PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 56 (70), 1994, 75–78

SOME CLASSES OF LOCALLY CONVEX RIESZ SPACES

Stojan Radenović and Slavko Simić

Communicated by Stevan Pilipović

Abstract. We define and study some new classes of locally convex Riesz spaces (order *b*-barrelled; order *C*-quasi-barrelled; order D_b and order quasi-DF).

Let (E, C, t) be a locally convex Riesz space, where (E, C) is a real vector space which is partially ordered by a cone C, such that it is a Riesz space; (E, t)is a locally convex space which has a fundamental system of neighbourhoods of Oconsisting of solid sets in E. A subset $B \subset E$ is solid, if for all $a, b \in E, a \in B$ and $|b| \leq |a|$ implies $b \in B$. A subset $B \subset E$ is order bounded if B is contained in some order interval. Else, for the definitions concerning locally convex Riesz spaces, we follow [2], [9] and [11].

We begin with the following definitions:

Definition 1. A barrel V in l.c.R.s. (E, C, t) is an order b-barrel if V meets all solid convex order bounded subsets in neighbourhood of O.

Definition 2. A l.c.R.s. (E, C, t) is called order b-barrelled if each order b-barrel in it is a t-neighbourhood of O.

Definition 3. A l.c.R.s. (E, C, t) is said to be order C-quasibarrelled if for each sequence A_n of t-equicontinuous subset of E' which $\sigma_S(E', E)$ -converges to zero, $\bigcup_{n\geq 1}A_n$ is t-equicontinuous (see [3] for the definition of C-quasibarrelled l.c. spaces).

Definition 4. A l.c.R.s. (E, C, t) is order D_b R.s. (resp. order quasi-DF R.s.) if it is order *b*-barrelled (resp. order *C*-quasibarrelled) with a fundamental sequence of order bounded sets.

The next theorems gives us a dual characterization of the order *b*-barrelled and order *C*-quasibarrelled R.s. in terms of the order structure, in a way similar to [2],

AMS Subject Classification (1990): Primary 46 A 05

Supported by the science Fund of Serbia, grant 0401A, through Mathematical Institute

[7] and [9] for bornological, quasibarrelled, order quasibarrelled, order countably quasibarrelled, ... R.s.

THEOREM 1. For any l.c.R.s. (E, C, t) the following statements are equivalent: (a) (E, C, t) is order b-barrelled; (b) Each solid order b-barrel is a t-neighbourhood of O; (c) A subset H of E' is t-equicontinuous, if H_A (its restriction) is t-equicontinuous for each solid convex order bounded subset A of E.

Proof. (b) \Rightarrow (a): Let U be an order b-barrel in l.c.R.s. (E, C, t). Then there exists a solid convex t-neighbourhood V of O, such that $U \cap B \supset V \cap B$ for each solid convex order bounded subset B of E. It follows that $\mathrm{sk}(U \cap B) =$ $\mathrm{sk}(U) \cap B \supset V \cap B = \mathrm{sk}(V \cap B)$, hence, the solid kernel $\mathrm{sk}(U)$ of U is a solid order b-barrel by [11, Proposition 11.3] that is, U is t-neighbourhood of O. (a) \Leftrightarrow (c): This follows from the fact: H_A is t-equicontinuous if and only if H^O is an order b-barrel in l.c.R.s. (E, C, t). The implication (a) \Rightarrow (b) is trivial.

THEOREM 2. For any l.c.R.s. (E, C, t) the following statements are equivalent: (a) (E, C, t) is order C-quasibarrelled; (b) for each sequence $\{U_n\}$ of closed absolutely convex t-neighbourhoods of O, such that every solid convex order bounded subset of E is contained in $\bigcap_{n\geq m} U_n$ for some m, the set $\bigcap_{m\geq 1} U_n$ is a t-neighbourhood of O; (c) for each sequence $\{U_n\}$ of closed solid convex tneighbourhoods of O, such that every order bounded subset of E is contained in $\bigcap_{n\geq m} U_n$ for some m, the set $\bigcap_{n\geq 1} U_n$ is a t-neighbourhood of O.

Proof. (c) \Rightarrow (b): Let $\{U_n\}$ be a sequence of closed absolutely convex *t*-neighbourhoods of O which satisfies the condition: every solid convex order bounded subset of E is contained in $\bigcap_{n\geq m} U_n$ for some $m \in N$, that is, in $\operatorname{sk}\left(\bigcap_{n\geq m} U_n\right) = \bigcap_{n\geq m} \operatorname{sk}(U_n)$. From this it follows that $\bigcap_{n\geq 1} U_n$ is a *t*-neighbourhood of O, since $\bigcap_{n\geq 1}\operatorname{sk}(U_n)$ is a *t*-neighbourhood of O. (b) \Rightarrow (a): Let $\{A_n\}$ be a sequence of *t*-equicontinuous subsets of E' which converges to O in the topology $\sigma_S(E', E)$, that is $A_n \subset W$ for $n \geq m(W)$, where $W = B^O$, for some closed solid convex order bounded subset B of E. From this it follows that $\bigcap_{n\geq m} A_n^O \supset B^{OO} = B$ i.e. $\bigcap_{n\geq 1} A_n^O$ is a *t*-neighbourhood of O. Similarly, we have that (a) \Rightarrow (b). Since, the implication (b) \Rightarrow (c) is trivial, the proof of the theorem is completed.

COROLLARY 1. Using the definitions 2 and 3, Theorem 2 (b) or (c) and the definitions from [3] and [4] for the b-barrelled and C-quasibarrelled locally convex spaces, we easily deduce the following implications:

order quas	ibarrelled	\Rightarrow	$order \ countably$	\Rightarrow	order σ -quasibarrelled
			quasibarrelled		
\downarrow			\Downarrow		\Downarrow
order b-b	arrelled	\Rightarrow	$order \ C\operatorname{-} quasibarrelled$	\Rightarrow	order sequentially
					quasibarrelled
\downarrow			\Downarrow		\Downarrow
b- $barr$	elled	\Rightarrow	$C\operatorname{-} quasibarrelled$	\Rightarrow	$sequentially \ quasibarrelled$

See also the table in [7].

In a way similar to [4] for the *b*-barrelled l.c.s, we have the following for the order *b*-barrelled spaces:

PROPOSITION 1. If (E, C, t) is an order b-barrelled l.c.R.s. and A is a $\sigma_S(E', E)$ -precompact subset of E', then A is t-equicontinuous.

COROLLARY 2. If (E, C, t) is an order b-barrelled l.c.R.s, then $(E', C', \sigma_S(E', E))$ is a semi-complete l.c.R.s.

COROLLARY 3. If (E, C, t) is an order b-barrelled l.c.R.s., then a subset A of E' is $\beta(E', E)$ -bounded if and only if A is $\sigma_S(E', E)$ -bounded.

Proof. It is known [11] that if (E, C, t) is a l.c.R.s. with the topological dual E' and if $\sigma_S(E', E)$ is the locally solid topology on E' associated with $\sigma(E', E)$, then $\sigma_S(E', E)$ is coarser than the strong topology $\beta(E', E)$ (each order bounded subset of E is t-bounded). This shows that each $\beta(E', E)$ -bounded subset of E' is $\sigma_S(E', E)$ -bounded. Conversely, let A be a $\sigma_S(E', E)$ -bounded subset of E'. By Corollary 2, A is $\sigma_S(E', E)$ -strongly bounded, that is, A is $\sigma(E', E)$ -strongly bounded, i.e. A is $\beta(E', E)$ -bounded. (In a l.c.s. (E, t) a subset A is strongly bounded if and only if it absorbed by each t-barrel).

Remark 1. The previous corollary follows also from Corollary 1 (an order b-barrelled space is order sequentially quasibarrelled) and the Theorem 3 [7] but the proof is not the same (see also [2]).

We know from [2] that a l.c.R.s. (E, C, t) is a order DF space if it is order countably quasibarrelled with a fundamental sequence of order bounded subsets. Also, from [2] it follows that an order DF l.c.R.s. is DF-space. In the sequel we give the following results:

THEOREM 3. Let (E, C, t) be an order D_b Riesz space. Then $(E', C', \sigma_S(E', E))$ is a Freéhet lattice and $\sigma_S(E', E) = \beta(E', E)$, i.e. each t-bounded subset of E is order-bounded.

Proof. Since (E, C, t) contains a countable fundamental system of order bounded sets, it follows that the l.c.R.s. $(E', C', \sigma_S(E', E))$ is metrisable, i.e. bornological. By Corollary 2 it is a Freéhet lattice. It remains to show that the topology $\beta(E', E)$ is coarser than $\sigma_S(E', E)$. From [9, exercise 17, p. 70] it follows that if (x'_n) is a null sequence in $(E', C', \sigma_S(E', E))$, it is t-equicontinuous by Proposition 1, hence (x'_n) is $\beta(E', E)$ -bounded. This shows that $\sigma_S(E', E) = \beta(E', E)$, i.e. the proof is complete.

COROLLARY 4. If (E, C, t) is an order D_b l.c.R.s. then it is D_b l.c.R.s. i.e. (E, t) is D_b l.c.s. in sense of [5].

From [3] it follows that a locally convex space (E, t) is a sequentially-DF space if it is sequentially quasibarrelled with fundamental sequence of t-bounded sets. We say that a l.c.R.s. (E, C, t) is an order sequentially-DF space if it is order sequentially quasibarrelled [7] with a fundamental sequence of order bounded sets.

THEOREM 4. Let (E, C, t) be an order quasi-DF (resp. order sequentially-DF) l.c.R.s. Then (E, t) is quasi-DF (resp. sequentially-DF) l.c.s. in sense of [3].

Proof. Similarly, as in the previous theorem, by definition 3, it follows that $\sigma_S(E', E) = \beta(E', E)$. According to the remark 1.7 [3] the space $(E', C', \sigma_S(E', E)) = (E', C', \beta(E', E))$ need not be a Frechet lattice as in the case of order D_b spaces. A l.c.R.s. (E, C, t) is C-quasibarrelled if (E, t) is a C-quasibarrelled l.c.s. [3].

PROPOSITION 2. For any l.c.R.s. (E, C, t) the following statements are equivalent: (a) (E, C, t) is C-quasibarrelled; (b) for each sequence $\{U_n\}$ of closed absolutely convex t-neighbourhoods of O, such that every t-bounded subset of E is contained in $\bigcap_{n\geq m} U_n$ for some m, the set $\bigcap_{n\geq 1} U_n$ is a t-neighbourhood of O; (c) for each sequence $\{U_n\}$ of closed solid convex t-neighbourhoods of O, such that every t-bounded subset of E is contained in $\bigcap_{n\geq m} U_n$ for some m, the set $\bigcap_{n\geq 1} U_n$ for some m, the set $\bigcap_{n\geq 1} U_n$ is a t-neighbourhood of O; (c) for each subset of E is contained in $\bigcap_{n\geq m} U_n$ for some m, the set $\bigcap_{n\geq 1} U_n$ is a t-neighbourhood of O.

Proof. The proof is the same as in [8] for sequentially quasibarrelled Riesz spaces, only using t-neighbourhoods instead of $\sigma_S(E', E)$ -neighbourhoods of O.

By the previous proposition (c) the following result follows.

THEOREM 5. Any l-ideal in a quasi-DF (resp. C-quasibarrelled) l.c.R.s. (E, C, t) is a space of the same type, with respect to the relative topology.

Proof. See [7, Theorem 8, Corollaries 4 and 5] and [8, Theorem 2].

Remark 2. From the theorems 3 and 4 i.e. by the Corollary 2 [6], it follows that the class of order D_b (resp. order quasi-DF; order sequentially-DF) l.c.R.s. is stable with respect to any *l*-ideal.

REFERENCES

- [1] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil. Math. 3 (1954), 57-123.
- [2] T. Husain, and S. M. Khaleelula, Barrelledness in topological and ordered vector spaces, Lect. Notes in Math. 692, Springer-Verlag, 1978.
- [3] J. Mazon, Some classes of locally convex spaces, Arch. Math. 38 (1982), 131–137.
- [4] K. Noureddine, Nouvelles classes déspaces localement cony, Publ. Dep. Math. Lyon. 10-3 (1973), 259-277.
- [5] ———— Note sur les Espaces D_b , Math. Ann. **219** (1976), 97–103.
- [6] S. Radenović, Some result on locally convex Riesz spaces, Glasnik Mat. 23 (43) (1988), 87-92.
- [7] ———— On certain classes of l.c.R.s., Radovi Mat. 2 (1988), 327-337.
- [8] ————— Sequentially quasibarrelled Riesz spaces, Radovi Mat. 6 (1990), 15–19.
- [9] H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York-Berlin, 1971.
- [10] J.H. Web, Sequentially barrelled spaces, Math. Colloq. Univ. Cape Town 8 (1973), 73-87.
- [11] Y. Wong and K. F. Ng, Partially Ordered Topological Vector Spaces, Clarendon Press, Oxford 1973.

Prirodno-matematički fakultet 34001 Kragujevac, p.p. 60 Yugoslavia (Received 24 10 1994)