
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 57 (71), 1995, 19{28

-Duro Kurepa memorial volume

ON KUREPA'S PROBLEMS IN NUMBER THEORY

A. Ivi�c and �Z. Mijajlovi�c

Dedicated to the memory of Prof. -Duro Kurepa

Abstract. We discuss some problems in number theory posed by -Duro Kurepa, including
so called the left factorial hypothesis.

1. Introduction

-D. Kurepa posed several problems in number theory that drew attention of
many workers in number theory. Certainly, the most known of his problems is
the so called left factorial hypothesis, which is still an open problem. However,
Kurepa asked several other questions that are less known, but we think that they
are interesting as well. The aim of this paper is to review some of these problems,
and to present some of the known results concerning them.

We shall assume the following notation. We shall denote by N the set of
natural numbers (nonnegative integers), N+ denotes positive integers, while Zn
denotes the ring of integers modulo n. The greatest common divisor of integers
a and b is denoted by (a; b). The Galois �eld of p elements, where p is a prime,
is denoted by GF(p). If m and n are integers, by rest(m;n) we shall denote the
remainder obtained from division of m by n.

2. Left factorial function

Kurepa de�ned in [Ku71] an arithmetic function K(n) that he denoted by
!n and called it the left factorial, by

K(n) = !n =
n�1X
i=0

i!; n 2 N+:

In the same paper, Kurepa asked if

(!n; n!) = 2; n = 2; 3; . . . : (KH)
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This conjecture, known as the left factorial hypothesis, is still an open problem in
number theory. There are several results which support the truth of the hypothesis.
Kurepa showed in [Ku71] that there are in�nitely many n 2 N for which KH is
true. Also, the conjecture is veri�ed by use of computers (Slavi�c for n < 1500,
Wagsta� for n < 50000, Mijajlovi�c for n < 310000, and Gogi�c for n < 1000000).
It is interesting that Kurepa announced the positive solution of the problem in
1992, but he never published a proof. R. Guy informed in a letter �Z. Mijajlovi�c
that R. Bond announced a proof of the conjecture too, but the proof was never
published. The �rst mention of the left factorial function appeared in [Ku64],
where this function is de�ned for in�nite cardinal numbers as well.

2.1 Some equivalents to KH. There are several statements equivalent to
KH. Probably the most natural one is the following assertion, which also belongs
to Kurepa [Ku71]:

8n > 2 !n 6� 0 (modn):

This formulation of the left hypothesis appears in [Gu] as problem B44, and we
shall call this statement also KH. It is not diÆcult to see that this form of KH can
be reduced to primes (see [Ku71]), i.e. KH is equivalent to

8p 2 P p > 2) (!p; p) = 1 (PH)

where P denotes the set of all primes. Namely if PH fails, then KH fails with p = n.
Conversely, if KH fails, then nj!n for some n > 2. Then there is a prime p > 2 such
that pjn and p � n. If p = n, then PH trivially fails. If p < n, then

!n = !p+ p! + . . . + (n� 1)!:

Now pjn and nj!n imply pj !n, and therefore it follows from the above relation that
pj !p, contradicting PH. This establishes the equivalence of KH and PH.

If p is a prime, then it is not diÆcult to establish in GF(p) the following
identities (see [Mi]):

!p =

p�1X
k=0

(�1)k+1=k!; (2.1.1)

!p =

p�1X
k=0

(�1)k(k + 1)(k + 2) . . . (p� 1): (2.1.2)

Since the identity
�
p�1
k

�
= (�1)k also holds in GF(p), by (2.1.1) and (2.1.2) the

following identities are true in GF(p):

�!p =
p�1X
k=0

1

k!

�
p� 1

k

�
; !p =

p�1X
k=0

�
p� 1

k

�
(k + 1)(k + 2) . . . (p� 1):

Therefore, we obtain the following
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Theorem 2.1. KH is equivalent to any of the following statements:

1. For all primes p, GF(p) j=
p�1X
k=0

(�1)k(k + 1)(k + 2) . . . (p� 1) 6= 0:

2. For all primes p,

p�1X
k=0

(�1)k(k + 1)(k + 2) . . . (p� 1) 6� 0 (mod p).

3. For all primes p, GF(p) j=
p�1X
k=0

�
p� 1

k

�
(k + 1)(k + 2) . . . (p� 1) 6= 0:

4. For all primes p,

p�1X
k=0

�
p� 1

k

�
(k + 1)(k + 2) . . . (p� 1) 6� 0 (mod p).

5. For all primes p, GF(p) j=
p�1X
k=0

1

k!
(�1)k! 6= 0:

6. For all primes p, GF(p) j=
p�1X
k=0

1

k!

�
p� 1

k

�
6= 0:

Here GF(p) j= . . . means: in GF(p) we have . . . .

The second statement in the above theorem is proved in fact also in [StZi,
(Lemma 2.6)]. There are some other equivalences. In [�Sa] the following equivalence
to KH was proved:

8n > 2

 
n�1X
k=2

!k; !n

!
= 2;

while in [St] KH was proved to be equivalent to

nX
k=2

(k � 1) � k! 6� 0 (mod n); n > 2:

2.2 Some formulas involving KH. There are a number of identities in-
volving !n obtained in [St], [StZi] and [Ca]. Stankovi�c and �Zi�zovi�c (cf. [St] and
[StZi]) proved the following identities (we assumed that K(0) = 0):

nX
i=0

K(i) = nK(n� 1) + 1; n � 1; (2.2.1)

2

n�1X
i=0

iK(i) = K(n) + n(n� 1)K(n� 2); n � 2; (2.2.2)

6

n�1X
i=0

i2K(i) = (2n� 1)K(n) + (2n2 � n� 2)K(n� 2) + 2 � n!� 4; n � 2:
(2.2.3)
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In connection with these identities, Carlitz (cf. [Ca]) considered the following
sums:

Qm(n) =

n�1X
k=0

kmK(k); m = 0; 1; 2; . . . ;

Rm(n) =

n�1X
k=0

�
k

m

�
K(k):

In the same paper, he proved the following generalizations of (2.2.1{3):

Rm(n) =

�
n

m+ 1

�
K(n)�Km(n)�Km+1(n); (2.2.4)

where Km(n) =

n�1X
k=0

�
k

m

�
k!;

Rm(n) =

�
n

m+ 1

�
K(n)�

mX
j=0

(�1)m�j
�
m

j

�
K(n+ j + 1)�K(j + 1)

j + 1
;
(2.2.5)

Qm(n) =

mX
k=0

k!S(m; k)Rk(n); (2.2.6)

where S(m; k) are Stirling numbers of the second kind. Let us note that by use
of s(m; k), i.e. Stirling numbers of the �rst kind, we can obtain the dual of the
identity 2.2.6., that is, we can express Rm(n) by Qm(n). Namely, it is well known
that the matrices jjS(m; k)jj and jjs(m; k)jj are mutually inverse, therefore, from
(2.2.6) it follows at once that

Rm(n) =
1

m!

mX
k=0

s(m; k)Qk(n):

2.3. Number theoretical hypotheses related to KH. The hypothesis
on the alternating factorial stated as the problem B43 in Guy's monograph [Gu] on
unsolved problems in number theory is similar to KH (stated in [Gu] as problem
B44). Here is the formulation of this problem:

Let An = (n � 1)! � (n � 2)! + (n � 3)! � . . . + (�1)n � 1!; n = 2; 3 . . . Are

there in�nitely many numbers n such that An is a prime?

In [Gu] it is observed that if there is n 2 N+ such that n+1 divides An, then
n+ 1 will divide Am for all m > n, and there would be only �nitely many number
of prime values of the sequence An. Wagsta� veri�ed this fact for n < 46340, while
Gogi�c extended this result in his master thesis [Go] to n < 1000000.

In his paper [Ku74], Kurepa asked several question concerning KH. He in-
troduced there the statement H4(s) in the following way:

(n � 2 ^ s � 1)) (K(n);K(n+ s)) = 2; n; s 2 N+: (H4(s))
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Then Kurepa asked ([Ku74], Problem 2.9.) if KH implies H4(s) for all s 2 N+.
We note that this implication does not hold since, for example:

K(7) = 874 = 2 � 19 � 23
K(12) = 43954714 = 2 � 19 � 31 � 37313
K(16) = 1401602636314 = 2 � 19 � 41 � 491 � 1832213
K(25) = 647478071469567844940314 = 2 � 41 � 103 � 2875688099 � 26658285041:

The same examples also show that the strong left factorial hypothesis does not
hold, as Kurepa formulated it in [Ku74]:

The numbers K(n)=2, n = 2; 3; . . . are pairwise relatively prime.

In the same paper, Kurepa introduced the sequence of sets

A(r) = fn 2 N+ j r < n;K(n) � r (modn)g:
He asked there for a description of these sets, and in particular is there any r for
which A(r) is �nite. He also asked if A(3) = ;. We note here that 467 2 A(3).

Kurepa asked in [Ku71] if !n is square-free, with the only exception !3 = 22.
This hypothesis, which we shall call KH2, is veri�ed in [Mi] for n � 40 by �nding
prime decompositions of !n for n < 40. There is a simple connection between KH
and KH2. Namely, if p is a prime and n � p, then p2j!n implies pj!n, and so pj!p.
Hence we obtain

Proposition 2.3.1 KH implies that for any m > 1 there are at most �nitely

many n such that m2j!n.

2.4. Computational veri�cation of KH. There are simple recurrent
formulas for the remainder of !n divided by n. Using these formulas it easy to
check KH and to perform the related computation. Let rn be the sequence de�ned
by rn = rest(!n; n), n 2 N+. The following proposition enables one to design an
algorithm for computing the values of rn (cf. [Mi, Lemma 2.1-3]):

Proposition 2.4.1 Let q be a prime, and let the �nite sequences si, ti, vi be
de�ned in GF(q) in the following way:

1: sq�1 = 0; si = 1 + isi+1; i = q � 2; q � 3; . . . ; 1:

2: t1 = 0; ti = (�1)i + iti�1; i = 2; 3; . . . ; q � 1:

3: v1 = 0; vi = 1� ivi�1; i = 2; 3; . . . ; q � 1:

Then rq = s1 = tq�1 = vq�1.

Observe that sq is de�ned by the regressive induction. Using these formulas
it is easy to develop a simple computer program for verifying KH by computing rn.
Let KH(x) denote the truth of the left factorial hypothesis for all positive integers
n � x. Mijajlovi�c [Mi] veri�ed KH(311009) and Gogi�c [Go] extended it to all
n < 1000000.
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By simple modi�cation of the above formulas one can obtain in the ring Zp2 ,
where p is a prime, the following recurrent formulas:

sn�1 = n; (2.4.1)

si = 1 + isi+1; i = n� 2; n� 3; . . . ; 1;

so that rest(!n; p2) = s1. Thus using 2.4.1, and assuming KH, in [Mi] it was proved:
if m2j!n then m � 1227.

By inspection, we see that the total number of arithmetical operations used
in the veri�cation of KH(x) is

A(x) =
X
p�x

4p; (2.4.2)

where p in the sum runs over primes.

Using the prime number theorem in the form

�(x) =
X
p�x

1 =
x

lnx
+O

�
x

ln2 x

�
;

and integration by parts, we obtain

A(x) =
2x2

lnx
+O

�
x2

ln2 x

�
:

Therefore, the growth of the number of arithmetical operations used in the veri�-
cation of KH(x) is

a(k; x) =
A(kx)

A(x)
� k2 as x!1:

This means, as it was explained in [Mi], that the eÆciency in the veri�cation of

KH(x) by use of parallel computers with k parallel processors is
p
k.

2.5 Left factorial function in complex domain. The gamma-function
�(z) is de�ned by

�(z) =

Z 1
0

e�ttz�1dt (Re z > 0); (2.5.1)

and for other values of the complex variable z by analytic continuation, furnished
by the functional equation

z�(z) = �(z + 1): (2.5.2)

Since �(n+ 1) = n! for n 2 N , it follows that

K(n) =

n�1X
i=0

�(i+ 1) =

Z 1
0

e�t
n�1X
i=0

tidt =

Z 1
0

e�t
tn � 1

t� 1
dt (n 2 N+):

Hence for Rez > 0 it makes sense to de�ne

K(z) =

Z 1
0

e�t
tz � 1

t� 1
dt; (2.5.3)
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and since one easily obtains

K(z) = K(z + 1)� �(z + 1); (2.5.4)

then (2.5.4) provides analytic continuation of K(z) to the whole complex plane. In
particular, sinceK(1) = �(1) = 1, it follows thatK(0) = 0. Kurepa [Ku71] de�ned
K(z) for arbitrary complex z by (2.5.3) and (2.5.4). In [Ku73] he established
that K(z) is a meromorphic function having only simple poles at the points z =
�1;�3;�4;�5; . . . . The residue of K(z) at z = �1 equals to �1, and at z = �n
(n = 3; 4; 5; . . . ) it equals

Pn�1
k=2 (�1)k�1=k!. This follows from (2.5.2), (2.5.4) and

the fact that �(z) is a meromorphic function with residues (�1)n=n! at simple poles
z = �n (n 2 N). Kurepa [Ku73] also studied the zeros of K(z), and showed the
asymptotic relations

lim
x!1

K(x)

�(x)
= 1; lim

x!1

K(x)

�(x+ 1)
= 0;

of which the second is a corollary of the �rst in view of (2.5.2). Further results on
K(z) as a function of the complex variable z were obtained by Slavi c [Sl]. His
main result is that

K(z) = ��
e
cotg�z +

1

e

 
1X
n=1

1

n!n
+ C

!
+

1X
n=0

�(z � n)

holds for all complex z, where C = � R1
0

e�x lnx dx = 0:577215 . . . is Euler's
constant.

Formula (2.5.3) is useful for many purposes. For example, for p � 3 it gives

!p = K(p) =

Z 1
0

e�t
((t� 1) + 1)p � 1

t� 1
dt �

Z 1
0

e�t(t� 1)p�1dt (mod p); (2.5.5)

since when we expand ((t� 1) + 1)p by the binomial theorem we can use that
�
p

k

�
(k = 1; . . . ; p� 1) is divisible by p. ButZ 1

0

e�t(t� 1)p�1dt =

Z 1

0

e�t(t� 1)p�1dt+
1

e

Z 1
0

e�uup�1du

=

Z 1

0

e�t(t� 1)p�1dt+ (p� 1)!=e:

(2.5.6)

Since the �rst integral in (2.5.6) is a natural number and

0 <

Z 1

0

e�t(t� 1)p�1dt � 1� 1

e
;

it follows from (2.5.5) and (2.5.6) that

!p �
�
(p� 1)!

e

�
+ 1 (mod p); (2.5.7)
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where [x] denotes the integer part of x. Therefore, from (2.5.7) we can obtain, in
view of PH, another equivalent of KH, namely

[(p� 1)!=e] 6� �1 (mod p) for p > 2:

In connection with (2.5.7) one can de�ne R(p) to be the least nonnegative residue
of !p (mod p). The evaluation of R(p) is rather involved, but perhaps one could try
to evaluate the summatory function of R(p). The following problem seems to be of
interest: does there exist a constant C > 0 such that

X
p�x

R(p) � Cx2

lnx
(x!1)?

3. Other hypotheses

Kurepa presented several problems in number theory at the Problem Session
of the 5th Balkan Mathematical Congress, held in Belgrade, 1974. These problems
are published as a supplement to [Ku74]. The �rst problem on this list concern
the set

P (n) = fx 2 N+: fx� 2n; x; x+ 2ng � Pg; n 2 N+ (3.1)

where P is the set of prime numbers. Kurepa asked what are the properties of
P (n), and in particular:

P1. Is P (1) = f5g? P2. Is there some n 2 N+ such that P (n) = ;?
We note the following properties of the sequence P (n). The set P (n) is related

to a part of Problem A6 in [Gu]. Namely, as noted there, it is not known whether
there are in�nitely many sets of three consecutive primes in an arithmetic pro-
gression, but S. Chowla has shown [Ch] this without the restriction to consecutive
primes. Thus, as x� 2n, x, x+ 2n is an arithmetic progression, we have[

n2N+

P (n) is in�nite: (3.2)

Further, assume n = 3k + 1, k 2 N . Then x� 2n � x+ 1 (mod 3), and x+ 2n �
x+ 2 (mod 3), thus 3 divides (x� 2n)x(x+ 2n). If x 2 P (n) then x� 2n = 3, i.e.
x = 2n+ 3. Hence P (n) = ;, or P (n) is an one-element set, i.e. P (n) = f6k + 5g,
where 6k + 5; 12k + 7 2 P . For example, P (1), P (4), P (7), P (10) are one-element
sets, while P (13) = ;, and this answers questions P1 and P2.

By (3.2), without any restriction on n, there are in�nitely many n such that
P (n) is an one-element set. However, we may ask if there are in�nitely many k 2 N
such that P (n) is an one-element set, where n = 3k + 1. We already observed
that this is the case i� 6k + 5; 12k + 7 2 P . We do not know the right answer,
and obviously this question is related to the twin primes conjecture, and to the
conjectures 5 and 4 in [Sh], which in turn would imply that there are in�nitely many
Mersenne primes. On the other hand, as the functions 6k+5 and 12k+7 are linearly
independent, from the Bateman{Horn conjecture [BaHo] it would follow that the
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number of k � m such that 6k+5; 12k+7 2 P is asymptotic to C
Rm
2 (logx)�2dx,

where C is a positive constant. In particular, it would follow that there are in�nitely
many n 2 3N + 1 such that P (n) is an one-element set.

If n = 3k + 2, where k 2 N , we have a similar conclusion, i.e. 3 divides
(x�2n)x(x+2n), and so if x 2 P (n) then x = 2n+3, thus P (n) = f6k+7g, where
6k + 7; 12k+ 11 2 P . We have also a similar discussion as in the case n = 3k + 1.

Finally, if n = 3k, k 2 N , then the problem whether P (n) is in�nite reduces
to the question whether there are in�nitely many prime triplets x� 6k, x, x+ 6k.
This question is related to Problem A9 in [Gu] and according to the discussion
supplemented to the problem, it is likely that there are in�nitely many such triplets.

The second problem Kurepa stated in his list concerns the sequence sn =
p2n � pn�1 � pn+1, where pn is the n-th prime. Kurepa asked what could be the
sign of the elements of this sequence. We note the following:

Lemma. p2n > pn�1 + pn + pn+1 if pn � 5.

Proof. If pn � 5, then p2n�pn�1�pn+1 � 5pn�2pn+1 = pn+2(2pn�pn+1):
By Bertrand's postulate, which says that for every positive integers m there is a
prime in the interval [m; 2m], we have pn+1 < 2pn, so

p2n � pn�1 � pn+1 > pn; i.e. p2n > pn�1 + pn + pn+1: }
By the above lemma, we see that for all pn � 3, p2n � pn�1 � pn+1 > 0. Actually
we can show that

p2n >
n+1X
k=1

pk (n � n0): (3.3)

Namely, from the prime number theorem it follows that

pn = n(lnn+O(ln lnn)): (3.4)

Using (3.4) it follows that the left-hand side of (3.3) is asymptotic to n2 ln2 n, while
the right-hand side is

n+1X
k=1

k ln k +O(n2(ln lnn)2) =
n2

2
lnn+O(n2(ln lnn)2):

In the third problem of his list Kurepa considered the sequence de�ned by
�n = p2n�pn�1pn+1, and asked what could be the sign of members of this sequence,
and how often they take the same sign. First, let us note that obviously �n < 0
or �n > 0. Further, this question is related to Problem A14 in [Gu]. Namely,
Erd}os and Straus call the prime pn good if p2n > pn�ipn+i for all 1 � i � n � 1.
Pomerance [Po] proved that there are in�nitely many good primes, and therefore
there are in�nitely many n such that �n > 0. Pomerance also proved that

lim sup
n!1

(p2n �M(n)) = +1; where M(n) = max
0<i<n

pn�ipn+i:
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Now suppose that pn�1 and pn = pn�1 + 2 are twin primes. Then pn+1 � pn + 6,
thus (if pn � 3)

p2n � pn�1pn+1 � p2n�1 + 4pn�1 + 4� pn�1(pn�1 + 6) = �2pn�1 + 4 < 0:

Hence, from the twin prime conjecture it would follow that there are in�nitely many
n 2 N+ such that �n < 0. For some further inequalities involving pn we refer the
reader to the monograph of Mitrinovi�c and Popadi�c [MiPo].

The last problem in number theory (Problem 4) from the Kurepa's list con-
cerns the left factorial hypothesis, and we discussed it already in the previous
section.
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