
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie tome 56 (70), 1994, 111{118

ON SCHUR-CONVEXITY OF SOME DISTRIBUTION FUNCTIONS
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Communicated by Zoran Ivkovi�c

Abstract. If X1; . . . ; Xn are independent geometric random variables with parameters
p1; . . . ; pn respectivelly, we prove that the function F (p1; . . . ; pn; t) = P (X1 + . . . +Xn � t) is
Schur-concave in (p1; . . . ; pn) for every real t. We also give a new proof for a theorem due to
P. Diaconis on Schur-convexity of distribution fuction of linear combination of two exponential
random variables.

I. Introduction

Let X1; . . . ; Xn be independent and identically distributed random variables
and let

F (c1; . . . ; cn; t) = P (c1X1 + . . . + cnXn � t):

By a result of Proschan [7], if the common density of X1; . . . ; Xn is symmetric
about zero and log-concave, then the function F is Schur-concave in (c1; . . . ; cn).
For nonsymmetric densities, analogous results are known only in several particular
cases of Gamma and Weibull distributions (see [1], [2], [8] and a survey in [6]).

For discrete distributions, there are Schur-convexity results for Bernoulli ran-
dom variables in [3] and [4], and a more general result in [5].

Investigation of Schur-convexity is of an interest because Schur-convexity im-
plies certain useful inequalities for tail probabilities.

Let us brie
y review concepts of majorization and Schur-convexity (see [6]
for details). Let ~x and ~y be vectors in Rn, and let x[i], y[i] denote the i-th largest
component of ~x, ~y respectively. Then we say that ~x � ~y (~x is majorized by ~y) if

kX
i=1

x[i] �
kX

i=1

y[i]; k = 1; 2; . . . ; n� 1;
nX
i=1

x[i] =
nX
i=1

y[i]:

A function f of n arguments is said to be Schur-convex on a set A � Rn if, for all
~x; ~y 2 A,

~x � ~y ) f(~x) � f(~y):
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A function f is Schur-concave if �f is Schur-convex.

Let f be a Schur-convex function on a convex set A. Then

f(x1; x2; . . . ; xn) � f(m;m; . . . ;m); m =
x1 + . . . + xn

n
: (1)

In this paper we give our proof of a statement regarding two exponential
random variables and discuss a general case, which has not been solved yet. Further,
we present a result about sums of geometric random variables, thus adding one more
case to the list of particular results.

2. Exponential random variables

In [1, p. 377, 12K.3.] the following result of Persi Diaconis is stated without
a proof: If X1 and X2 are iid random variables with exp(1) distribution, then the
function

P (c1X1 + c2X2 � x); (c1; c2 > 0) (2)

is a Schur-concave function on (c1; c2) for x � (c1 + c2) and it is a Schur-convex
function on (c1; c2) for x � 3

2 (c1 + c2). There is a misprint in this statement:
the function is, in fact, Schur-convex for x � (c1 + c2) and Schur-concave for
x � 3

2 (c1 + c2).

We present here our proof of the correct statement. A more general result for
two Gamma random variables can be found in [1], but the proof is more involved.

The key tools are inequalities given in the Lemma below, that might be
of an independent interest. Note that without loss of generality we may assume
c1 + c2 = 1.

Lemma. Let c 2 (1=2; 1) and let '(t) = 1 � e�t � t
ct+1 . Then (i) '(t) > 0

for 0 < t � 2c�1
c(1�c) � t1. (ii) '(t) < 0 for t � 3

2 �
2c�1
c(1�c) � t2.

Proof. We shall prove both assertions by proving that for all c 2 (1=2; 1):
(a) The function t 7! '(t) has at most one zero in (0;+1), (b) '(t1) > 0,
(c) '(t2) < 0.

Proof of (a): The equation '(t) = 0 is equivalent to

ct+ 1� t

ct+ 1
= e�t (3)

The left hand side in (3) is negative if t > 1=(1� c). Therefore, (3) can have real
solutions only for t < 1=(1� c). With this restriction, (3) is equivalent to

 (t) = log(ct+ 1� t)� log(ct+ 1) + t = 0; 0 < t <
1

1� c
: (4)

Suppose now that the equation  (t) = 0 has at least two positive solutions � >
� > 0. Then the function  de�ned by (4) would also have roots �; � and we would
have  (0) =  (�) =  (�) = 0. This would imply (by Rolle's theorem) that the
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derivative  0 has at least two positive roots. However, this is not possible because
roots of  0 are 0 and t1.

Proof of (b): From the proof of (a) we have

 (0) = 0;  0(t) > 0(0 < t < t1);  0(t1) = 0;

which implies  (t) >  (0) = 0, (0 < t � t1), and, in particular,  (t1) > 0. The
latter inequality is equivalent to '(t1) > 0 as can easily be seen from the proof of
(a).

Proof of (c): After subsitution, the inequality '(t2) < 0 reduces to

(1� c)(3� 4c)

c(4c� 1)
< exp

�
�
3

2
�
2c� 1

c(1� c)

�
;

1

2
< c < 1: (5)

If c � 3=4, then (13) trivially holds. For c < 3=4, (13) is equivalent to

h(c) = log(1� c) + log(3� 4c)

� log c� log(4c� 1) +
3

2
�
2c� 1

c(1� c)
< 0;

1

2
< c <

3

4
:

(6)

It is straightforward to check that h(1=2) = 0 and

h0(c) =
9(2c� 1)4

2c2(4c� 1)(4c� 3)(c� 1)2
< 0 for

1

2
< c <

3

4
;

and (6) is proved.

Theorem 1. Let X1 and X2 be independent random variables with expo-
nential distribution, EX1 = EX2 = 1. Then the function

F (c1; c2; x) = P (c1X1 + c2X2 � x); c1 + c2 = 1; c1; c2 > 0;

is Schur convex on (c1; c2) if x � 1 and it is Schur concave on (c1; c2) if x � 3=2.

Proof. It is easy to show that

F (c1; c2; x) = 1�
c1e

�x=c1 � c2e
�x=c2

c1 � c2
; c1 6= c2;

F

�
1

2
;
1

2
; x

�
= 1� e�2x(1 + 2x)

(7)

Since limc1!1=2 F (c1; 1 � c1; x) = F (1=2; 1=2; x), it suÆces to show Schur-
convexity (Schur-concavity) of F with respect to (c1; c2) in the domain c1+ c2 = 1,
c 6= c2; c1; c2 > 0.

If we assume that c1 > c2, then by c1 + c2 = 1 we have c1 > 1=2 and
c2 = 1� c1. Therefore,

F (c1; c2; x) = 1� f(c1; x); (8)
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where

f(c; x) =
ce�x=c � (1� c)e�x=(1�c)

2c� 1
:

In our case majorization of vectors ~c = (c1; c2);~c
0 = (c01; c

0
2) with c1 > c2 means:

~c � ~c0 () c1 � c01 ^ c1 + c2 = c01 + c02 = 1;

i.e, ~c � ~c0 () c1 � c01. Thus, the function F in (8) is Schur convex (Schur
concave) if and only if the function f is nonincreasing (nondecreasing) in c 2
(1=2; 1].

The derivative of the function f with respect to c reads:

@f(c; x)

@c
=

1

(2c� 1)2

�
1

c
e�x=c(2cx� x� c) +

1

1� c
e�x=(1�c)(2cx� x+ 1� c)

�
:

The sign of this expression is the same as the sign of

(cx(2c� 1) + c(1� c))
�
e�x=(1�c) � e�x=c

�
+ x(2c� 1)e�x=c:

For 1=2 < c < 1 and x > 0, the sign of the latter expression is the same as the sign
of

A(x; c) = e�(x=(1�c)�x=c) � 1 +
x(2c� 1)

cx(2c� 1) + c(1� c)
: (9)

Let

t =
x

1� c
�
x

c
=
x(2c� 1)

c(1� c)
; x =

c(1� c)

2c� 1
: (10)

By substitution in (9), we get

A(x; c) = �1 + e�t +
t

ct+ 1
= �'(t);

where ' is the function introduced in the Lemma. By (i) of the Lemma and (10),
we have that A(x; c) < 0 for x � 1, and the function f is decreasing on c, which
implies Schur-convexity of F . Similarly, from (ii) of the Lemma we conclude that
F is a Schur-concave function on (c1; c2) for x � 3=2.

Corollary. For X1; X2; c1; c2 as in Theorem 1, the following inequalities
hold:

P (c1X1 + c2X2 � x) � P

�
X1 +X2

2
� x

�
if 0 � x � 1

P (c1X1 + c2X2 � x) � P

�
X1 +X2

2
� x

�
if x �

3

2
:

Proof. Immediate by Theorem 1 and the inequality (1).

Remarks and comments. There is a numerical evidence that a state-
ment analogous to the one proved in Theorem 1, holds for more than two random
variables. The Schur-convexity of the function

F (c1; . . . cn; x) = P (c1X1 + . . . cnXn � x)
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should be investigated on the set(
(c1; . . . ; cn)j

nX
i=1

c1 = 1; c1; . . . ; cn > 0

)
:

If X1; . . .Xn are iid exponential random variables with the mean equal to 1, and if
all cj are di�erent and positive, then

F (c1; . . . ; cn; x) = 1�
nX

j=1

e�x=cjQ
k 6=j(1� ck=cj)

:

If cj = 1=n for all j = 1; 2; . . . ; n, then

F (1=n; . . . ; 1=n; x) = 1� e�nx
�
1 + nx+ . . . +

(nx)n�1

(n� 1)!

�
:

In intermediate case when some of constants are equal, the corresponding formulas
can be derived, but it seems that this can be avoided by observing that the function
F has to continuous and so it suÆces to look at the set of all di�erent c1; . . . cn
that sum up to 1.

It seems that the case n > 2 requires a di�erent approach. The di�erence
between n > 2 and n = 2 is also re
ected in the following fact. If n = 2, then

Var (cX1 + (1� c)X2) = c2 + (1� c)2 = 2c2 � 2c+ 1:

For c > 1=2, the function c 7! 2c2 � 2c + 1 is increasing. So, in this case, F is
Schur-convex if and only if

Var (Y ) � Var (Y 0)) P (Y � x) � P (Y 0 � x); (11)

where Y =
Pn

i=1 ciXi, Y
0 =

Pn
i=1 c

0
iXi, n = 2.

Theorem 1 looks very natural in the light of relation (11). If one draws a
graph of two unimodal distribution function F1 and F2 with the same mean and
variances �1 < �2, then one would expect that F1(x) < F2(x) for x � x0, and
that F1(x) > F2(x) for x > x0. So, it seems intuitively clear that the family of
unimodal distribution functions F (c1; . . . ; cn; x) should be increasing with respect
to the variance (= Schur-convex) for small values of x, and decreasing (= Schur-
concave) for large values of x.

However, for n > 2, it can be numerically shown that (11) does not necessarily
hold even if F is Schur-convex.

3. Geometric random variables

Let X1; . . . ; Xn be independent geometric random variables with parameters
p1; . . . ; pn respectively:

P (Xi = k) = pi(1� pi)
k; k = 1; 2; . . .
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Let p = (p1; . . . ; pn), q = (1� p1; . . . ; 1� pn).

In this part we will prove the following result:

Theorem 2. The function F (p1; . . . ; pn; t) = P (X1 + . . . + Xn � t) is
Schur-concave with respect to p, for every real t.

If t � n, then the explicit expression for F reads

p1 � � � pn
X

k1+���+kn�[t]�n

(1� p1)
k1 � � � (1� pn)

kn ;

where ki � 0 are integers. The product p1 � � � pn is a Schur-concave function. Second
term in (12) is a sum of complete symmetric functions and it is Schur-convex with
respect to q (see [1, Ch. 3, F5]). By p � p0 () q � q0, it follows that this term
is also Schur-convex with respect to p. Therefore, an immediate conclusion about
Schur-convexity of (12) is not possible.

Let S = X1 + � � �+Xn. Then

ES =
nX
i=1

1

pi
; VarS =

nX
i=1

1� pi
p2i

and both expressions are convex and symmetric, hence Schur-convex functions of
p1; . . . ; pn. By (�p; . . . ; �p) � (p1; . . . ; pn), �p = (p1 + � � � pn)=n, we conclude that, for
p1 + � � � + pn = c = const., ES and VarS are minimal when probabilities pi are
equal.

By Theorem 2, we have a stronger conclusion:

F (p1; . . . ; pn; t) � F (�p; . . . ; �p; t); �p =
p1 + � � �+ pn

n
: (13)

Therefore, the value of expression (12) is not greater than

�pn
[t]�nX
k=0

�
k + n� 1

k

�
(1� �p)k:

Proof of Theorem 2. By [6], it suÆces to show that the function

x 7! F (p1; c� p1; p3; . . . ; pn; t)

is decreasing in p1 when p1 2 (c=2; c) (and when F is de�ned), with p3; . . . ; pn
being �xed. Since t is arbitrary and

P (X1 + � � �+Xn � t) = E(P (X1 +X2 � t�X3 � � � �XnjX3; � � � ; Xn));

it suÆces to prove the result for n = 2. Further, it is clear that it suÆces to give a
proof for integers t � 2.

For n = 2, (12) reads:

F (p1; p2; t) = p1p2

[t]�2X
k=0

kX
j=0

(1� p1)
j(1� p2)

k�j ;
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or, after summation,

F (p1; p2; t) =

p1p2
p1 � p2

�
(1� p2)

1� (1� p2)
m+1

p2
� (1� p1)

1� (1� p1)
m+1

p1

�
;

(14)

where m = [t]� 2. Letting p1 = x, p2 = c� x, we obtain the expression

f(x) = F (x; c� x; t) =
x(c� x)

2x� c

�
(1� c+ x) �

1� (1� c+ x)m+1

c� x

�(1� x) �
1� (1� x)m+1

x

�
;

where m = 0; 1; 2; . . . .

We have to show that f is decreasing function in x 2 (c=2; c). However, the
conditions 0 � x � 1, 0 � 1� c+x � 1, c=2 � x � c, 0 � c � 2 are met if and only
if

c

2
� x � min(c; 1); 0 � c � 2: (15)

Therefore, we will show that the function f is decreasing in x, for x and c as
speci�ed in (15).

We have the following:

f 0(x) = �
1

(2x� c)2

��
2x2(m+ 2)� cx(m+ 3) + c(c� 1)

�
(x� c+ 1)m+1

�
�
2x2(m+ 2)� cx(3m+ 5) + c(c(m+ 2)� 1)

�
(1� x)m+1

�

= �
1

(2x� c)2
g(x); g(c=2) = 0;

g0(x) = (m+ 2)(2x� c)

�
(x(m+ 3)� c(m+ 1)� 2) (1� x)m

+ (x(m+ 3)� 2c+ 2) (x� c+ 1)m
�

= (m+ 2)(2x� c)'(x):

It follows that the proof will be �nished if we show that '(x) � 0. This
inequality is equivalent to

�(x)(x � c+ 1)m � �(x)(1� x)m; (16)

where �(x) = x(m+3)� 2c+2, �(x) = 2+ c(m+1)�x(m+3). Let us show that
both � and � are non-negative for x as in (15).

1Æ We have that
�(c=2) =

c

2
(m� 1) + 2 > 0;
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and since � is increasing, �(x) > 0 for all x � c=2.

2Æ To show positivity of �, note that �(c=2) = �(c=2) > 0 and

�(1) = (c� 1)(m+ 1) � 0 for c � 1;

�(c) = 2(1� c) � 0 for c � 1:

Since � is a monotone function, �(x) � 0 for x as indicated.

Further,
�(x) � �(x) = (2x� c)(m+ 3) � 0 (17)

and, by x � c=2,
(x� c+ 1)m � (1� x)m: (18)

Inequalities (17) and (18) imply (16), which ends the proof.

Remark. There is an analogy between geometric and exponential distribu-
tions, both representing a waiting time untill the �rst event (Bernoulli or Poisson).
Therefore, one would expect that a similar result holds for exponential distribution.
Indeed, as indicated in [1], Tong [8] has proved an analogous result for the Gamma
distribution.
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