra of Idc(S), i.e. the mapping � 7! B�

maps E�c(S) into the set of closed Boolean subalgebras of Idc(S).

Let B be a closed Boolean subalgebra of Idc(S). By Theorem 56 of [18],
a complete Boolean algebra is atomic if and only if it is completely distributive,
whence any closed Boolean subalgebra of a complete atomic Boolean algebra is also
atomic. Thus, B is atomic and S is the union of all its atoms. Thus, for any a 2 S�

there exists a unique atom of B containing it, which will be denoted by B(a). Now,
de�ne a relation � on S by:

a � b () B(a) = B(b); for a; b 2 S�; 0 � 0: (2)

Clearly, � is a 0-restricted equivalence. It can be checked easily that (a�)0 = B(a),
for any a 2 S�, so by Theorem 1, � is 0-consistent, and for A 2 Idc(S)

A 2 B () A =
[
a2A

B(a) () A =
[
a2A

(a�)0 () A 2 B� ;

so B = B�. Hence, the mapping � 7! B� is onto.

Further, assume �; � 2 E�c(S). If � � �, then (a�)0 � (a�)0, for each a 2 S�,
whence A 2 B� implies

S
a2A(a�)

0 �
S
a2A(a�)

0 = A, i.e. A 2 B�, so B� � B� .

Conversely, if B� � B�, then a� 2 B� � B� and a� �
S
x2a�(x�)

0 = a�, for any
a 2 S�, whence � � �. Thus, � � � if and only if B� � B�. Hence, the mapping
� 7! B� is a dual order isomorphism, so it is a dual lattice isomorphism. �

An equivalence relation � on a semigroup S = S0 will be called quasi-0-
consistent if it is an intersection of a right 0-consistent and a left 0-consistent
equivalence on S. An example of such an equivalence is the equivalence � = �\ �.
For a semigroup S = S0, E�qc(S) will denote the set of all 0-restricted quasi-0-
consistent equivalences on S.

Theorem 5. For any semigroup S = S0, E�qc(S) is a complete lattice.

Proof. Consider E�qc(S) as a subset of the complete lattice E�(S). Clearly,
E�qc(S) contains the unity of E�(S). Moreover, it is easy to check that the inter-
section of any family of elements of E�qc(S) is also in E�qc(S). By these facts it
follows that E�qc(S) is a complete lattice. �
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Note that the zero and the unity of E�qc(S) are � and �, respectively.

For a quasi-0-consistent equivalence � on a semogroup S = S0, by Theorem
1 we have that (a�)0 is an intersection of a right 0-consistent left ieal and a left
0-consistent right ideal of S, for each a 2 S, and hence, it is a quasi-ideal. By this
fact we derive the following

Problem 1. Find necessary and suÆcient conditions for a quasi-ideal Q of a
semigroup S = S0 to be an intersection of a right 0-consistent left ideal and a left
0-consistent right ideal of S and give an answer to the question: Can E�qc(S) be
embedded into the lattice of quasi-ideals of S?

3. Orthogonal, right, left and matrix sums of semigroups

Recall that a semigroup S = S0 is an orthogonal sum of semigroups S�; � 2
Y , in notation S = ��2Y S�, if S� 6= 0, for all � 2 Y , S =

S
�2Y S� and S� \S� =

S�S� = 0, for all �; � 2 Y; � 6= �. In this case, the family D = fS� j � 2 Y g is
a decomposition into an orthogonal sum or an orthogonal decomposition of S and
S� are orthogonal summands of S or summands in D. On a set of all orthogonal
decompositions of S = S0 we de�ne a partial order � by: D � D0 if each member
of D0 is a subset of some member of D. A semigroup S = S0 is orthogonally
indecomposable if D = fSg is the unique orthogonal decomposition of S [4].

A semigroup S = S0 is a right sum of semigroups S�; � 2 Y , in notation
S = R��2Y S�, if S� 6= 0, for all � 2 Y , S =

S
�2Y S� and S� \ S� = 0 and

S�S� � S� , for all �; � 2 Y; � 6= �. Dually we de�ne a left sum of semigroups
S�; � 2 Y , in notation L��2Y S�.

A semigroup S = S0 will be called a matrix sum of semigroups Su; u 2 M ,
in notation S =M�u2MSu, if ? 6=M � I ��, where I and � are nonempty sets,
S =

S
u2M Su, Su \ Sv 6= 0, for u 6= v; u; v 2M , and for any (i; �); (j; �) 2 M the

following condition holds

S(i;�)S(j;�)

�
� S(i;�) if (i; �) 2M

= 0 otherwise.

If M = I � �, then we will say that S is a complete matrix sum of semigroups
S(i;�); i 2 I; � 2 �.

Previously de�ned notions concerning orthogonal sums we naturally translate
to the related notions concerning right, left and matrix sums of semigroups.

Theorem 6. Decompositions of a semigroup S = S0 into an orthogonal
(right, left, matrix ) sum of semigroups form a complete lattice which is dually
isomorphic to the lattice E�c(S) (E�rc(S), E�lc(S), E�qc(S)).

Proof. We will prove the assertions concerning orthogonal and matrix sums.
The assertions concerning right and left sums can be proved similarly as the asser-
tion for orthogonal sums.

Let � 2 E�c(S) and let

D� = f(a�)0 j a 2 S�g: (3)
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By Theorem 1, the members of D� are nonzero 0-consistent ideals of S whose union
is S, so D� is an orthogonal decomposition of S. Consider a mapping � 7! D�, of
E�c(S) into the poset of orthogonal decompositions of S. If D = fS� j � 2 Y g is
an orthogonal decomposition of S, then the relation � on S de�ned by:

a � b () (9� 2 Y ) a; b 2 S��; for a; b 2 S�; 0 � 0; (4)

is a 0-restricted 0-consistent equivalence on S and D = D�. Thus, the mapping
� 7! D� is onto.

Assume �; � 2 E�c(S). If � � �, then for each A 2 D�, A = (a�)0, for some
a 2 S�, whence A = (a�)0 � (a�)0 2 D�, so D� � D�. Conversely, let D� � D� .
Assume a; b 2 S� such that a � b. By the hypothesis, (a�)0 = (b�)0 = (c�)0, for
some c 2 S�, whence a; b 2 c�, so a � b. Thus, D� � D� implies � � �. Hence, the
mapping � 7! D� is a dual order isomorphism.

Further, let � 2 E�qc(S), i.e. � = � \ �, where � 2 E�rc(S) and � 2 E�lc(S),
and let D� = fL� j � 2 �g and D� = fRi j i 2 Ig be decompositions into a
right sum and a left sum of semigroups, determined by � and � as in (3), i.e. for
any � 2 �; i 2 I , L� = (a�)0; Ri = (b�)0, for some a; b 2 S�. Let M = f(i; �) 2
I�� j Ri\L� 6= 0g, and for (i; �) 2M , let S(i;�) = Ri\L� and D� = fSu j u 2Mg.
It is easy to check that D� is a decomposition of S into a matrix sum. Also, for
any u 2M , Su = (a�)0, for some a 2 S�.

Consider a mapping � 7! D� of E�qc(S) into the poset of decompositions of
S into a matrix sum of semigroups. Let D = fSu j u 2 Mg be a decomposition of
S into a matrix sum of semigroups Su; u 2M , where M � I �� and I and � are
nonempty sets. De�ne relations � and � on S by:

a � b () (9� 2 �)(9i; j 2 I) a 2 S(i;�); b 2 S(j;�); for a; b 2 S�; 0 � 0;

a � b () (9i 2 I)(9�; � 2 �) a 2 S(i;�); b 2 S(i;�); for a; b 2 S�; 0 � 0:

Then � 2 E�rc(S); � 2 E�qc(S), � = � \ � and D = D�. Therefore, the mapping
� 7! D� is onto. The rest of the proof is similar to the related part of the proof for
the case of orthogonal decompositions. �

By Theorems 4 and 6 we obtain

Theorem 7. The lattice of decompositions of a semigroup S = S0 into an
orthogonal (right, left) sum of semigroups is isomorphic to the lattice of closed
Boolean subalgebras of Idc(S) (LIdrc(S), RIdlc(S)).

Example 1. Let M� denote the set of all matrices over a ring R and let
M =M� [ f0g, where 0 =2 M�. De�ne a multiplication Æ on M by:

A ÆB =

�
AB if A;B 2 M� and AB is de�ned,

0 otherwise,

where on the right-hand side is the usual multiplication of matrices A and B. With
this multiplication, M is a semigroup with the zero 0 and it will be called the
semigroup of matrices over R.



118 S. Bogdanovi�c and M. �Ciri�c

For m 2 Z+, let M��m (Mm��) denote the set of all the matrices over R of
the type k�m (m� k), k 2 Z+, with 0 adjoined, and for m;n 2 Z+, let Mm�n =
Mm�� \ M��n. It is easy to verify that fM��m j m 2 Z+g ( fMm�� j m 2
Z+g; fMm�n j m;n 2 Z+g ) is the greatest decomposition of M into a right (left,
matrix) sum of semigroups, whose summands are indecomposable into a right (left,
matrix) sum of semigroups. Moreover,M is a complete matrix sum of semigroups
Mm�n; m; n 2 Z+, and M is orthogonally indecomposable.

Let I be an ideal of M consisting of 0 and of zero matrices of an arbitrary
type. The factor semigroup M=I will be called the reduced semigroup of matrices
over R. We state the following

Problem 2. Can the previous assertions for the semigroup of matrices be
proved for the reduced semigroup of matrices over R?

Example 2. Recall that summands in the greatest orthogonal decomposition
of a semigroup with zero are orthogonally indecomposable [4]. But, summands
in the greatest decomposition into a right (left, matrix) sum of semigroups need
not be indecomposable into a right (left, matrix) sum of semigroups. For example,
consider a semigroup given by the following table:

0 a b c d
0 0 0 0 0 0
a 0 a b d d
b 0 a b b d
c 0 a b b d
d 0 a b b d

The greatest decomposition of this semigroup into a right sum of semigroups is
ff0; ag; f0; b; c; dgg, and f0; b; c; dg is a right sum of f0; b; cg and f0; dg.

Finishing this section, note that analogues of decompositions of a semigroup
with zero into a right, left and complete matrix sum of semigroups are decomposi-
tions of a semigroup without zero into a right, left and rectangular band (matrix)
of semigroups, respectively, investigated by Petrich in [15] (see also [16]). Or-
thogonal decompositions have not such an analogue, but we refer to [2,3,5,6,7]
to make some interesting comparisons between the methodologies of orthogonal
decompositions and semilattice decompositions of semigroups.

4. Some special decompositions

For an element a of a semigroup S = S0 we de�ne a sequence �n(a); n 2 Z
+,

of subsets of S, and a sequence Æn; n 2 Z+, of equivalence relations on S by:
�n(a) = fx 2 S j x sn ag0 and

a Æn b () �n(a) = �n(b) (a; b 2 S):

Similarly, using
`
s instead of s, we de�ne a sequence Kn(a); n 2 Z+, of subsets

of S, and a sequence �n; n 2 Z+, of equivalences on S. Also, using
r
s instead

of s, we de�ne a sequence �n; n 2 Z+, of equivalences on S; then a sequence
�n; n 2 Z

+, of equivalences on S is de�ned by: �n = �n\�n. Clearly, any of these
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sequences is increasing. Bogdanovi�c and �Ciri�c in [4] proved that for any a 2 S,
�(a) =

S
n2Z+ �n(a) is the principal 0-consistent ideal of S generated by a, and

for all a; b 2 S, a Æ b if and only if �(a) = �(b). It can be proved similarly that
K(a) =

S
n2Z+ Kn(a) is the principal right 0-consistent ideal of S generated by a,

and that for all a; b 2 S, a � b if and only if K(a) = K(b).

By the following lemma, some relations between the equivalences introduced
above are described:

Lemma 1. If S = S0, then

H � �1 � �2 � � � � � �n � � � � � �
\ \ \ \ \
L � �1 � �2 � � � � � �n � � � � � �
\ \
J � Æ1 � Æ2 � � � � � Æn � � � � � Æ
[ [
R � �1 � �2 � � � � � �n � � � � � �

:

Lemma 2. Let S = S0 and let n 2 Z+. Then

(1) for each a 2 S, �n(a) is a 0-consistent subset of S;
(2) for all x; y 2 S, �n(xy) � �n(x) \�n(y).

Proof. (1) Let a 2 S� and xy 2 (�1(a))
�. Since J(xy) � J(x) and J(xy) \

J(a) 6= 0, then x s a, i.e. x 2 �1(a), and similarly y 2 �1(a), so �1(a) is
0-consistent. Using this, by induction we obtain (1).

(2) For x; y 2 S, xy 6= 0 and a 2 �n(xy) implies xy 2 (�n(a))
�, whence

x; y 2 �n(a), by (1), so a 2 �n(x) \�n(y). Thus, (2) holds. �

Lemma 3. Let S = S0, S = ��2Y S� and let n 2 Z+.

(1) Let x 2 S�; y 2 S� ; �; � 2 Y . If x sn y in S, then � = �.
(2) Let � 2 Y; x; y 2 S�. Then x sn y in S if and only if x sn y in S�.

Proof. (1) Since J(x) � S� and J(y) � S� , then x s y implies � = �, so by
induction we obtain (1).

(2) Since the principal ideal of S generated by a is equal to the principal
ideal of S� generated by a, then x s y in S if and only if x s y in S�, so by
induction we obtain (2). �

A semigroup S = S0 is 0-Æn-simple if it has exactly two Æn-classes, i.e. if
x sn y, for all x; y 2 S�. By the following theorem we describe orthogonal sums
of 0-Æn-simple semigroups.

Theorem 8. Let n 2 Z+. Then the following conditions on a semigroup
S = S0 are equivalent:

(i) S is on orthogonal sum of 0-Æn-simple semigroups;
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(ii) (8x; y 2 S) xy 6= 0 =) [(x sn a or y sn a) =) xy sn a];
(iii) for each a 2 S, �n(a) is an ideal of S;
(iv) sn is an equivalence relation on S;
(v) Æn is a 0-consistent equivalence on S.

Proof. (i) =) (ii). Let S = ��2Y S�, where S�; � 2 Y , are 0-Æn-simple
semigroups. Assume x; y 2 S such that xy 6= 0. Then x; y 2 S�, for some � 2 Y .
Let x sn a, for some a 2 S. By Lemma 3, a 2 S� and a 6= 0. Since S� is 0-Æn-
simple, then by a; xy 2 S�� it follows that xy sn a in S�, and also in S. Similarly
we prove that y sn a implies xy sn a.

(ii) =) (iii). Assume a 2 S; x 2 �n(a); y 2 S. If xy = 0, then clearly
xy 2 �n(a). If xy 6= 0, then by x sn a, by (ii), we obtain xy sn a, so xy 2 �n(a).
Thus, �n(a) is a right ideal. Similarly we prove that �n(a) is a left ideal.

(iii) =) (iv). By Lemma 2, for each a 2 S, �n(a) is a 0-consistent ideal of
S, whence �n(a) = �(a), for each a 2 S, so sn=s1= Æ.

(iv) =) (v). Clearly, sn=s1, i.e. Æn = Æ, so (v) holds.

(v) =) (i). By Theorem 4, S = ��2Y S�, where for each � 2 Y , S�� is a
Æn-class of S. Assume � 2 Y; x; y 2 S��. Then x s

n y in S, so by Lemma 3,
x sn y in S�. Hence, S� is 0-Æn-simple. �

Corollary 1. Let S = S0 be a �nite semigroup. Then there exists n 2
Z+; n � jSj, such that S is an orthogonal sum of 0-Æn-simple semigroups.

Similarly we prove the following

Theorem 9. Let n 2 Z+. Then the following conditions on a semigroup
S = S0 are equivalent:

(i) (8x; y 2 S) xy 6= 0 =) (y
`
s
na =) xy

`
s
na);

(ii) for each a 2 S, Kn(a) is a left ideal of S;

(iii)
`
s
n is an equivalence relation on S;

(iv) �n is a right 0-consistent equivalence on S.

Example 3. The semigroup M from Example 1 is 0-Æ1-simple. If we analo-
gously de�ne 0-�n-simple, 0-�n-simple and 0-�n-simple semigroups, then M��m is
0-�1-simple, Mm�� is 0-�1-simple and Mm�n is 0-�1-simple.

Example 4. Any semigroup with zero and unity is 0-Æ2-simple, 0-�2-simple,
0-�2-simple and 0-�2-simple.

5. Lattices of ideals of semigroups with zero

Here we investigate direct decompositions of lattices of ideals and lattices of
left ideals of a semigroup with zero. In the proof of the main theorems of this
section we use a more general result concerning direct decompositions with directly
indecomposable components of complete lattices, in�nitely distributive for meets,
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or equivalently, of complete Brouwerian lattices. In the sources that are available
to the authors, there is no information that this result is proved before, so it will
be proved in Theorem 9. First we prove the following

Lemma 4. Let L be a complete lattice, in�nitely distributive for meets. Then
L is directly indecomposable if and only if B(L) = f0; 1g.

Proof. If fa� j � 2 Y g is a subset of L whose join is 1 and a� ^ a� = 0
whenever � 6= �, then the mapping � : L!

Q
�2Y [0; a�] de�ned by:

x� = (x ^ a�)�2Y (x 2 L)

is an isomorphism of L onto
Q

�2Y [0; a�]. By this it follows that B(L) = f0; 1g
whenever L is directly indecomposable.

Conversely, if B(L) = f0; 1g, then it is easy to verify that L is directly
indecomposable. �

Now we are ready to consider direct decompositions of complete Brouwerian
lattices:

Theorem 10. The following conditions for a complete lattice L, in�nitely
distributive for meets, are equivalent:

(i) L can be decomposed into a direct product of directly indecomposable lattices;
(ii) B(L) is a closed sublattice of L;
(iii) B(L) is a complete atomic Boolean algebra.

Proof. (i) =) (ii). Let L =
Q

�2Y L�, where L�; � 2 Y , are directly
indecomposable lattices. For any � 2 Y , L� is a homomorphic image of L, so L�
has a zero 0� and a unity 1�. Also, if a� 2 L is an element for which

a��� =

�
1� for � = �;

0� for � 6= �;
(� 2 Y );

then L� is isomorphic to the interval [0; a�] of L, so L� is complete and in�nitely
distributive for meets, and by Lemma 4, B(L�) = f0�; 1�g. Now it is easy to check
that B(L) =

Q
�2Y B(L�), whence B(L) is a closed sublattice of L.

(ii) =) (iii). This follows immediately by Theorem 56 of [18].

(iii) =) (i). Let A = fa� j � 2 Y g be the set of all atoms of B(L). By the
proof of Lemma 4, L is isomorphic to the lattice

Q
�2Y [0; a�]. Assume � 2 Y . If

x is an element of [0; a�] with the complement y in [0; a�], then for W = Y � f�g,
z = y_ (

W
�2W a�) is a complement of x in L. Thus, every element of [0; a�] having

a complement in [0; a�], also has a complement in L. Since a� is an atom of L,
then B([0; a�]) = f0; a�g. Therefore, by Lemma 4, [0; a�]; � 2 Y , are directly
indecomposable lattices. �

Now we begin a study of lattices of ideals of a semigroup with zero. First we
give the following
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Theorem 11. The lattice of ideals of a semigroup S = S0 is directly inde-
composable if and only if S is orthogonally indecomposable.

Proof. This follows immediately by Lemma 4 of [4], Theorem 1 of [4] (or
Theorems 3) and Lemma 4. �

Further, it is not hard to prove the following

Lemma 5. Let A be a 0-consistent ideal of a semigroup S = S0. Then
LId(A) � LId(S), Id(A) � Id(S), LIdrc(A) � LIdrc(S) and Idc(A) � Idc(S).

Now we are going to the main theorem of this section:

Theorem 12. Let fS� j � 2 Y g be the greatest orthogonal decomposition of
a semigroup S = S0. Then the lattice Id(S) is isomorphic to the direct product of
lattices Id(S�); � 2 Y , which are directly indecomposable.

Proof. By the proof of Theorem 10, Id(S) is isomorphic to the direct product
of its intervals [0; S�]; � 2 Y , that are directly indecomposable lattices. By Lemma
5, the interval [0; S�] of Id(S) is isomorphic to the lattice Id(S�), for each � 2
Y . �

A similar result we obtain for lattices of left ideals of a semigroup with zero:

Theorem 13. Let fS� j � 2 Y g be the greatest decomposition of a semigroup
S = S0 into a right sum. Then the lattice LId(S) is isomorphic to the direct
product of its intervals [0; S�]; � 2 Y , which are directly indecomposable lattices.

Proof. This follows by Theorems 3, 7 and 9. �

Let us emphasize that in the previous theorem, some of the intervals [0; S�]
of LId(S) can be di�erent from LId(S), since Lemma 5 cannot be proved for right
0-consistent left ideals (see Example 2). A connection between the lattice LId(S)
and lattices LId(S�); � 2 Y , is given by:

Corollary 2. Let fS� j � 2 Y g be the greatest decomposition of a semigroup
S = S0 into a right sum. Then the lattice LId(S) can be embedded into the direct
product of lattices LId(S�); � 2 Y .

Another approach to the study of the lattice LId(S) is given by the following

Theorem 14. Let fS� j � 2 Y g be the greatest orthogonal decomposition of
a semigroup S = S0. Then the lattice LId(S) is isomorphic to the direct product
of lattices LId(S�); � 2 Y .

Proof. Since fS� j � 2 Y g � Idc(S) � LIdrc(S), then by the proof of
Lemma 4, LId(S) is isomorphic to the direct product of its intervals [0; S�]; � 2 Y
(generally, they can be further directly decomposed). By Lemma 5, the interval
[0; S�] of LId(S) is isomorphic to the lattice LId(S�), for each � 2 Y . �

Note that the results obtained above for semigroups with zero can be natu-
rally translated to semigroups with kernel. Also, the results concerning lattices of
left ideals of a semigroup with zero can be translated to lattices of left ideals of a
semigroup without zero:
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Theorem 15. Let S be a semigroup without zero and let fS� j � 2 Y g be the
greatest decomposition of S into a right zero band of semigroups. Then the lattice
LId(S) is isomorphic to the direct product of its intervals [0; S�]; � 2 Y , which
are directly indecomposable lattices.
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