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ON THE AC-CONTACT BOCHNER CURVATURE TENSOR FIELD

ON ALMOST COSYMPLECTIC MANIFOLDS
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Abstract. On an almost cosymplectic manifold we de�ne a new modi�ed contact Bochner
curvature tensor �eld which is invariant with respect to D-homothetic deformation. Then we
generalize a theorem of Olszak [5] and describe some manifolds with vanishing its new modi�ed
contact Bochner curvature tensor �eld.

1. Introduction. Olszak [5, Theorem 6.2] got the necessary and suÆcient
condition for a conformally at almost cosymplectic manifold to be cosymplectic.
On the other hand, Matsumoto and Chuman [4] de�ned contact Bochner curva-
ture tensor in Sasakian manifolds (see also Yano [8]). This tensor is invariant with
respect to D-homothetic deformations (see Tanno [7] about D-homothetic defor-
mations). In this paper we modify contact Bochner curvature tensor and de�ne a
new modi�ed contact Bochner curvature tensor �eld which is invariant with respect
to D-homothetic deformations of an almost cosymplectic manifold. We call it AC-
contact Bochner curvature tensor. Then, by using AC-contact Bochner curvature,
we get a generalization of an Olszak's theorem [5, Theorem 6.2]. Moreover, we
consider an almost cosymplectic manifold with constant �-sectional curvature and
another one with vanishing AC-contact Bochner curvature.

2. Preliminaries. Let (M;�; �; �; g) be a (2n+1)-dimensional almost con-
tact Riemannian manifold, that is, letM be a di�erentiable manifold and (�; �; �; g)
an almost contact Riemannian structure on M , formed by tensor �elds �; �; �, of
type (1,1), (1,0) and (0,1), respectively, and a Riemannian metric g such that

�2 = �I + � 
 �; �� = 0; � � � = 0; �(�) = 1;

�(X) = g(X; �); g(�X; �Y ) = g(X;Y )� �(X)�(Y ):
(2.1)
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On such a manifold we may always de�ne 2-form � by �(X;Y ) = g(�X; Y ). Then
(M;�; �; �; g) is said to be an almost cosymplectic manifold if the forms � and � are
closed, i.e., if d� = 0, d� = 0, where d is a exterior di�erentiation. On an almost
cosymplectic manifold we de�ne an operator h by h = � 1

2L��, where L denotes
the Lie di�erentiation. Then we see that h is symmetric, h anti-commutes with �

(i.e., �h + h� = 0), h� = 0, rX� = �hX and Trh = 0, where r is the covariant
di�erentiation with respect to g and Trh is the trace of h (see [2]). From �h� = 0,
we notice

(rY (�h))� = �h2Y (2:2)

(r�(�h))X = R(�;X)� � h2X; (2:3)

where R is the curvature tensor (R(X;Y ) = [rX ;rY ]�r[X;Y ]). Furthermore, the
following are satis�ed [2]:

g(R(Y; �)�; Z) + g(R(�Y; �)�; �Z) + 2g(hY; hZ) = 0 (2.4)

g(Q�; �) = �Trh2; (2.5)

where Q is the Ricci operator. If an almost contact structure of an almost cosym-
plectic manifold is normal, then it is said to be a cosymplectic manifold. As it
is known, an almost contact metric structure is cosymplectic if and only if both
r� and r� vanish ([3]; see also [2] and [5]). However, if we have r� = 0, then,
we can easily get r� = 0 by taking the covariant di�erentiation of �� = 0. In a
cosymplectic manifold M with structure tensor (�; �; �; g), from r� = 0 we have

R(X;Y )� = 0 (2.6)

for any vector �elds X and Y on M , wherefrom

Q� = 0: (2.7)

Using r� = 0 and R(X;Y )�Z = rXrY (�Z) �rYrX (�Z)�r[X;Y ]�Z, we �nd

R(X;Y )�Z = �R(X;Y )Z: (2.8)

Thus, using the property of the curvature tensor, we get

R(�X; �Y )Z = R(X;Y )Z: (2.9)

From (2.9), we �nd R(�X; Y )Z = �R(X;�Y )Z. Moreover we have

�Q = Q�; (2.10)

where we used

g(Q�Y; �Z) =

2n+1X

i=1

g(R(Ei; �Y )�Z;Ei) = �

2n+1X

i=1

g(R(�Ei; Y )�Z;Ei)

= �

2n+1X

i=1

g(�R(�Ei; Y )Z;Ei) =

2n+1X

i=1

g(R(�Ei; Y )Z; �Ei) = g(QY;Z);
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where fEi; 1 � i � 2n+ 1g is a �-basis (En+t = �Et; 1 � t � n; E2n+1 = �).

By D we denote the distribution of an almost contact metric manifold M

de�ned by � = 0. M is said to be of pointwise constant �-sectional curvature if at
any point x 2 M , the sectional curvature K(X;�X) is independent of the choice
of non-zero X 2 Dx, In this case, the �-sectional curvature K is a function on M .

An almost contact metric manifold is said to be �-Einstein if Q = aI+ b�
 �,
where a and b are smooth functions on M . Especially if b = 0, then M is said to
be Einstein.

On a (2n+1)-dimensional almost cosymplectic manifold M the Weyl confor-
mal curvature tensor of M is the tensor �eld C of type (1,3) de�ned by

C(X;Y )Z = R(X;Y )Z

+
1

2n� 1
(g(QX;Z)Y � g(QY;Z)X + g(X;Z)QY � g(Y; Z)QX)

�
S

2n(2n� 1)
(g(X;Z)Y � g(Y; Z)X)

(2.11)

for any vector �elds X , Y and Z on M (where S is the scalar curvature). Moreover
we put

c(X;Y ) = (rXQ)Y � (rYQ)X �
1

2(2n� 1)
((rXS)Y � (rY S)X): (2.12)

Then it is well-known that a necessary and suÆcent condition for M to be confor-
mally at is that C = 0 for n > 3 and c = 0 for n = 3 (C vanishes identically for
n = 3).

3. D-homothetic deformations. Let M be an (m+1)-dimensional (m =
2n) almost cosymplectic manifold. Now we de�ne a tensor �eld Bac on M by

Bac(X;Y ) = R(X;Y ) + �hX ^ �hY

+
1

2(m+ 4)
(QY ^X � (�Q�Y ) ^X +

1

2
(�(Y )Q� ^X + �(QY )� ^X)

�QX ^ Y + (�Q�X) ^ Y �
1

2
(�(X)Q� ^ Y + �(QX)� ^ Y ) + (Q�Y ) ^ �X

+ (�QY ) ^ �X � (Q�X) ^ �Y � (�QX) ^ �Y + 2g(Q�X; Y )�

+ 2g(�QX; Y )� + 2g(�X; Y )�Q+ 2g(�X; Y )Q�� �(X)QY ^ �

+ �(X)(�Q�Y ) ^ � + �(Y )QX ^ � � �(Y )(�Q�X) ^ �);
(3.1)

where (X ^ Y )Z = g(Y; Z)X � g(X;Z)Y (c.f. [4]). Using (3.1), Bac satis�es the
following identities in an almost cosymplectic manifold M .

Bac(X;Y )Z = �Bac(Y;X)Z;

Bac(X;Y )Z +Bac(Y; Z)X +Bac(Z;X)Y = 0

g(Bac(X;Y )Z;W ) = �g(Z;Bac(X;Y )W );

g(Bac(X;Y )Z;W ) = g(Bac(Z;W )X;Y ):

(3.2)
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If M is a cosymplectic manifold, then Bac turns into the following Bc because of
(2.7), (2.10) and (3.1).

Bc(X;Y ) = R(X;Y ) +
1

m+ 4
(QY ^X �QX ^ Y +Q�Y ^ �X �Q�X ^ �Y

+ 2g(Q�X; Y )�+ 2g(�X; Y )Q�+ �(Y )QX ^ � + �(X)� ^QY ):

Bc is the main part of the contact Bochner curvature tensor (Matsumoto and
Chuman [4]). Moreover, the following are satis�ed in a cosymplectic manifold M .

Bac(�; Y )Z = Bc(�; Y )Z = Bc(X;Y )� = Bac(X;Y )� = 0

Bac(�X; �Y )Z = Bc(�X; �Y )Z = Bc(X;Y )Z = Bac(X;Y )Z;
(3.3)

where we used (2.4), (2.6), (2.8) and (2.9).

We consider a D-homothetic deformation g� = �g + �(� � 1)� 
 �, �� =
�, �� = ��1�, �� = �� on an almost cosymplectic manifold M , where � is a
positive constant. For a D-homothetic deformation we say that M(�; �; �; g) is
D-homothetic to M(��; ��; ��; g�). It is easy to see that if an almost cosymplectic
manifold M(�; �; �; g) is D-homothetic to M(��; ��; ��; g�), then M(��; ��; ��; g�)
is an almost cosymplectic manifold. Moreover if M(�; �; �; g) is a cosymplectic
manifold, then M(��; ��; ��; g�) is also a cosymplectic manifold. Denoting by W i

jk

the di�erence ��ijk � �ijk of Christo�el symbols, by rX� = �hX (hence (rX�)Y =

(rY �)X) we have in an almost cosymplectic manifold M [6]

W (X;Y ) =
�� 1

�
(rX�)(Y )� =

�� 1

�
g(�hX; Y )�:

Putting this into

R�(X;Y )Z = R(X;Y )Z + (rXW )(Z; Y )� (rYW )(Z;X)

+W (W (Z; Y ); X)�W (W (Z;X); Y )

and using rX� = �hX , we �nd

R�(X;Y )Z = R(X;Y )Z +
�� 1

�
(g(Y; (rX(�h))Z)�

� g(X; (rY (�h))Z)� + g(Y; �hZ)�hX � g(X;�hZ)�hY ):
(3.4)

Here, choosing ��-basis with respect to g� and using (2.2) and (2.3), we get

Ric �(Y; Z) = Ric (Y; Z)�
�� 1

�
(g(R(Z; �)�; Y ) + g(h2Y; Z)); (3.5)

where Ric is the Ricci curvature of M . From (3.5) we have

Q�Y =
1

�
QY �

�� 1

�2
�(QY )� �

�� 1

�2
(h2Y �R(�; Y )�); (3.6)

where we used �(Q�Y ) = ��2�(QY ). By virtue of (3.5) we �nd

S� =
1

�
S � 2

�� 1

�2
Ric (�; �): (3.7)



106 Hiroshi Endo

Moreover if we consider the D-homothetic deformation of L��, we �nd

h� =
1

�
h; (3.8)

wherefrom we get

Trh�
2

=
1

�2
Trh2: (3.9)

After a clumsy computations we obtain, by means of (2.4), (3.1), (3.4), (3.5), (3.6)
and (3.8), the following

�

Bac(X;Y )Z = Bac(X;Y )Z +
�� 1

�
(g(Y; (rX (�h))Z)� � g(X; (rY (�h))Z)�)

+
1

2

�� 1

�
(�(X)g(Q�; �)g(Y; Z)� � �(Y )g(Q�; �)g(X;Z)�)

+
3

2

�� 1

�
(g(Y; Z)�(QX)� � g(X;Z)�(QY )� (3:10)

+ �(X)�(Z)�(QY )� � �(Y )�(Z)�(QX)�)

+
�� 1

�
(�(Q�X)g(�Y; Z)� � �(Q�Y )g(�X;Z)� � 2�(Q�Z)g(�X; Y )�):

Now we shall introduce the AC-contact Bochner curvature tensor in M by

AC(X;Y )Z = Bac(X;Y )Z � �(Bac(X;Y )Z)�: (3.11)

In particular, if M is a cosymplectic manifold, by the de�nition of Bc, (3.2) and
(3.3), we have AC = Bc.

Theorem 3.1. The AC-contact Bochner curvature tensor is invariant with

respect to the D-homothetic deformation M(�; �; �; g) ! M(��; ��; ��; g�) on an

almost cosymplectic manifold M .

Proof. Using (3.10), we �nd

�

Bac(X;Y )Z � ��(Bac(X;Y )Z)�� =
�

Bac(X;Y )Z � �(
�

Bac(X;Y )Z)�

= Bac(X;Y )Z � �(Bac(X;Y )Z)�:

Thus we get AC�(X;Y )Z = AC(X;Y )Z.

4. Some results. We de�ne s] =
P2n+1

i;j=1 g(R(Ei; Ej)�Ej ; �Ei), where fEig
is an orthonormal frame.

Lemma 4.1. [5]. For each almost cosymplectic manifold M we have

S � s] � g(Q�; �) +
1

2
kr�k2 = 0:

Using this lemma, we prove the following.



On the AC-contact Bochner curvature tensor �eld . . . 107

Theorem 4.1. Let M be an almost cosymplectic manifold with vanishing

AC-contact Bochner curvature tensor. Then M is a cosymplectic manifold and the

scalar curvature of M vanishes.

Proof. Since the AC-contact Bochner curvature tensor of M vanishes, we
have

g(Bac(X;Y )Z;W ) = �(Bac(X;Y )Z)�(W ): (4.1)

Taking X = Ei, Y = Ej , Z = �Ej , W = �Ei (fEig is a �-basis) into the each
member of (4.1), using (3.1) and summing over i and j, we have

2n+1X

i;j=1

g(Bac(Ei; Ej)�Ej ; �Ei) = s] �Trh2 �
2(n+ 1)

n+ 2
(S � g(Q�; �)) = 0: (4.2)

On the other hand, using (3.1), (4.1) and (3.2), we �nd

2n+1X

i=1

g(Bac(Ei; �)�; Ei) =
2

(n+ 2)
g(Q�; �) =

2n+1X

i=1

�(Bac(Ei; �)�)�(Ei) = 0: (4.3)

Moreover, calculating
P2n+1

i;j=1 g(B
ac(Ei; Ej)Ej ; Ei) by means of (3.1), and using

(4.1), (3.2) and (4.3), we get

2n+1X

i;j=1

g(Bac(Ei; Ej)Ej ; Ei) = �
n

(n+ 2)
S � Trh2 +

2

(n+ 2)
g(Q�; �)

=

2n+1X

i;j=1

�(Bac(Ei; Ej)Ej)�(Ei) =
2

(n+ 2)
g(Q�; �) = 0:

(4.4)

By Lemma 4.1, (2.5), (4.2), (4.3) and (4.4) we obtain our result.

Now, let M be a conformally at almost cosymplectic manifold of dimension
(2n+ 1) � 5. Then the following identities are known (see (3.1) in [2] and (6.4) in
[5]), that is,

(2n� 3)(Ric (X;X) + Ric (�X; �X))

= �
S

n
� (2n� 1)(k(r�)(X)k2 + khXk2)

(4.5)

2n� 2

2n� 1
S +

2n� 3

2n� 1
kr�k2 +

1

2
kr�k2 = 0; (4.6)

where X is a vector such that X 2 Dx, kXk = 1. Here, we get the following
theorem.

Theorem 4.2. Let M2n+1 be a conformally at almost cosymplectic mani-

fold of dimension (2n+ 1) � 5. Then the following conditions are equivalent: (1)
M is locally at (2) The AC-contact Bochner curvature of M vanishes (3) M
is cosymplectic (4) The Ricci curvature of M is at (5) The scalar curvature

of M vanishes
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Proof. (1) ) (2): From (4.5) we have S = Ric (X;X) = Ric (�X; �X) = 0.
Thus M is cosymplectic, wherefrom h = 0, so that Bac = 0. Therefore AC = Bc =
0.

(2) ) (3): This follows from Theorem 4.1.

(3) ) (4): By (4.6) we �nd S = 0, so that, from (4.5) we get g(QX;X) =
g(�Q�X;X) for X 2 Dx. However, from (2.10) and (2.7) we obtain g(QX;X) = 0
for X 2 D. Using the polarization identity, we have g(QX; Y ) = 0 for any
X;Y 2 D. Moreover, by (2.7) we obtain g(QX; Y ) = 0 for any vector �eld X

and Y , that is, the Ricci curvature of M is at.

(4) ) (5): Trivial.

(5) ) (1): Using (4.6), we see that M is cosymplectic. Therefore, from (4.5) we
get g(QX;X) = (�Q�X;X) for X 2 Dx, so that the Ricci curvature of M is at.
By (2.11) we get our result.

Remark 4.1. Theorem 4.2 is a generalization of Theorem 6 in [5].

Next, we consider an almost cosymplectic manifold with constant �-sectional
curvature K. Suppose that X is a vector such that X 2 Dx, kXk = 1. Then we
have the following (see (2.3) and Remark 2.1 in [2]).

Ric (X;X) + Ric (�X; �X) = (n+ 1)K �
3

4
k(r�)(X)k2 �

5

4
khXk2 (4.7)

S = Ric (�; �) +
X

�

Ric (e�; e�) +
X

�

Ric (�e�; �e�)

= �khk2 + (n+ 1)nK �
3

4

nX

�=1

k(r�)(e�)k
2 �

5

4

nX

�=1

khe�k
2:

(4.8)

From (4.7) and (4.8) we have the following theorem.

Theorem 4.3. Let M be an almost cosymplectic manifold with constant

�-sectional curvature. Then a necessary and suÆcent condition for M to be locally

at is that the AC-contact Bochner curvature of M vanishes.

Proof. Suppose that the AC-contact Bochner curvature ofM vanishes. Then,
from Theorem 4.1 M is cosymplectic and S = 0. This result and (4.8) lead to
K = 0. Therefore, by (4.7) it follows that Ric (X;Y ) = 0 for any vector �elds X
and Y . Considering Bac = Bc = 0, we can see that M is locally at.

Conversely, suppose that M is locally at. Then K = Ric (X;Y ) = 0, so
that, by (4.7) we see that M is cosymplectic, wherefrom Bac = Bc = 0. Therefore
AC = 0.

Last we consider an almost cosymplectic manifold with vanishing AC-contact
Bochner curvature tensor. Then we obtain the following theorem.

Theorem 4.4. Let M2n+1(n 6= 1) be an almost cosymplectic manifold with

vanishing AC-contact Bochner curvature tensor. Then the following conditions are
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equivalent: (1) M has a constant �-sectional curvature 0, (2) M has a constant

�-sectional curvature, (3) M is Ricci at, (4) M is �-Einstein, (5) M is

locally at (6) M is conformally at.

Proof. First of all, since the AC-contact Bochner curvature tensor of M
vanishes, M is cosymplectic and S = 0. Then:

(1) ) (2) trivial;

(2) ) (3) from (4.8) we have K = 0, so that, by (4.7) we get the result;

(3) ) (4) trivial;

(4) ) (1) since M is �-Einstein, by two de�nitions of �-Einstein manifold and
Bc, (2.7) and (2.10), we get

g(R(X;Y )Z;W ) = �
a

2n+ 4
(2g(X;Z)g(Y;W )� 2g(X;W )g(Y; Z)

+ 2g(�X;Z)g(�Y;W )� 2g(�X;W )g(�Y; Z) + 4g(�Z;W )g(�X; Y )

+ �(Y )�(Z)g(X;W )� �(Y )�(W )g(X;Z) + �(X)�(W )g(Y; Z) (4:9)

� �(X)�(Z)g(Y;W ))�
b

2n+ 4
(g(X;Z)�(Y )�(W )� g(X;W )�(Y )�(Z)

� g(Y; Z)�(X)�(W ) + g(Y;W )�(X)�(Z)):

Taking X 2 Tx(M) such that kXk = 1, X ? �, and calculating g(R(X;�X)�X;X)
by using (4.9), we get g(R(X;�X)�X;X) = 4

n+2a. On the other hand, from

Ric (X;Y ) = ag(X;Y ) + b�(X)�(Y ) we �nd S = (2n + 1)a + b. We also have
Ric (�; �) = a+ b. However, by (2.7) we get b = �a. Thus S = 2na, wherefrom we
�nd g(R(X;�X)�X;X) = 2S

n(n+2) , which completes this proof;

(5) ) (1): trivial;

(1) ) (5): from (4.7) we have Ric (X;Y ) = 0 for any vector �elds X and Y .
Considering Bc = 0, we get the result;

(6) ) (5): by (4.5) we see that Ric (X;Y ) = 0 for any vector �elds X and Y .
Moreover S = 0. Therefore, by (2.11) we get that M is locally at;

(5) ) (6): it folows from (2.11).

Remark 4.2. The curvature of a Riemannian manifold is said to be harmonic
if the diveregence of its curvature tensor is zero. It is well known that a Riemannian
manifold has harmonic curvature, if the Ricci operator Q satis�es

(rXQ)Y = (rYQ)X

for any vector �elds X , Y (e.g., see [1]). Theorem 4.4 is also valid for a 3-
dimensional almost cosymplectic manifold M3. At �rst the equivalences (1){(5)
are also valid for a 3-dimensional almost cosymplectic manifold. Here, put that (7)
M3 has a harmonic curvature. Then, from (4.7) we have Ric (X;Y ) = 0 for any
vector �elds X , Y . Thus (1) ) (7). By (4.8) we get (7) ) (1). Moreover, from
(2.12) we obtain (7) () (6). Therefore for an almost cosymplectic manifold M3

the equivalences (1){(7) hold good.
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