ON THE AC-CONTACT BOCHNER CURVATURE TENSOR FIELD ON ALMOST COSYMPLECTIC MANIFOLDS

Hiroshi Endo

Communicated by Mileva Prvanović

Abstract. On an almost cosymplectic manifold we define a new modified contact Bochner curvature tensor field which is invariant with respect to *D*-homothetic deformation. Then we generalize a theorem of Olszak [5] and describe some manifolds with vanishing its new modified contact Bochner curvature tensor field.

1. Introduction. Olszak [5, Theorem 6.2] got the necessary and sufficient condition for a conformally flat almost cosymplectic manifold to be cosymplectic. On the other hand, Matsumoto and Chuman [4] defined contact Bochner curvature tensor in Sasakian manifolds (see also Yano [8]). This tensor is invariant with respect to *D*-homothetic deformations (see Tanno [7] about *D*-homothetic deformations). In this paper we modify contact Bochner curvature tensor and define a new modified contact Bochner curvature tensor field which is invariant with respect to *D*-homothetic deformations of an almost cosymplectic manifold. We call it *AC*-contact Bochner curvature tensor. Then, by using *AC*-contact Bochner curvature, we get a generalization of an Olszak's theorem [5, Theorem 6.2]. Moreover, we consider an almost cosymplectic manifold with constant ϕ -sectional curvature and another one with vanishing *AC*-contact Bochner curvature.

2. Preliminaries. Let (M, ϕ, ξ, η, g) be a (2n + 1)-dimensional almost contact Riemannian manifold, that is, let M be a differentiable manifold and (ϕ, ξ, η, g) an almost contact Riemannian structure on M, formed by tensor fields ϕ, ξ, η , of type (1,1), (1,0) and (0,1), respectively, and a Riemannian metric g such that

$$\phi^{2} = -I + \eta \otimes \xi, \quad \phi\xi = 0, \quad \eta \cdot \phi = 0, \quad \eta(\xi) = 1, \\ \eta(X) = g(X,\xi), \quad g(\phi X, \phi Y) = g(X,Y) - \eta(X)\eta(Y).$$
(2.1)

AMS Subject Classification (1991): Primary 53 C 15, 53 C 25,

 $Key\ words\ and\ phrases:$ almost cosymplectic manifold, cosymplectic manifold, $D\text{-}\mathrm{homothetic}$ deformation

On such a manifold we may always define 2-form Φ by $\Phi(X, Y) = g(\phi X, Y)$. Then (M, ϕ, ξ, η, g) is said to be an almost cosymplectic manifold if the forms Φ and η are closed, i.e., if $d\Phi = 0$, $d\eta = 0$, where d is a exterior differentiation. On an almost cosymplectic manifold we define an operator h by $h = -\frac{1}{2}\mathcal{L}_{\xi}\phi$, where \mathcal{L} denotes the Lie differentiation. Then we see that h is symmetric, h anti-commutes with ϕ (i.e., $\phi h + h\phi = 0$), $h\xi = 0$, $\nabla_X \xi = \phi h X$ and $\operatorname{Tr} h = 0$, where ∇ is the covariant differentiation with respect to g and $\operatorname{Tr} h$ is the trace of h (see [2]). From $\phi h\xi = 0$, we notice

$$(\nabla_Y(\phi h))\xi = -h^2Y \tag{2.2}$$

$$(\nabla_{\xi}(\phi h))X = R(\xi, X)\xi - h^2 X, \qquad (2.3)$$

where R is the curvature tensor $(R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]})$. Furthermore, the following are satisfied [2]:

$$g(R(Y,\xi)\xi,Z) + g(R(\phi Y,\xi)\xi,\phi Z) + 2g(hY,hZ) = 0$$
(2.4)

$$g(Q\xi,\xi) = -\operatorname{Tr} h^2, \qquad (2.5)$$

where Q is the Ricci operator. If an almost contact structure of an almost cosymplectic manifold is normal, then it is said to be a cosymplectic manifold. As it is known, an almost contact metric structure is cosymplectic if and only if both $\nabla \eta$ and $\nabla \phi$ vanish ([3]; see also [2] and [5]). However, if we have $\nabla \phi = 0$, then, we can easily get $\nabla \eta = 0$ by taking the covariant differentiation of $\phi \xi = 0$. In a cosymplectic manifold M with structure tensor (ϕ, ξ, η, g) , from $\nabla \xi = 0$ we have

$$R(X,Y)\xi = 0 \tag{2.6}$$

for any vector fields X and Y on M, wherefrom

$$Q\xi = 0. \tag{2.7}$$

Using $\nabla \phi = 0$ and $R(X, Y)\phi Z = \nabla_X \nabla_Y (\phi Z) - \nabla_Y \nabla_X (\phi Z) - \nabla_{[X,Y]} \phi Z$, we find

$$R(X,Y)\phi Z = \phi R(X,Y)Z.$$
(2.8)

Thus, using the property of the curvature tensor, we get

$$R(\phi X, \phi Y)Z = R(X, Y)Z.$$
(2.9)

From (2.9), we find $R(\phi X, Y)Z = -R(X, \phi Y)Z$. Moreover we have

$$\phi Q = Q\phi, \qquad (2.10)$$

where we used

$$g(Q\phi Y, \phi Z) = \sum_{i=1}^{2n+1} g(R(E_i, \phi Y)\phi Z, E_i) = -\sum_{i=1}^{2n+1} g(R(\phi E_i, Y)\phi Z, E_i)$$
$$= -\sum_{i=1}^{2n+1} g(\phi R(\phi E_i, Y)Z, E_i) = \sum_{i=1}^{2n+1} g(R(\phi E_i, Y)Z, \phi E_i) = g(QY, Z)$$

where $\{E_i, 1 \le i \le 2n+1\}$ is a ϕ -basis $(E_{n+t} = \phi E_t, 1 \le t \le n; E_{2n+1} = \xi)$.

By D we denote the distribution of an almost contact metric manifold M defined by $\eta = 0$. M is said to be of pointwise constant ϕ -sectional curvature if at any point $x \in M$, the sectional curvature $K(X, \phi X)$ is independent of the choice of non-zero $X \in D_x$. In this case, the ϕ -sectional curvature K is a function on M.

An almost contact metric manifold is said to be η -Einstein if $Q = aI + b\eta \otimes \xi$, where a and b are smooth functions on M. Especially if b = 0, then M is said to be Einstein.

On a (2n + 1)-dimensional almost cosymplectic manifold M the Weyl conformal curvature tensor of M is the tensor field C of type (1,3) defined by

$$C(X,Y)Z = R(X,Y)Z + \frac{1}{2n-1}(g(QX,Z)Y - g(QY,Z)X + g(X,Z)QY - g(Y,Z)QX) - \frac{S}{2n(2n-1)}(g(X,Z)Y - g(Y,Z)X)$$
(2.11)

for any vector fields X, Y and Z on M (where S is the scalar curvature). Moreover we put

$$c(X,Y) = (\nabla_X Q)Y - (\nabla_Y Q)X - \frac{1}{2(2n-1)}((\nabla_X S)Y - (\nabla_Y S)X).$$
(2.12)

Then it is well-known that a necessary and sufficient condition for M to be conformally flat is that C = 0 for n > 3 and c = 0 for n = 3 (C vanishes identically for n = 3).

3. *D*-homothetic deformations. Let *M* be an (m + 1)-dimensional (m = 2n) almost cosymplectic manifold. Now we define a tensor field B^{ac} on *M* by

$$B^{ac}(X,Y) = R(X,Y) + \phi hX \wedge \phi hY + \frac{1}{2(m+4)} (QY \wedge X - (\phi Q \phi Y) \wedge X + \frac{1}{2} (\eta(Y)Q\xi \wedge X + \eta(QY)\xi \wedge X) - QX \wedge Y + (\phi Q \phi X) \wedge Y - \frac{1}{2} (\eta(X)Q\xi \wedge Y + \eta(QX)\xi \wedge Y) + (Q\phi Y) \wedge \phi X + (\phi QY) \wedge \phi X - (Q\phi X) \wedge \phi Y - (\phi QX) \wedge \phi Y + 2g(Q\phi X,Y)\phi + 2g(\phi QX,Y)\phi + 2g(\phi X,Y)\phi Q + 2g(\phi X,Y)Q\phi - \eta(X)QY \wedge \xi + \eta(X)(\phi Q\phi Y) \wedge \xi + \eta(Y)QX \wedge \xi - \eta(Y)(\phi Q\phi X) \wedge \xi),$$

$$(3.1)$$

where $(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y$ (c.f. [4]). Using (3.1), B^{ac} satisfies the following identities in an almost cosymplectic manifold M.

$$B^{ac}(X,Y)Z = -B^{ac}(Y,X)Z, B^{ac}(X,Y)Z + B^{ac}(Y,Z)X + B^{ac}(Z,X)Y = 0 g(B^{ac}(X,Y)Z,W) = -g(Z,B^{ac}(X,Y)W), g(B^{ac}(X,Y)Z,W) = g(B^{ac}(Z,W)X,Y).$$
(3.2)

104

If M is a cosymplectic manifold, then B^{ac} turns into the following B^{c} because of (2.7), (2.10) and (3.1).

$$B^{c}(X,Y) = R(X,Y) + \frac{1}{m+4}(QY \wedge X - QX \wedge Y + Q\phi Y \wedge \phi X - Q\phi X \wedge \phi Y + 2g(Q\phi X,Y)\phi + 2g(\phi X,Y)Q\phi + \eta(Y)QX \wedge \xi + \eta(X)\xi \wedge QY).$$

 B^c is the main part of the contact Bochner curvature tensor (Matsumoto and Chuman [4]). Moreover, the following are satisfied in a cosymplectic manifold M.

$$B^{ac}(\xi, Y)Z = B^{c}(\xi, Y)Z = B^{c}(X, Y)\xi = B^{ac}(X, Y)\xi = 0$$

$$B^{ac}(\phi X, \phi Y)Z = B^{c}(\phi X, \phi Y)Z = B^{c}(X, Y)Z = B^{ac}(X, Y)Z,$$
(3.3)

where we used (2.4), (2.6), (2.8) and (2.9).

We consider a *D*-homothetic deformation $g^* = \alpha g + \alpha(\alpha - 1)\eta \otimes \eta$, $\phi^* = \phi$, $\xi^* = \alpha^{-1}\xi$, $\eta^* = \alpha\eta$ on an almost cosymplectic manifold *M*, where α is a positive constant. For a *D*-homothetic deformation we say that $M(\phi, \xi, \eta, g)$ is *D*-homothetic to $M(\phi^*, \xi^*, \eta^*, g^*)$. It is easy to see that if an almost cosymplectic manifold $M(\phi, \xi, \eta, g)$ is *D*-homothetic to $M(\phi^*, \xi^*, \eta^*, g^*)$, then $M(\phi^*, \xi^*, \eta^*, g^*)$ is an almost cosymplectic manifold. Moreover if $M(\phi, \xi, \eta, g)$ is a cosymplectic manifold, then $M(\phi^*, \xi^*, \eta^*, g^*)$ is also a cosymplectic manifold. Denoting by W_{jk}^i the difference $\Gamma_{jk}^{*i} - \Gamma_{jk}^i$ of Christoffel symbols, by $\nabla_X \xi = \phi h X$ (hence $(\nabla_X \eta) Y = (\nabla_Y \eta) X$) we have in an almost cosymplectic manifold M [6]

$$W(X,Y) = \frac{\alpha - 1}{\alpha} (\nabla_X \eta)(Y) \xi = \frac{\alpha - 1}{\alpha} g(\phi h X, Y) \xi.$$

Putting this into

$$R^*(X,Y)Z = R(X,Y)Z + (\nabla_X W)(Z,Y) - (\nabla_Y W)(Z,X)$$
$$+ W(W(Z,Y),X) - W(W(Z,X),Y)$$

and using $\nabla_X \xi = \phi h X$, we find

$$R^*(X,Y)Z = R(X,Y)Z + \frac{\alpha - 1}{\alpha} (g(Y, (\nabla_X(\phi h))Z)\xi) - g(X, (\nabla_Y(\phi h))Z)\xi + g(Y, \phi hZ)\phi hX - g(X, \phi hZ)\phi hY).$$
(3.4)

Here, choosing ϕ^* -basis with respect to g^* and using (2.2) and (2.3), we get

$$\operatorname{Ric}^{*}(Y,Z) = \operatorname{Ric}(Y,Z) - \frac{\alpha - 1}{\alpha} (g(R(Z,\xi)\xi,Y) + g(h^{2}Y,Z)), \quad (3.5)$$

where Ric is the Ricci curvature of M. From (3.5) we have

$$Q^*Y = \frac{1}{\alpha}QY - \frac{\alpha - 1}{\alpha^2}\eta(QY)\xi - \frac{\alpha - 1}{\alpha^2}(h^2Y - R(\xi, Y)\xi),$$
(3.6)

where we used $\eta(Q^*Y) = \alpha^{-2}\eta(QY)$. By virtue of (3.5) we find

$$S^* = \frac{1}{\alpha}S - 2\frac{\alpha - 1}{\alpha^2} \operatorname{Ric}\left(\xi, \xi\right).$$
(3.7)

Moreover if we consider the *D*-homothetic deformation of $\mathcal{L}_{\xi}\phi$, we find

$$h^* = \frac{1}{\alpha}h,\tag{3.8}$$

wherefrom we get

$$\operatorname{Tr} h^{*^{2}} = \frac{1}{\alpha^{2}} \operatorname{Tr} h^{2}.$$
(3.9)

After a clumsy computations we obtain, by means of (2.4), (3.1), (3.4), (3.5), (3.6) and (3.8), the following

$${}^{*}B^{ac}(X,Y)Z = B^{ac}(X,Y)Z + \frac{\alpha - 1}{\alpha} (g(Y, (\nabla_{X}(\phi h))Z)\xi - g(X, (\nabla_{Y}(\phi h))Z)\xi) + \frac{1}{2}\frac{\alpha - 1}{\alpha} (\eta(X)g(Q\xi,\xi)g(Y,Z)\xi - \eta(Y)g(Q\xi,\xi)g(X,Z)\xi) + \frac{3}{2}\frac{\alpha - 1}{\alpha} (g(Y,Z)\eta(QX)\xi - g(X,Z)\eta(QY)\xi + \eta(X)\eta(Z)\eta(QY)\xi - \eta(Y)\eta(Z)\eta(QX)\xi) + \frac{\alpha - 1}{\alpha} (\eta(Q\phi X)g(\phi Y,Z)\xi - \eta(Q\phi Y)g(\phi X,Z)\xi - 2\eta(Q\phi Z)g(\phi X,Y)\xi).$$

$$(3.10)$$

Now we shall introduce the AC-contact Bochner curvature tensor in M by

$$AC(X,Y)Z = B^{ac}(X,Y)Z - \eta(B^{ac}(X,Y)Z)\xi.$$
 (3.11)

In particular, if M is a cosymplectic manifold, by the definition of B^c , (3.2) and (3.3), we have $AC = B^c$.

THEOREM 3.1. The AC-contact Bochner curvature tensor is invariant with respect to the D-homothetic deformation $M(\phi, \xi, \eta, g) \rightarrow M(\phi^*, \xi^*, \eta^*, g^*)$ on an almost cosymplectic manifold M.

Proof. Using (3.10), we find

$${}^{*}B^{ac}(X,Y)Z - \eta^{*}(B^{ac}(X,Y)Z)\xi^{*} = {}^{*}B^{ac}(X,Y)Z - \eta({}^{*}B^{ac}(X,Y)Z)\xi$$
$$= B^{ac}(X,Y)Z - \eta(B^{ac}(X,Y)Z)\xi.$$

Thus we get $AC^*(X, Y)Z = AC(X, Y)Z$.

4. Some results. We define $s^{\sharp} = \sum_{i,j=1}^{2n+1} g(R(E_i, E_j)\phi E_j, \phi E_i)$, where $\{E_i\}$ is an orthonormal frame.

LEMMA 4.1. [5]. For each almost cosymplectic manifold M we have

$$S - s^{\sharp} - g(Q\xi, \xi) + \frac{1}{2} \|\nabla\phi\|^2 = 0$$

Using this lemma, we prove the following.

106

THEOREM 4.1. Let M be an almost cosymplectic manifold with vanishing AC-contact Bochner curvature tensor. Then M is a cosymplectic manifold and the scalar curvature of M vanishes.

Proof. Since the AC-contact Bochner curvature tensor of M vanishes, we have

$$g(B^{ac}(X,Y)Z,W) = \eta(B^{ac}(X,Y)Z)\eta(W).$$
(4.1)

Taking $X = E_i$, $Y = E_j$, $Z = \phi E_j$, $W = \phi E_i$ ({ E_i } is a ϕ -basis) into the each member of (4.1), using (3.1) and summing over *i* and *j*, we have

$$\sum_{i,j=1}^{2n+1} g(B^{ac}(E_i, E_j)\phi E_j, \phi E_i) = s^{\sharp} - \operatorname{Tr} h^2 - \frac{2(n+1)}{n+2}(S - g(Q\xi, \xi)) = 0.$$
(4.2)

On the other hand, using (3.1), (4.1) and (3.2), we find

$$\sum_{i=1}^{2n+1} g(B^{ac}(E_i,\xi)\xi,E_i) = \frac{2}{(n+2)}g(Q\xi,\xi) = \sum_{i=1}^{2n+1} \eta(B^{ac}(E_i,\xi)\xi)\eta(E_i) = 0.$$
(4.3)

Moreover, calculating $\sum_{i,j=1}^{2n+1} g(B^{ac}(E_i, E_j)E_j, E_i)$ by means of (3.1), and using (4.1), (3.2) and (4.3), we get

$$\sum_{i,j=1}^{2n+1} g(B^{ac}(E_i, E_j)E_j, E_i) = -\frac{n}{(n+2)}S - \operatorname{Tr} h^2 + \frac{2}{(n+2)}g(Q\xi, \xi)$$

$$= \sum_{i,j=1}^{2n+1} \eta(B^{ac}(E_i, E_j)E_j)\eta(E_i) = \frac{2}{(n+2)}g(Q\xi, \xi) = 0.$$
(4.4)

By Lemma 4.1, (2.5), (4.2), (4.3) and (4.4) we obtain our result.

Now, let M be a conformally flat almost cosymplectic manifold of dimension $(2n + 1) \ge 5$. Then the following identities are known (see (3.1) in [2] and (6.4) in [5]), that is,

$$(2n-3)(\operatorname{Ric}(X,X) + \operatorname{Ric}(\phi X,\phi X)) = -\frac{S}{n} - (2n-1)(\|(\nabla\phi)(X)\|^2 + \|hX\|^2)$$
(4.5)

$$\frac{2n-2}{2n-1}S + \frac{2n-3}{2n-1}\|\nabla\xi\|^2 + \frac{1}{2}\|\nabla\phi\|^2 = 0,$$
(4.6)

where X is a vector such that $X \in D_x$, ||X|| = 1. Here, we get the following theorem.

THEOREM 4.2. Let M^{2n+1} be a conformally flat almost cosymplectic manifold of dimension $(2n+1) \ge 5$. Then the following conditions are equivalent: (1) M is locally flat (2) The AC-contact Bochner curvature of M vanishes (3) M is cosymplectic (4) The Ricci curvature of M is flat (5) The scalar curvature of M vanishes

Proof. (1) \Rightarrow (2): From (4.5) we have $S = \text{Ric}(X, X) = \text{Ric}(\phi X, \phi X) = 0$. Thus M is cosymplectic, wherefrom h = 0, so that $B^{ac} = 0$. Therefore $AC = B^c = 0$.

 $(2) \Rightarrow (3)$: This follows from Theorem 4.1.

 $(3) \Rightarrow (4)$: By (4.6) we find S = 0, so that, from (4.5) we get $g(QX, X) = g(\phi Q \phi X, X)$ for $X \in D_x$. However, from (2.10) and (2.7) we obtain g(QX, X) = 0 for $X \in D$. Using the polarization identity, we have g(QX, Y) = 0 for any $X, Y \in D$. Moreover, by (2.7) we obtain g(QX, Y) = 0 for any vector field X and Y, that is, the Ricci curvature of M is flat.

$$(4) \Rightarrow (5)$$
: Trivial.

(5) \Rightarrow (1): Using (4.6), we see that M is cosymplectic. Therefore, from (4.5) we get $g(QX, X) = (\phi Q \phi X, X)$ for $X \in D_x$, so that the Ricci curvature of M is flat. By (2.11) we get our result.

Remark 4.1. Theorem 4.2 is a generalization of Theorem 6 in [5].

Next, we consider an almost cosymplectic manifold with constant ϕ -sectional curvature K. Suppose that X is a vector such that $X \in D_x$, ||X|| = 1. Then we have the following (see (2.3) and Remark 2.1 in [2]).

$$\operatorname{Ric}(X,X) + \operatorname{Ric}(\phi X,\phi X) = (n+1)K - \frac{3}{4} \|(\nabla \phi)(X)\|^2 - \frac{5}{4} \|hX\|^2$$
(4.7)

$$S = \operatorname{Ric}(\xi, \xi) + \sum_{\alpha} \operatorname{Ric}(e_{\alpha}, e_{\alpha}) + \sum_{\alpha} \operatorname{Ric}(\phi e_{\alpha}, \phi e_{\alpha})$$

= $-\|h\|^{2} + (n+1)nK - \frac{3}{4}\sum_{\alpha=1}^{n} \|(\nabla\phi)(e_{\alpha})\|^{2} - \frac{5}{4}\sum_{\alpha=1}^{n} \|he_{\alpha}\|^{2}.$ (4.8)

From (4.7) and (4.8) we have the following theorem.

THEOREM 4.3. Let M be an almost cosymplectic manifold with constant ϕ -sectional curvature. Then a necessary and sufficient condition for M to be locally flat is that the AC-contact Bochner curvature of M vanishes.

Proof. Suppose that the AC-contact Bochner curvature of M vanishes. Then, from Theorem 4.1 M is cosymplectic and S = 0. This result and (4.8) lead to K = 0. Therefore, by (4.7) it follows that $\operatorname{Ric}(X, Y) = 0$ for any vector fields X and Y. Considering $B^{ac} = B^c = 0$, we can see that M is locally flat.

Conversely, suppose that M is locally flat. Then K = Ric(X, Y) = 0, so that, by (4.7) we see that M is cosymplectic, wherefrom $B^{ac} = B^c = 0$. Therefore AC = 0.

Last we consider an almost cosymplectic manifold with vanishing AC-contact Bochner curvature tensor. Then we obtain the following theorem.

THEOREM 4.4. Let M^{2n+1} $(n \neq 1)$ be an almost cosymplectic manifold with vanishing AC-contact Bochner curvature tensor. Then the following conditions are

108

equivalent: (1) M has a constant ϕ -sectional curvature 0, (2) M has a constant ϕ -sectional curvature, (3) M is Ricci flat, (4) M is η -Einstein, (5) M is locally flat (6) M is conformally flat.

Proof. First of all, since the AC-contact Bochner curvature tensor of M vanishes, M is cosymplectic and S = 0. Then:

- $(1) \Rightarrow (2)$ trivial;
- (2) \Rightarrow (3) from (4.8) we have K = 0, so that, by (4.7) we get the result;
- $(3) \Rightarrow (4)$ trivial;

(4) \Rightarrow (1) since *M* is η -Einstein, by two definitions of η -Einstein manifold and B^c , (2.7) and (2.10), we get

$$g(R(X,Y)Z,W) = -\frac{a}{2n+4} (2g(X,Z)g(Y,W) - 2g(X,W)g(Y,Z) + 2g(\phi X,Z)g(\phi Y,W) - 2g(\phi X,W)g(\phi Y,Z) + 4g(\phi Z,W)g(\phi X,Y) + \eta(Y)\eta(Z)g(X,W) - \eta(Y)\eta(W)g(X,Z) + \eta(X)\eta(W)g(Y,Z)$$
(4.9)
- $\eta(X)\eta(Z)g(Y,W)) - \frac{b}{2n+4} (g(X,Z)\eta(Y)\eta(W) - g(X,W)\eta(Y)\eta(Z) - g(Y,Z)\eta(X)\eta(W) + g(Y,W)\eta(X)\eta(Z)).$

Taking $X \in T_x(M)$ such that ||X|| = 1, $X \perp \xi$, and calculating $g(R(X, \phi X)\phi X, X)$ by using (4.9), we get $g(R(X, \phi X)\phi X, X) = \frac{4}{n+2}a$. On the other hand, from Ric $(X, Y) = ag(X, Y) + b\eta(X)\eta(Y)$ we find S = (2n + 1)a + b. We also have Ric $(\xi, \xi) = a + b$. However, by (2.7) we get b = -a. Thus S = 2na, wherefrom we find $g(R(X, \phi X)\phi X, X) = \frac{2S}{n(n+2)}$, which completes this proof;

 $(5) \Rightarrow (1)$: trivial;

(1) \Rightarrow (5): from (4.7) we have $\operatorname{Ric}(X, Y) = 0$ for any vector fields X and Y. Considering $B^c = 0$, we get the result;

(6) \Rightarrow (5): by (4.5) we see that Ric (X, Y) = 0 for any vector fields X and Y. Moreover S = 0. Therefore, by (2.11) we get that M is locally flat;

 $(5) \Rightarrow (6)$: it follows from (2.11).

Remark 4.2. The curvature of a Riemannian manifold is said to be harmonic if the divergence of its curvature tensor is zero. It is well known that a Riemannian manifold has harmonic curvature, if the Ricci operator Q satisfies

$$(\nabla_X Q)Y = (\nabla_Y Q)X$$

for any vector fields X, Y (e.g., see [1]). Theorem 4.4 is also valid for a 3dimensional almost cosymplectic manifold M^3 . At first the equivalences (1)–(5) are also valid for a 3-dimensional almost cosymplectic manifold. Here, put that (7) M^3 has a harmonic curvature. Then, from (4.7) we have Ric (X, Y) = 0 for any vector fields X, Y. Thus (1) \Rightarrow (7). By (4.8) we get (7) \Rightarrow (1). Moreover, from (2.12) we obtain (7) \iff (6). Therefore for an almost cosymplectic manifold M^3 the equivalences (1)–(7) hold good.

Acknowledgement. I would like to express my hearty thanks to the referee.

REFERENCES

- C. Baikoussis and T. Koufogiorgos, On a type of contact manifolds, J. Geometry 46 (1993), 1-9.
- [2] H. Endo, On Ricci curvatures of almost cosymplectic manifolds, An. Stiint. Univ "Al. I. Cuza" Iaşi Sect. Ia Mat. (N.S.), to appear.
- [3] S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382.
- [4] M. Matsumoto and G. Chuman, On the C-Bochner tensor, TRU Math. 5 (1969), 21-30.
- [5] Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239-250.
- [6] S. Tanno, Partially conformal transformation with respect to (m-1)-dimensional distributions of m-dimensional Riemannian manifolds, Tôhoku Math. J. **17** (1965), 358–409.
- [7] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-712.
- [8] K. Yano, Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, J. Differential. Geom. 12 (1977), 153-170.
- [9] K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore, 1984.

Kohnodai Senior High School 2-4-1, Kohnodai, Ichikawa-Shi 272 Chiba-Ken, Japan (Received 15 07 1994) (Revised 28 12 1994)