ON THE AC-CONTACT BOCHNER CURVATURE TENSOR FIELD ON ALMOST COSYMPLECTIC MANIFOLDS

Hiroshi Endo
Communicated by Mileva Prvanović

Abstract

On an almost cosymplectic manifold we define a new modified contact Bochner curvature tensor field which is invariant with respect to D-homothetic deformation. Then we generalize a theorem of Olszak [5] and describe some manifolds with vanishing its new modified contact Bochner curvature tensor field.

1. Introduction. Olszak [5, Theorem 6.2] got the necessary and sufficient condition for a conformally flat almost cosymplectic manifold to be cosymplectic. On the other hand, Matsumoto and Chuman [4] defined contact Bochner curvature tensor in Sasakian manifolds (see also Yano [8]). This tensor is invariant with respect to D-homothetic deformations (see Tanno [7] about D-homothetic deformations). In this paper we modify contact Bochner curvature tensor and define a new modified contact Bochner curvature tensor field which is invariant with respect to D-homothetic deformations of an almost cosymplectic manifold. We call it $A C$ contact Bochner curvature tensor. Then, by using $A C$-contact Bochner curvature, we get a generalization of an Olszak's theorem [5, Theorem 6.2]. Moreover, we consider an almost cosymplectic manifold with constant ϕ-sectional curvature and another one with vanishing $A C$-contact Bochner curvature.
2. Preliminaries. Let (M, ϕ, ξ, η, g) be a $(2 n+1)$-dimensional almost contact Riemannian manifold, that is, let M be a differentiable manifold and (ϕ, ξ, η, g) an almost contact Riemannian structure on M, formed by tensor fields ϕ, ξ, η, of type $(1,1),(1,0)$ and $(0,1)$, respectively, and a Riemannian metric g such that

$$
\begin{align*}
\phi^{2} & =-I+\eta \otimes \xi, \quad \phi \xi=0, \quad \eta \cdot \phi=0, \quad \eta(\xi)=1, \\
\eta(X) & =g(X, \xi), \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.1}
\end{align*}
$$

AMS Subject Classification (1991): Primary 53 C 15, 53 C 25,
Key words and phrases: almost cosymplectic manifold, cosymplectic manifold, D-homothetic deformation

On such a manifold we may always define 2-form Φ by $\Phi(X, Y)=g(\phi X, Y)$. Then (M, ϕ, ξ, η, g) is said to be an almost cosymplectic manifold if the forms Φ and η are closed, i.e., if $d \Phi=0, d \eta=0$, where d is a exterior differentiation. On an almost cosymplectic manifold we define an operator h by $h=-\frac{1}{2} \mathcal{L}_{\xi} \phi$, where \mathcal{L} denotes the Lie differentiation. Then we see that h is symmetric, h anti-commutes with ϕ (i.e., $\phi h+h \phi=0$), $h \xi=0, \nabla_{X} \xi=\phi h X$ and $\operatorname{Tr} h=0$, where ∇ is the covariant differentiation with respect to g and $\operatorname{Tr} h$ is the trace of h (see [2]). From $\phi h \xi=0$, we notice

$$
\begin{align*}
\left(\nabla_{Y}(\phi h)\right) \xi & =-h^{2} Y \tag{2.2}\\
\left(\nabla_{\xi}(\phi h)\right) X & =R(\xi, X) \xi-h^{2} X \tag{2.3}
\end{align*}
$$

where R is the curvature tensor $\left(R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}\right)$. Furthermore, the following are satisfied [2]:

$$
\begin{gather*}
g(R(Y, \xi) \xi, Z)+g(R(\phi Y, \xi) \xi, \phi Z)+2 g(h Y, h Z)=0 \tag{2.4}\\
g(Q \xi, \xi)=-\operatorname{Tr} h^{2} \tag{2.5}
\end{gather*}
$$

where Q is the Ricci operator. If an almost contact structure of an almost cosymplectic manifold is normal, then it is said to be a cosymplectic manifold. As it is known, an almost contact metric structure is cosymplectic if and only if both $\nabla \eta$ and $\nabla \phi$ vanish ([3]; see also [2] and [5]). However, if we have $\nabla \phi=0$, then, we can easily get $\nabla \eta=0$ by taking the covariant differentiation of $\phi \xi=0$. In a cosymplectic manifold M with structure tensor (ϕ, ξ, η, g), from $\nabla \xi=0$ we have

$$
\begin{equation*}
R(X, Y) \xi=0 \tag{2.6}
\end{equation*}
$$

for any vector fields X and Y on M, wherefrom

$$
\begin{equation*}
Q \xi=0 \tag{2.7}
\end{equation*}
$$

Using $\nabla \phi=0$ and $R(X, Y) \phi Z=\nabla_{X} \nabla_{Y}(\phi Z)-\nabla_{Y} \nabla_{X}(\phi Z)-\nabla_{[X, Y]} \phi Z$, we find

$$
\begin{equation*}
R(X, Y) \phi Z=\phi R(X, Y) Z \tag{2.8}
\end{equation*}
$$

Thus, using the property of the curvature tensor, we get

$$
\begin{equation*}
R(\phi X, \phi Y) Z=R(X, Y) Z \tag{2.9}
\end{equation*}
$$

From (2.9), we find $R(\phi X, Y) Z=-R(X, \phi Y) Z$. Moreover we have

$$
\begin{equation*}
\phi Q=Q \phi \tag{2.10}
\end{equation*}
$$

where we used

$$
\begin{aligned}
g(Q \phi Y, \phi Z) & =\sum_{i=1}^{2 n+1} g\left(R\left(E_{i}, \phi Y\right) \phi Z, E_{i}\right)=-\sum_{i=1}^{2 n+1} g\left(R\left(\phi E_{i}, Y\right) \phi Z, E_{i}\right) \\
& =-\sum_{i=1}^{2 n+1} g\left(\phi R\left(\phi E_{i}, Y\right) Z, E_{i}\right)=\sum_{i=1}^{2 n+1} g\left(R\left(\phi E_{i}, Y\right) Z, \phi E_{i}\right)=g(Q Y, Z)
\end{aligned}
$$

where $\left\{E_{i}, 1 \leq i \leq 2 n+1\right\}$ is a ϕ-basis $\left(E_{n+t}=\phi E_{t}, 1 \leq t \leq n ; E_{2 n+1}=\xi\right)$.
By D we denote the distribution of an almost contact metric manifold M defined by $\eta=0 . M$ is said to be of pointwise constant ϕ-sectional curvature if at any point $x \in M$, the sectional curvature $K(X, \phi X)$ is independent of the choice of non-zero $X \in D_{x}$, In this case, the ϕ-sectional curvature K is a function on M.

An almost contact metric manifold is said to be η-Einstein if $Q=a I+b \eta \otimes \xi$, where a and b are smooth functions on M. Especially if $b=0$, then M is said to be Einstein.

On a $(2 n+1)$-dimensional almost cosymplectic manifold M the Weyl conformal curvature tensor of M is the tensor field C of type $(1,3)$ defined by

$$
\begin{align*}
& C(X, Y) Z=R(X, Y) Z \\
& \quad+\frac{1}{2 n-1}(g(Q X, Z) Y-g(Q Y, Z) X+g(X, Z) Q Y-g(Y, Z) Q X) \tag{2.11}\\
& \quad-\frac{S}{2 n(2 n-1)}(g(X, Z) Y-g(Y, Z) X)
\end{align*}
$$

for any vector fields X, Y and Z on M (where S is the scalar curvature). Moreover we put

$$
\begin{equation*}
c(X, Y)=\left(\nabla_{X} Q\right) Y-\left(\nabla_{Y} Q\right) X-\frac{1}{2(2 n-1)}\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X\right) \tag{2.12}
\end{equation*}
$$

Then it is well-known that a necessary and sufficent condition for M to be conformally flat is that $C=0$ for $n>3$ and $c=0$ for $n=3(C$ vanishes identically for $n=3$).
3. D-homothetic deformations. Let M be an $(m+1)$-dimensional ($m=$ $2 n$) almost cosymplectic manifold. Now we define a tensor field $B^{a c}$ on M by

$$
\begin{align*}
& B^{a c}(X, Y)=R(X, Y)+\phi h X \wedge \phi h Y \\
& \quad+\frac{1}{2(m+4)}\left(Q Y \wedge X-(\phi Q \phi Y) \wedge X+\frac{1}{2}(\eta(Y) Q \xi \wedge X+\eta(Q Y) \xi \wedge X)\right. \\
& \quad-Q X \wedge Y+(\phi Q \phi X) \wedge Y-\frac{1}{2}(\eta(X) Q \xi \wedge Y+\eta(Q X) \xi \wedge Y)+(Q \phi Y) \wedge \phi X \\
& \quad+(\phi Q Y) \wedge \phi X-(Q \phi X) \wedge \phi Y-(\phi Q X) \wedge \phi Y+2 g(Q \phi X, Y) \phi \\
& \quad+2 g(\phi Q X, Y) \phi+2 g(\phi X, Y) \phi Q+2 g(\phi X, Y) Q \phi-\eta(X) Q Y \wedge \xi \\
&\quad+\eta(X)(\phi Q \phi Y) \wedge \xi+\eta(Y) Q X \wedge \xi-\eta(Y)(\phi Q \phi X) \wedge \xi) \tag{3.1}
\end{align*}
$$

where $(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y$ (c.f. [4]). Using (3.1), $B^{a c}$ satisfies the following identities in an almost cosymplectic manifold M.

$$
\begin{gather*}
B^{a c}(X, Y) Z=-B^{a c}(Y, X) Z \\
B^{a c}(X, Y) Z+B^{a c}(Y, Z) X+B^{a c}(Z, X) Y=0 \\
g\left(B^{a c}(X, Y) Z, W\right)=-g\left(Z, B^{a c}(X, Y) W\right) \tag{3.2}\\
g\left(B^{a c}(X, Y) Z, W\right)=g\left(B^{a c}(Z, W) X, Y\right)
\end{gather*}
$$

If M is a cosymplectic manifold, then $B^{a c}$ turns into the following B^{c} because of (2.7), (2.10) and (3.1).

$$
\begin{aligned}
B^{c}(X, Y)= & R(X, Y)+\frac{1}{m+4}(Q Y \wedge X-Q X \wedge Y+Q \phi Y \wedge \phi X-Q \phi X \wedge \phi Y \\
& +2 g(Q \phi X, Y) \phi+2 g(\phi X, Y) Q \phi+\eta(Y) Q X \wedge \xi+\eta(X) \xi \wedge Q Y)
\end{aligned}
$$

B^{c} is the main part of the contact Bochner curvature tensor (Matsumoto and Chuman [4]). Moreover, the following are satisfied in a cosymplectic manifold M.

$$
\begin{gather*}
B^{a c}(\xi, Y) Z=B^{c}(\xi, Y) Z=B^{c}(X, Y) \xi=B^{a c}(X, Y) \xi=0 \\
B^{a c}(\phi X, \phi Y) Z=B^{c}(\phi X, \phi Y) Z=B^{c}(X, Y) Z=B^{a c}(X, Y) Z \tag{3.3}
\end{gather*}
$$

where we used (2.4), (2.6), (2.8) and (2.9).
We consider a D-homothetic deformation $g^{*}=\alpha g+\alpha(\alpha-1) \eta \otimes \eta, \phi^{*}=$ $\phi, \xi^{*}=\alpha^{-1} \xi, \eta^{*}=\alpha \eta$ on an almost cosymplectic manifold M, where α is a positive constant. For a D-homothetic deformation we say that $M(\phi, \xi, \eta, g)$ is D-homothetic to $M\left(\phi^{*}, \xi^{*}, \eta^{*}, g^{*}\right)$. It is easy to see that if an almost cosymplectic manifold $M(\phi, \xi, \eta, g)$ is D-homothetic to $M\left(\phi^{*}, \xi^{*}, \eta^{*}, g^{*}\right)$, then $M\left(\phi^{*}, \xi^{*}, \eta^{*}, g^{*}\right)$ is an almost cosymplectic manifold. Moreover if $M(\phi, \xi, \eta, g)$ is a cosymplectic manifold, then $M\left(\phi^{*}, \xi^{*}, \eta^{*}, g^{*}\right)$ is also a cosymplectic manifold. Denoting by $W_{j k}^{i}$ the difference $\Gamma_{j k}^{* i}-\Gamma_{j k}^{i}$ of Christoffel symbols, by $\nabla_{X} \xi=\phi h X$ (hence $\left(\nabla_{X} \eta\right) Y=$ $\left.\left(\nabla_{Y} \eta\right) X\right)$ we have in an almost cosymplectic manifold M [6]

$$
W(X, Y)=\frac{\alpha-1}{\alpha}\left(\nabla_{X} \eta\right)(Y) \xi=\frac{\alpha-1}{\alpha} g(\phi h X, Y) \xi .
$$

Putting this into

$$
\begin{aligned}
R^{*}(X, Y) Z=R(X, Y) Z & +\left(\nabla_{X} W\right)(Z, Y)-\left(\nabla_{Y} W\right)(Z, X) \\
& +W(W(Z, Y), X)-W(W(Z, X), Y)
\end{aligned}
$$

and using $\nabla_{X} \xi=\phi h X$, we find

$$
\begin{align*}
R^{*}(X, Y) Z= & R(X, Y) Z+\frac{\alpha-1}{\alpha}\left(g\left(Y,\left(\nabla_{X}(\phi h)\right) Z\right) \xi\right. \tag{3.4}\\
& \left.-g\left(X,\left(\nabla_{Y}(\phi h)\right) Z\right) \xi+g(Y, \phi h Z) \phi h X-g(X, \phi h Z) \phi h Y\right) .
\end{align*}
$$

Here, choosing ϕ^{*}-basis with respect to g^{*} and using (2.2) and (2.3), we get

$$
\begin{equation*}
\operatorname{Ric}^{*}(Y, Z)=\operatorname{Ric}(Y, Z)-\frac{\alpha-1}{\alpha}\left(g(R(Z, \xi) \xi, Y)+g\left(h^{2} Y, Z\right)\right) \tag{3.5}
\end{equation*}
$$

where Ric is the Ricci curvature of M. From (3.5) we have

$$
\begin{equation*}
Q^{*} Y=\frac{1}{\alpha} Q Y-\frac{\alpha-1}{\alpha^{2}} \eta(Q Y) \xi-\frac{\alpha-1}{\alpha^{2}}\left(h^{2} Y-R(\xi, Y) \xi\right) \tag{3.6}
\end{equation*}
$$

where we used $\eta\left(Q^{*} Y\right)=\alpha^{-2} \eta(Q Y)$. By virtue of (3.5) we find

$$
\begin{equation*}
S^{*}=\frac{1}{\alpha} S-2 \frac{\alpha-1}{\alpha^{2}} \operatorname{Ric}(\xi, \xi) \tag{3.7}
\end{equation*}
$$

Moreover if we consider the D-homothetic deformation of $\mathcal{L}_{\xi} \phi$, we find

$$
\begin{equation*}
h^{*}=\frac{1}{\alpha} h \tag{3.8}
\end{equation*}
$$

wherefrom we get

$$
\begin{equation*}
\operatorname{Tr} h^{*^{2}}=\frac{1}{\alpha^{2}} \operatorname{Tr} h^{2} \tag{3.9}
\end{equation*}
$$

After a clumsy computations we obtain, by means of (2.4), (3.1), (3.4), (3.5), (3.6) and (3.8), the following

$$
\begin{align*}
& \stackrel{*}{B^{a c}}(X, Y) Z=B^{a c}(X, Y) Z+\frac{\alpha-1}{\alpha}\left(g\left(Y,\left(\nabla_{X}(\phi h)\right) Z\right) \xi-g\left(X,\left(\nabla_{Y}(\phi h)\right) Z\right) \xi\right) \\
& \quad+\frac{1}{2} \frac{\alpha-1}{\alpha}(\eta(X) g(Q \xi, \xi) g(Y, Z) \xi-\eta(Y) g(Q \xi, \xi) g(X, Z) \xi) \\
& \quad+\frac{3}{2} \frac{\alpha-1}{\alpha}(g(Y, Z) \eta(Q X) \xi-g(X, Z) \eta(Q Y) \xi \tag{3.10}\\
& \quad+\eta(X) \eta(Z) \eta(Q Y) \xi-\eta(Y) \eta(Z) \eta(Q X) \xi) \\
& \quad+\frac{\alpha-1}{\alpha}(\eta(Q \phi X) g(\phi Y, Z) \xi-\eta(Q \phi Y) g(\phi X, Z) \xi-2 \eta(Q \phi Z) g(\phi X, Y) \xi)
\end{align*}
$$

Now we shall introduce the AC-contact Bochner curvature tensor in M by

$$
\begin{equation*}
A C(X, Y) Z=B^{a c}(X, Y) Z-\eta\left(B^{a c}(X, Y) Z\right) \xi \tag{3.11}
\end{equation*}
$$

In particular, if M is a cosymplectic manifold, by the definition of $B^{c},(3.2)$ and (3.3), we have $A C=B^{c}$.

Theorem 3.1. The AC-contact Bochner curvature tensor is invariant with respect to the D-homothetic deformation $M(\phi, \xi, \eta, g) \rightarrow M\left(\phi^{*}, \xi^{*}, \eta^{*}, g^{*}\right)$ on an almost cosymplectic manifold M.

Proof. Using (3.10), we find

$$
\begin{aligned}
\stackrel{*}{B}^{a c}(X, Y) Z-\eta^{*}\left(B^{a c}(X, Y) Z\right) \xi^{*} & =\stackrel{*}{B^{a c}}(X, Y) Z-\eta\left(\stackrel{*}{B}^{a c}(X, Y) Z\right) \xi \\
& =B^{a c}(X, Y) Z-\eta\left(B^{a c}(X, Y) Z\right) \xi
\end{aligned}
$$

Thus we get $A C^{*}(X, Y) Z=A C(X, Y) Z$.
4. Some results. We define $s^{\sharp}=\sum_{i, j=1}^{2 n+1} g\left(R\left(E_{i}, E_{j}\right) \phi E_{j}, \phi E_{i}\right)$, where $\left\{E_{i}\right\}$ is an orthonormal frame.

Lemma 4.1. [5]. For each almost cosymplectic manifold M we have

$$
S-s^{\sharp}-g(Q \xi, \xi)+\frac{1}{2}\|\nabla \phi\|^{2}=0 .
$$

Using this lemma, we prove the following.

ThEOREM 4.1. Let M be an almost cosymplectic manifold with vanishing AC-contact Bochner curvature tensor. Then M is a cosymplectic manifold and the scalar curvature of M vanishes.

Proof. Since the AC-contact Bochner curvature tensor of M vanishes, we have

$$
\begin{equation*}
g\left(B^{a c}(X, Y) Z, W\right)=\eta\left(B^{a c}(X, Y) Z\right) \eta(W) \tag{4.1}
\end{equation*}
$$

Taking $X=E_{i}, Y=E_{j}, Z=\phi E_{j}, W=\phi E_{i}\left(\left\{E_{i}\right\}\right.$ is a ϕ-basis $)$ into the each member of (4.1), using (3.1) and summing over i and j, we have

$$
\begin{equation*}
\sum_{i, j=1}^{2 n+1} g\left(B^{a c}\left(E_{i}, E_{j}\right) \phi E_{j}, \phi E_{i}\right)=s^{\sharp}-\operatorname{Tr} h^{2}-\frac{2(n+1)}{n+2}(S-g(Q \xi, \xi))=0 . \tag{4.2}
\end{equation*}
$$

On the other hand, using (3.1), (4.1) and (3.2), we find

$$
\begin{equation*}
\sum_{i=1}^{2 n+1} g\left(B^{a c}\left(E_{i}, \xi\right) \xi, E_{i}\right)=\frac{2}{(n+2)} g(Q \xi, \xi)=\sum_{i=1}^{2 n+1} \eta\left(B^{a c}\left(E_{i}, \xi\right) \xi\right) \eta\left(E_{i}\right)=0 \tag{4.3}
\end{equation*}
$$

Moreover, calculating $\sum_{i, j=1}^{2 n+1} g\left(B^{a c}\left(E_{i}, E_{j}\right) E_{j}, E_{i}\right)$ by means of (3.1), and using (4.1), (3.2) and (4.3), we get

$$
\begin{align*}
& \sum_{i, j=1}^{2 n+1} g\left(B^{a c}\left(E_{i}, E_{j}\right) E_{j}, E_{i}\right)=-\frac{n}{(n+2)} S-\operatorname{Tr} h^{2}+\frac{2}{(n+2)} g(Q \xi, \xi) \\
= & \sum_{i, j=1}^{2 n+1} \eta\left(B^{a c}\left(E_{i}, E_{j}\right) E_{j}\right) \eta\left(E_{i}\right)=\frac{2}{(n+2)} g(Q \xi, \xi)=0 . \tag{4.4}
\end{align*}
$$

By Lemma 4.1, (2.5), (4.2), (4.3) and (4.4) we obtain our result.
Now, let M be a conformally flat almost cosymplectic manifold of dimension $(2 n+1) \geq 5$. Then the following identities are known (see (3.1) in [2] and (6.4) in [5]), that is,

$$
\begin{align*}
(2 n-3)(\operatorname{Ric} & (X, X)+\operatorname{Ric}(\phi X, \phi X)) \\
& =-\frac{S}{n}-(2 n-1)\left(\|(\nabla \phi)(X)\|^{2}+\|h X\|^{2}\right) \tag{4.5}\\
\frac{2 n-2}{2 n-1} & S+\frac{2 n-3}{2 n-1}\|\nabla \xi\|^{2}+\frac{1}{2}\|\nabla \phi\|^{2}=0 \tag{4.6}
\end{align*}
$$

where X is a vector such that $X \in D_{x},\|X\|=1$. Here, we get the following theorem.

ThEOREM 4.2. Let $M^{2 n+1}$ be a conformally flat almost cosymplectic manifold of dimension $(2 n+1) \geq 5$. Then the following conditions are equivalent: (1) M is locally flat (2) The AC-contact Bochner curvature of M vanishes (3) M is cosymplectic (4) The Ricci curvature of M is flat (5) The scalar curvature of M vanishes

Proof. (1) \Rightarrow (2): From (4.5) we have $S=\operatorname{Ric}(X, X)=\operatorname{Ric}(\phi X, \phi X)=0$. Thus M is cosymplectic, wherefrom $h=0$, so that $B^{a c}=0$. Therefore $A C=B^{c}=$ 0.
$(2) \Rightarrow(3):$ This follows from Theorem 4.1.
$(3) \Rightarrow(4)$: By (4.6) we find $S=0$, so that, from (4.5) we get $g(Q X, X)=$ $g(\phi Q \phi X, X)$ for $X \in D_{x}$. However, from (2.10) and (2.7) we obtain $g(Q X, X)=0$ for $X \in D$. Using the polarization identity, we have $g(Q X, Y)=0$ for any $X, Y \in D$. Moreover, by (2.7) we obtain $g(Q X, Y)=0$ for any vector field X and Y, that is, the Ricci curvature of M is flat.
(4) $\Rightarrow(5)$: Trivial.
$(5) \Rightarrow(1)$: Using (4.6), we see that M is cosymplectic. Therefore, from (4.5) we get $g(Q X, X)=(\phi Q \phi X, X)$ for $X \in D_{x}$, so that the Ricci curvature of M is flat. By (2.11) we get our result.

Remark 4.1. Theorem 4.2 is a generalization of Theorem 6 in [5].
Next, we consider an almost cosymplectic manifold with constant ϕ-sectional curvature K. Suppose that X is a vector such that $X \in D_{x},\|X\|=1$. Then we have the following (see (2.3) and Remark 2.1 in [2]).

$$
\begin{align*}
& \operatorname{Ric}(X, X)+\operatorname{Ric}(\phi X, \phi X)=(n+1) K-\frac{3}{4}\|(\nabla \phi)(X)\|^{2}-\frac{5}{4}\|h X\|^{2} \tag{4.7}\\
& \qquad=\operatorname{Ric}(\xi, \xi)+\sum_{\alpha} \operatorname{Ric}\left(e_{\alpha}, e_{\alpha}\right)+\sum_{\alpha} \operatorname{Ric}\left(\phi e_{\alpha}, \phi e_{\alpha}\right) \\
& \quad=-\|h\|^{2}+(n+1) n K-\frac{3}{4} \sum_{\alpha=1}^{n}\left\|(\nabla \phi)\left(e_{\alpha}\right)\right\|^{2}-\frac{5}{4} \sum_{\alpha=1}^{n}\left\|h e_{\alpha}\right\|^{2} \tag{4.8}
\end{align*}
$$

From (4.7) and (4.8) we have the following theorem.
Theorem 4.3. Let M be an almost cosymplectic manifold with constant ϕ-sectional curvature. Then a necessary and sufficent condition for M to be locally flat is that the AC-contact Bochner curvature of M vanishes.

Proof. Suppose that the AC-contact Bochner curvature of M vanishes. Then, from Theorem 4.1 M is cosymplectic and $S=0$. This result and (4.8) lead to $K=0$. Therefore, by (4.7) it follows that $\operatorname{Ric}(X, Y)=0$ for any vector fields X and Y. Considering $B^{a c}=B^{c}=0$, we can see that M is locally flat.

Conversely, suppose that M is locally flat. Then $K=\operatorname{Ric}(X, Y)=0$, so that, by (4.7) we see that M is cosymplectic, wherefrom $B^{a c}=B^{c}=0$. Therefore $A C=0$.

Last we consider an almost cosymplectic manifold with vanishing AC-contact Bochner curvature tensor. Then we obtain the following theorem.

THEOREM 4.4. Let $M^{2 n+1}(n \neq 1)$ be an almost cosymplectic manifold with vanishing AC-contact Bochner curvature tensor. Then the following conditions are
equivalent: (1) M has a constant ϕ-sectional curvature 0 , (2) M has a constant ϕ-sectional curvature, (3) M is Ricci flat, (4) M is η-Einstein, (5) M is locally flat (6) M is conformally flat.

Proof. First of all, since the AC-contact Bochner curvature tensor of M vanishes, M is cosymplectic and $S=0$. Then:
$(1) \Rightarrow(2) \quad$ trivial;
$(2) \Rightarrow(3) \quad$ from (4.8) we have $K=0$, so that, by (4.7) we get the result;
$(3) \Rightarrow(4) \quad$ trivial;
(4) \Rightarrow (1) since M is η-Einstein, by two definitions of η-Einstein manifold and $B^{c},(2.7)$ and (2.10), we get

$$
\begin{align*}
& g(R(X, Y) Z, W)=-\frac{a}{2 n+4}(2 g(X, Z) g(Y, W)-2 g(X, W) g(Y, Z) \\
& \quad+2 g(\phi X, Z) g(\phi Y, W)-2 g(\phi X, W) g(\phi Y, Z)+4 g(\phi Z, W) g(\phi X, Y) \\
& \quad+\eta(Y) \eta(Z) g(X, W)-\eta(Y) \eta(W) g(X, Z)+\eta(X) \eta(W) g(Y, Z) \tag{4.9}\\
& \quad-\eta(X) \eta(Z) g(Y, W))-\frac{b}{2 n+4}(g(X, Z) \eta(Y) \eta(W)-g(X, W) \eta(Y) \eta(Z) \\
& \quad-g(Y, Z) \eta(X) \eta(W)+g(Y, W) \eta(X) \eta(Z))
\end{align*}
$$

Taking $X \in T_{x}(M)$ such that $\|X\|=1, X \perp \xi$, and calculating $g(R(X, \phi X) \phi X, X)$ by using (4.9), we get $g(R(X, \phi X) \phi X, X)=\frac{4}{n+2} a$. On the other hand, from $\operatorname{Ric}(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)$ we find $S=(2 n+1) a+b$. We also have $\operatorname{Ric}(\xi, \xi)=a+b$. However, by (2.7) we get $b=-a$. Thus $S=2 n a$, wherefrom we find $g(R(X, \phi X) \phi X, X)=\frac{2 S}{n(n+2)}$, which completes this proof;
$(5) \Rightarrow(1):$ trivial;
$(1) \Rightarrow(5)$: from (4.7) we have $\operatorname{Ric}(X, Y)=0$ for any vector fields X and Y. Considering $B^{c}=0$, we get the result;
$(6) \Rightarrow(5)$: by (4.5) we see that $\operatorname{Ric}(X, Y)=0$ for any vector fields X and Y. Moreover $S=0$. Therefore, by (2.11) we get that M is locally flat;
$(5) \Rightarrow(6)$: it folows from (2.11).
Remark 4.2. The curvature of a Riemannian manifold is said to be harmonic if the diveregence of its curvature tensor is zero. It is well known that a Riemannian manifold has harmonic curvature, if the Ricci operator Q satisfies

$$
\left(\nabla_{X} Q\right) Y=\left(\nabla_{Y} Q\right) X
$$

for any vector fields X, Y (e.g., see [1]). Theorem 4.4 is also valid for a 3dimensional almost cosymplectic manifold M^{3}. At first the equivalences (1)-(5) are also valid for a 3 -dimensional almost cosymplectic manifold. Here, put that (7) M^{3} has a harmonic curvature. Then, from (4.7) we have $\operatorname{Ric}(X, Y)=0$ for any vector fields X, Y. Thus (1) $\Rightarrow(7)$. By (4.8) we get $(7) \Rightarrow(1)$. Moreover, from (2.12) we obtain $(7) \Longleftrightarrow(6)$. Therefore for an almost cosymplectic manifold M^{3} the equivalences (1)-(7) hold good.

Acknowledgement. I would like to express my hearty thanks to the referee.

REFERENCES

[1] C. Baikoussis and T. Koufogiorgos, On a type of contact manifolds, J. Geometry 46 (1993), 1-9.
[2] H. Endo, On Ricci curvatures of almost cosymplectic manifolds, An. Stiint. Univ "Al. I. Cuza" Iaşi Sect. Ia Mat. (N.S.), to appear.
[3] S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382.
[4] M. Matsumoto and G. Chuman, On the C-Bochner tensor, TRU Math. 5 (1969), 21-30.
[5] Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239-250.
[6] S. Tanno, Partially conformal transformation with respect to ($m-1$)-dimensional distributions of m-dimensional Riemannian manifolds, Tôhoku Math. J. 17 (1965), 358-409.
[7] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-712.
[8] K. Yano, Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, J. Differential. Geom. 12 (1977), 153-170.
[9] K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore, 1984.

Kohnodai Senior High School	(Received 1507 1994)
2-4-1, Kohnodai, Ichikawa-Shi 272	(Revised 2812 1994)
Chiba-Ken, Japan	

