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IN PURSUIT OF COLORED

CARATH�EODORY-B�AR�ANY THEOREMS

Rade T. �Zivaljevi�c

Abstract. One of the shortest and the most elegant proofs of the well known Tverberg
theorem, due to Karanbir Sarkaria, relies on a generalization of Carath�eodory's theorem found by
Imre B�ar�any. Our objective is to set up the stage for studying other Carath�eodory-B�ar�any type
results which should open a possibility for similar proofs of related Tverberg type statements.
Among the Tverberg type results which motivate this study are colored Tverberg theorems, [2],
[6], [15], [20] and more recent results related to the Tverberg-Vre�cica conjecture, [17], [18].

Introduction

In every party of six persons there are at least three of them knowing each
other or at least three persons who haven't met before. This simple observation
is an instance of the well known Ramsey theorem. Note that this is a purely
combinatorial statement which can be classi�ed and placed into the extremal theory
of �nite sets, a branch of combinatorics. In�nite analogs and relatives of this
theorem were one of the favorite subjects of the late professor Djuro Kurepa whose
enthusiasm and contributions to mathematics inspired generations of his students.
If the sets are geometric objects, say �nite families of points, lines etc., and if
the relations among them have a clear geometric meaning, then we deal with the
extremal combinatorial geometry. A noble example of a result which belongs to
this area is the Tverberg theorem. In its simplest nontrivial form it claims that
every collection C of 7 points in the plane can be partitioned into three nonempty,
disjoint sets, C = C1 [ C2 [ C3; so that conv(C1) \ conv(C2) \ conv(C3) 6= ;:
Tverberg type theorems occupy one of the central places in extremal combinatorial
geometry, [5], [8], [10], [16], [19]. The old problem about three houses and three
wells, which goes back to Euler and in a popular form illustrates nonplanarity of the
graph K3;3; also can be seen as a nonlinear relative of the Tverberg theorem, [19].

Majority of known Tverberg type results are proved by topological methods.
A recent proof of the original Tverberg theorem due to K. Sarkaria which is based on
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a B�ar�any's extension of Carath�eodory theorem, opens a possibility of proving other
\linear" Tverberg type statements by elementary methods. The main objective of
our note is to formulate and illustrate by examples a general guiding principle for
formulating such Carath�eodory-B�ar�any statements.

As usual, [q] is the set [q] = f1; . . . ; qg; K � L is the join of two simplicial
complexes K and L; K�(m) = K � . . . � K is a multiple join of m copies of K;

while K
�(m)
Æ ; the mth deleted join of K; is the subcomplex of K�(m) consisting of

simplices �1 � . . . � �m such that �i \ �j = ; for i 6= j:

1. From Carath�eodory-B�ar�any to Tverberg theorem

We start with a proof of Tverberg's theorem which is a variation on a theme
introduced by Sarkaria, [12]. The proof is based on an extension of Carath�eodory
theorem found by B�ar�any, [1].

Theorem 1. (B�ar�any [1]) If simplices �0; �1; . . . ; �n in n-dimensional aÆne
space Rn have a point in common, then this point is also contained in a simplex of
the form convfxigni=0 where xi is one of the vertices of the simplex �i; i = 0; . . . ; n:
Moreover for one of the indices i0; the vertex xi0 can be prescribed in advance.

Corollary 1. Let �0; �1; . . . ; �n�k be a collection of simplices in Rn and D
a k-dimensional aÆne subspace of Rn: If D \ �i 6= ; for all i = 0; . . . ; n� k; then
convfxig

n�k
i=0 \D 6= ; for some choice xi 2 �i; where xi is one of the vertices of the

simplex �i:

Theorem 2. (Tverberg [13]) Every subset S � Rd of size (q � 1)(d + 1) +
1 admits a partition S = S1 [ . . . [ Sq into nonempty, disjoint pieces such thatTq

i=1 conv(Si) 6= ;:

Proof. Let S = faigi2� � Rd; � := f0; 1; . . . ; (q � 1)(d+ 1)g; be a collection
of points in a d-dimensional euclidean space Rd: This space can be isometrically
embedded in a (qd+q�1)-dimensional euclidean spaceW �= Rqd+q�1 in q di�erent
ways so that the corresponding copies L1; L2; . . . ; Lq of R

d are in general position,
specially they do not intersect. Moreover, it can be assumed that there is a linear
map A of W so that Aq = 1I and Lk = Ak�1(L1) for all k = 1; 2; . . . ; q:

There is a convenient way of constructing these spaces. Let

E = fe1; e2; . . . ; eq(d+1)g

be the usual orthonormal base in the euclidean space Rq(d+1) and let x1; . . . ; xq(d+1)
be the dual basis of linear forms. A hyperplane W is de�ned by

W := fv 2 Rq(d+1)j (x1 + . . . + xq(d+1))(v) = 1g:

Let Ek; k = 1; . . . ; q; be the partition of E de�ned by

Ek := fej j (k � 1)(d+ 1) + 1 � j � k(d+ 1)g:
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Alternatively, E can be viewed as the set of vertices of a regular [q(d + 1) � 1]-
dimensional simplex in W and sets conv(Ek) are seen as its d-dimensional disjoint
faces. The isometry A acts on the basis E by permuting cyclically these faces.
More precisely, A : Rq(d+1) ! Rq(d+1) is de�ned by A(ej) := ej+d+1 where indices
are added modulo q(d+ 1): Let Li := a�(Ei) be the aÆne hull of Ei:

The ambient space Rq(d+1); the isometry A and the collection of aÆne sub-
spaces Li; i = 1; . . . ; q form our basic background picture for the proof of Tver-
berg's theorem. As a Zq-representation space de�ned by the action of A; Rq(d+1)

has a very simple structure. It splits as a sum of d+ 1 regular representations, in
particular the subspace of �xed points has dimension d+ 1 and consists of vectors
of the form v +A(v) + . . . +Aq�1(v): The hyperplane W is invariant with respect
to this action and its subspace D of �xed points is d-dimensional and consists also
of vectors of the form v + A(v) + . . . + Aq�1(v) where v can be chosen from the
space L1:

Let us identify the original space Rd with L1 so the original set S � Rd can be
seen as a subset of L1: Let f�j j 0 � j � (q�1)(d+1)g be the collection of simplices
in W de�ned by �j := convfaj ; A(aj); . . . ; Aq�1(aj)g : Obviously �j \ D 6= ; for
all indices j; so by Corollary 1 there exists a function � : �! f1; . . . ; qg such that

convfA�j (aj)j 0 � j � (q � 1)(d+ 1)g \D 6= ; : (1)

We notice �rst that the function � is an epimorphism since (1) would not be true in
the opposite case. Hence, � de�nes a partition �i := ��1(i) of � = f0; 1; . . . ; (q �
1)(d + 1)g into q nonempty pieces and a corresponding partition of S � Rd �= L1:
We claim that this is the desired partition of �: Indeed, it follows from (1) that
there exists v 2 L1 such that

1

q
(v +A(v) + . . . +Aq�1(v)) 2 convfA�(j)(aj)j 0 � j � (q � 1)(d+ 1)g :

By construction Ak(v) 2 Lk+1 := Ak(L1) for all k = 0; . . . ; q � 1: Obviously,

convfA�(j)(aj)j 0 � j � (q � 1)(d+ 1)g � conv

� q[
i=1

Li

�
:

Since the general position assumption guarantees that the topological join L1 � . . .�
Lq coincides with the convex hull conv(

Sq

i=1 Li) we observe that

Ak(v) 2 convfA�(j)(aj)j 0 � j � (q�1)(d+1)g\Ak(L1) = Ak(convfaj j�(j) = kg) :

From here it follows that v 2 convfaj j �(j) = kg for all k i.e. v 2
Tq

i=1�i which
means that f�ig

q
i=1 is a desired partition.

2. The guiding principle

The proof of Tverberg theorem given in section 1 raises a hope that other
Carath�eodory-B�ar�any type statements might be useful in similar situations. One
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can argue that, aside from Sarkaria's beautiful idea to use B�ar�any's theorem, a
driving force of this proof is an attempt to realize the simplicial complex


(d; q) := (fpointg�(�))
�(q)
Æ ; � = (q � 1)(d+ 1) + 1 (2)

which usually arises in the context of Tverberg's theorem (see e.g. [11], [19]) inside
a natural ambient vector space. We will use this as a guiding example to formulate
a reasonably general guiding principle for �nding other Carath�eodory-B�ar�any type
results. The relevant ideas can be summarized as follows. A topological proof of
a Tverberg type result is typically based on a carefully chosen simplicial complex
K which encodes all candidates for a desired partition and which we call a con�g-
uration space. This space is always invariant with respect to a symmetry group
which is usually a cyclic group. For example in the case of the con�guration space

(d; q) described in (2) the symmetry group is Zq: The second property of the
con�guration space is its high connectedness, namely if K is equivariantly mapped
to a space Rk then K is supposed to be at least (k�1)-connected. The importance
of this condition is clearly visible from the following well-known statement which
is often used in extremal combinatorial geometry.

Theorem 3. Let K be a �nite simplicial complex equipped with a free action
of a cyclic group Zq: Let R

k be a k-dimensional euclidean space also equipped with
a linear action of Zq which is free on Rk n f0g: If K is (k � 1)-connected then for

every equivariant map f : K ! Rk the corresponding set of zeros is nonempty,
f�1(0) 6= ;:

Example 1. Let K = [3]�(3) := [3] � [3] � [3] be a 2-dimensional complex where
Z3 acts by permuting each of the three element sets [3]: This complex is 1-connected
which means that for every continuous map f : K ! R2; 0 2 Image(f) where Z3
acts on R2 in the obvious manner.

The signi�cance of this example becomes clear if we observe that it implies
the following very special case of Theorem 1. For any three equilateral triangles
�1; �2; �3 centered at the origin of R2; there exists a triangle formed by choosing a
vertex from each of triangles �i which also contains the origin. Indeed, it is enough
to de�ne f : [3]�(3) ! R2 as a linear map which maps a copy of [3] := f1; 2; 3g on the
vertices of the corresponding equilateral triangle. By preserving the connectedness
condition but relaxing the symmetry condition in the spirit of Carath�eodory-B�ar�any
theorem, we arrive at the following general principle.

The guiding principle. Let K be a (k � 1)-connected simplicial complex
equipped with a free, simplicial action of the cyclic group Zq: Let ! : K ! K be

the generator of this action. Let Rk be a space where the group Zq acts freely away
from the origin 0 2 Rk:

If f : K ! Rk is a linear (simplicial) map such that 0 2 convff(!j(v))gq�1j=0

for every vertex v 2 K, then it is plausible that 0 2 Image(f):

Note that if (K;Rk) is a pair described in the guiding principle then, according
to Theorem 3, the desired conclusion 0 2 Image(f) is known to hold for equivariant
maps.
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De�nition 1. A pair of spaces (K;Rk) described in the guiding principle
is called Zq-admissible if 0 2 Image(f) for every linear map which satis�es the

condition 0 2 conv ff(!j(v)gq�1j=0 .

The following problem is motivated by the fact that if K and L are free Zq-
complexes so that K is (k� 1)-connected and L is (l� 1)-connected, then K �L is
also a free Zq-complex which is (k + l)-connected.

Problem 1. Is it true that if both (K;Rk) and (L;Rl) are Zq-admissible
pairs than the pair (K � L;Rk+l+1) is also Zq-admissible.

Of course there is no reason to expect that the guiding principle will always
lead to correct statements. Nevertheless, we believe that even in those cases where
the guiding principle is false, it should lead to other interesting observations. For
example it is possible that such examples might shed some light on the mysterious
phenomenon that some combinatorial geometric result may be valid for linear maps
and generally false if the maps are continuos. The following example shows that the
guiding principle does predict correct statements for some con�gurations of vectors.

Proposition 1. Let us suppose that V = fvij j i 2 [3]; j 2 [5]g is a collection
of vectors in the plane so that the origin 0 2 R2 is in the convex hull of each of the
triangles convfv1i; v2i; v3ig; i = 1; . . . ; 5:

v11 v12 v13 v14 v15
v21 v22 v23 v24 v25
v31 v32 v33 v34 v35

(3)

Then there exist three di�erent indices �, �,  so that 0 2 convfv1�; v2� ; v3g:

Proof. Let us assume that the collection V = fvij j 1 � i � 3; 1 � j � 5g � R2

is in general position. Hence, for every four element subset T � V either exactly
two out of four triangles with vertices in T contain the origin or none of these
triangles has this property. We call this the \2 or 0"-property of the set T: Let us
refer to T as an A-set in case there are exactly two triangles containing the origin
and call it a B-set otherwise. Let us assume that the proposition is false. By
Theorem 1 applied on the �rst three columns, with an application of the \2 or 0"-
property if necessary and taking the symmetry into account, we can assume that 0 2
convfv11; v12; v23g: Hence fv11; v12; v23; v34g is an A-set so 0 2 convfv11; v12; v34g:
So, fv11; v12; v34; v25g is also an A-set and 0 2 convfv11; v12; v25g: This way, step by
step, we conclude that 0 2 convfv11; v12; vijg for all (i; j) in the region diagonally
opposite to f(1; 1); (1; 2)g i.e. for all 2 � i � 3 and 3 � j � 5: A \horizontal
edge" fvi;j ; vi;j+1g will be called a Y ES-edge if it has an analogous property i.e.
if 0 2 convfvi;j ; vi;j+1; v�;�g for all pairs (�; �) such that � 6= i and � =2 fj; j + 1g:
Note that because of the \2 or0"-property no two Y ES-edges can be diagonally
opposite to each other. By applying the Theorem 1 on the last three columns
of the con�guration and prescribing the vertex v35 in advance, we are led to the
conclusion that fv13; v14g is also a Y ES-edge. Similarly we conclude that all edges
of the form fv1i; v1jg; are Y ES-edges where i and j are distinct elements in f3; 4; 5g:
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This is a contradiction with the "2 or 0"-property since the set fv21; v13; v14; v15g
has at least three triangles containing the origin.

The set of the form [m] � [n] will be called a chessboard. The chessboard
complex �m;n or the complex of all non-taking rook placements is de�ned by

�m;n := [n]
�(m)
Æ

�= [m]
�(n)
Æ ; [4], [15]. Note that Proposition 1 is just the state-

ment that the pair (�3;5; R
2) is Z3-admissible. In light of the Problem 1 it would

be interesting to know if the pair ((�3;5)
�(3); R8) is Z3-admissible. It is known that

chessboard complexes play a special role in topological proofs of colored Tverberg
theorems, [15], [20]. It shouldn't be a big surprise that they implicitly show up in a
conjecture which is our �rst candidate for a colored Carath�eodory-B�ar�any theorem.

Conjecture 1. Let V = fvi;j;kj (i; j; k) 2 [3]� [5]� [3]g � R8 be a con�gu-
ration of vectors in R8: Let us assume that

(a) (8i 2 [3])(8j 2 [5]) 0 2 convfvi;j;1; vi;j;2; vi;j;3g;
(b) (8� 2 [3]) 0 =2 convfvi;j;kj k 6= �g:

Then there exists a set A � [3]� [5]� [3] of size 9 so that
(c) 0 2 convfvi;j;kj (i; j; k) 2 Ag and
(d) (8i 2 [3]) If (i; j0; k0) 6= (i; j1; k1) are in A then both j0 6= j1 and

k0 6= k1:

Note that (a) is the usual assumption typical for a Carath�eodory-B�ar�any type
theorem while (b) is an extra hypothesis which narrows the class of con�gurations
for which the conjecture is supposed to hold. Note also that (d) is nothing but the
condition that A is a typical simplex in (�3;5)

�(3):

The following instance of the colored Tverberg theorem, proved in [15] by
topological methods, can be deduced from Conjecture 1.

Theorem 4. A collection of �ve red, �ve blue and �ve white points in R3

always contains three vertex pairwise disjoint triangles formed by points of di�erent
color which have a nonempty intersection.

Proof. Conjecture 1 is supposed to play a role analogous to the role of the
Carath�eodory-B�ar�any theorem in the proof of Tverberg's theorem. The details
are omitted since a more general proof based on the same construction will be
sketched bellow in the proof of Theorem 6. We only make a remark that, given the
initial con�guration of colored points S = fwi;j j (i; j) 2 [3]� [5]g; the con�guration
V = fvi;j;kj (i; j; k) 2 [3]� [5] � [3]g is de�ned by vi;j;k := Ak�1(wi;j); k = 1; 2; 3;
where A is the isometry de�ned in the proof of Theorem 2.

There are two types of colored Tverberg theorems. Theorem 4 above is an
example of a statement of the second type. A characteristic property of these
statements, [15], is that the dimension of intersecting simplices is strictly less than
the dimension of the ambient space. If these two dimensions are equal we have
a colored Tverberg theorem of the �rst type, [20], which is exempli�ed by the

following result of B�ar�any-Larman [2] and Jaromczyk-�Swiatek [6].

Theorem 5. A collection of three blue, three white and three red points in R2

can always be partitioned into three, 3-element sets S1; S2; S3 consisting of points
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of di�erent color so that the corresponding triangles conv(S1); conv(S2); conv(S3)
have a nonempty intersection.

Let us formulate a general Carath�eodory-B�ar�any type statement which is
designed to imply known colored Tverberg theorems of the �rst type. The reader
can easily modify this statement if he is more interested in the colored Tverberg
theorems of the second type.

CB(d,t,r) Let S = fvi;j;kj (i; j; k) 2 [d + 1] � [t] � [r]g � R(r�1)(d+1) be a
con�guration of vectors in a (r � 1)(d+ 1)-dimensional space. Let us assume that

(a) 0 2 convfvi;j;kj 1 � k � rg for every pair (i; j) 2 [d+ 1]� [t] and
(b) 0 =2 convfvi;j;kj k 6= �g for all � 2 [r]:

Then there exists a subset � � [d+ 1]� [t]� [r] with the following properties:
(c) 0 2 convfvi;j;kj (i; j; k) 2 �g,
(d) (8i 2 [d + 1]) If (i; j0; k0) 6= (i; j1; k1) are in �, then both j0 6= j1 and

k0 6= k1:

Conjecture 2. For given d and r; CB(d; t; r) is true if t is large enough.

Proposition 2. The statement CB(d; 2; 2) is true for all d: CB(d; 3; 2) is
true even if the con�guration S of vectors in Rd+1 satis�es only the assumption (a)
i.e. if 0 2 convfvi;j;1; vi;j;2g for every pair (i; j) 2 [d + 1] � [3]: There is a coun-
terexample which shows that the condition (a) alone does not imply the conclusion
of CB(d; 2; 2):

Proof. The assumption (a) permits us to assume, without loss of generality,
that vi;j;2 = �vi;j;1: By the assumption (b), there exists a hyperplane H such
that vi;1;1 2 H+ and vi;2;2 2 H� for all i where H+ and H� are open halfspaces
determined by H: Let ai 2 H \ [vi;1;1; vi;2;2]: Then for some choice of numbers

�i 2 f�1;+1g; 0 2 convf�iaig
d+1
i=1 and C(d; 2; 2) follows.

Let feig
d+1
i=1 be a basis of Rd+1: Then the con�guration S = fvi;j;kj (i; j; k) 2

[d + 1]� [2]� [2] de�ned by vi;j;k := (�1)j+kei shows that CB(d; 2; 2) is not true
if the condition (b) is removed.

The proof of CB(d; 3; 2) which does not rely on the assumption (b) goes as
follows. As before we can assume that vi;j;1 = �vi;j;2 for all i and j: We observe
that the condition of the theorem permits us to de�ne a Z2-equivariant linear map

f : ([3]�(d+1))
�(2)
Æ ! Rd+1: Since ([3]�(d+1))

�(2)
Æ

�= �d+1
3;2 ' (S1)d+1 �= S2d+1; [15],

[19], [20], the desired conclusion follows from the Borsuk-Ulam theorem.

We show now that CB(d; t; r) implies a general form of Colored Tverberg's
theorem.

Theorem 6. Let C1; . . . ; Cd+1 be a collection of (d+ 1) disjoint sets in Rd;

called colors, each of cardinality at least t: Both a subset S �
Sd+1

i=1 Ci of size d+1
and the possibly degenerated simplex conv(S) are called rainbow sets if S \ Ci 6= ;
for all 1 � i � d + 1: Then CB(d; t; r) implies that there exist r disjoint rainbow
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sets Si; i = 1; . . . ; r; such that

r\
i=1

conv(Si) 6= ; :

Proof. Let us take the same background picture as in the proof of Theorem 2
above. As before, the ambient space is Rr(d+1); W := fv 2 Rr(d+1)j (x1 + . . . +
xq(d+1))(v) = 1g; Rd is embedded in W in r di�erent ways and an isometry A

permutes these copies L1; . . . ; Lr of R
d: The starting copy of Rd will be identi�ed

with L1 so the set C =
Sd+1

i=1 Ci is viewed as a subset of L1: This picture yields

a con�guration of vectors in Rr(d+1) de�ned by S0 =
Sd+1

i=1

Sr
k=1 A

k�1(Ci): This
con�guration is naturally indexed by three parameters, (i; j; k) 2 [d+ 1]� [t]� [r]:
The projection � : Rr(d+1) ! Rr(d+1)=D; where D := fv+A(v)+. . .+Ar�1(v)j v 2
Rr(d+1)g; yields a con�guration S := fvi;j;kj (i; j; k) 2 [d + 1] � [t] � [r]g where
vi;j;k := �(Ak�1(vi;j)) and Ci = fvi;jgtj=1 is an enumeration of the \color" Ci: By

construction this de�nes a con�guration of vectors in (r � 1)(d + 1)-dimensional
space which satis�es conditions of the statement CB(d; t; r): Hence, there exists a
subset � � [d+1]� [t]� [r] satisfying conditions (c) and (d) from CB(d; t; r) and it
is not diÆcult to check, following the pattern of proof of Theorem 2, that the sets
Sk := f(i; j)j (i; j; k) 2 �g; k = 1; . . . ; r; form a desired collection of rainbow sets
with the property

T
conv(Si) 6= ; : The details are left to the reader.

2. Common transversals

It has been recently shown, [17], [18], that Tverberg's theorem can be extend-
ed to the case where the existence of a common point is replaced by the existence of
a common aÆne transversal. Recall that a common k-dimensional transversal of a
family K of subsets in Rd is a k-dimensional aÆne subspace L of Rd which meets all
elements in K: Specially a common 0-dimensional transversal is just a point in

T
K:

The proofs of these results require reasonably sophisticated topological methods so
it would be interesting to �nd a more elementary approach. A natural idea would
be to formulate the corresponding Carath�eodory-B�ar�any statements. As before in
this note, we believe that these statements are interesting in their own right and
deserve an independent study.

Let us for the sake of illustration, prove one of these \common transversal"
Tverberg type results.

Theorem 7. Every set C � R3 of size 8 can be partitioned in four disjoint,

nonempty pieces, C =
S4

i=1 Ci; so that the corresponding convex hulls conv(Ci)
have a common line transversal.

Proof. The collection of all lines inR3 is naturally seen as the total space of the
canonical plane bundle over the Grassmann manifold G2(R

3) of all 2-dimensional
subspaces of R3: Indeed each line L is determined by the corresponding orthogonal
subspace L? and a vector v 2 L? where v 2 L \ L?: Let �P : R3 ! P be the
orthogonal projection onto a plane P 2 G2(R

3): Without loss of generality, by
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an approximation and compactness argument, we can assume that the set C is in
general position. If we project the set C = fcig8i=1 on P; the problem of �nding
a line transversal with desired properties is reduced to the proof of existence of a
two dimensional subspace P such that the con�guration of points �P (C) admits a
partition into four nonempty, disjoint pieces, �P (C) = A1 [ A2 [ A3 [ A4; so thatT4

i=1 conv(Ai) 6= ;: Note that �P (C) = f�P (ci)g8i=1 is a collection of eight contin-
uous cross-sections of the canonical 2-dimensional vector bundle E ! G2(R

3): Let
D := fc1; c2; c3; c4g: Then for each P 2 G2(R

3) the set D admits a so called Radon
partition D = DP

1 [ DP
2 so that conv(�P (D

P
1 )) \ conv(�P (D

P
1 )) 6= ;: Since by

assumption D is a set of vertices of a nondegenerate tetrahedron conv(D); the set
conv(�P (D

P
1 ))\ conv(�P (D

P
1 )) consists of a single element s(P ) which continuous-

ly depends on P: Similarly the Radon partitions related to the complementary set
Dc := C nD de�ne a continuous cross-section t : G2(R

3)! E: Let e : G2(R
3)! E

be the cross-section de�ned by e(P ) := s(P ) � t(P ): Since the second Stiefel-
Whitney class w2(E) 2 H2(G2(R

3);Z2) is nonzero, every continuous cross-section
of this bundle vanishes for some P 2 G2(R

3); [9]. Hence s(P ) = t(P ) for some
P 2 G2(R

3) and the theorem follows.

Theorem 7 and many other results in [17] and [18] are not only relatives of the
Tverberg theorem but have a clear relationship to \nonembeddability theorems"
for simplicial complexes. The earliest and probably the best known results of this
type are nonplanarity of graphsK5 andK3;3: The graphK5 is the 1-skeleton �

4
1 of a

four dimensional simplex and its nonplanarity is rephrased as the fact that for every
continuous map f : �41 ! R2 there exist two disjoint simplices �1; �2 2 �41 with the
property f(�1)\f(�1) 6= ;: If one asks for a 3-dimensional analogue of this theorem
one is led to the following nonlinear version of Theorem 7. For every continuous
map f : �72 ! R3; from the 2-skeleton of a 7-dimensional simplex, there exist three

disjoint faces �1; �2; �3 2 �72 so that
T3

i=1 f(�i) 6= ;: The proof of this theorem
follows the same general pattern of the proof above but needs some essentially new
ideas to overcome the diÆculty of dealing with multivalued sections.

What kind of generalized Carath�eodory-B�ar�any statements correspond to
these extensions of Tverberg theorem? From the point of view of [17], a correct
translation is following. We should replace Rd by a vector bundle Rd ! E ! B
which is usually thought of, [9], as a family of vector spaces isomorphic to Rd

parametrized by the base space B: Actually the counterpart of Rd is not the bun-
dle itself but the linear space �(E) of all continuous cross-sections. This space is
in�nite dimensional over R but as a module over the ring C(B;R) of continuous
functions on the base space it has nice properties. A counterpart of a �nite con-
�guration of S � Rd is then a �nite subset T � �(E) i.e. a �nite collection of
continuous cross-sections of E: One can see T as a family of usual con�gurations
parametrized by the parameter space B and the usual questions asked for a single
con�guration are translated to a question whether at least one of con�gurations
encoded by T has a given Carath�eodory-B�ar�any property.
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