A NOTE ON APPROXIMATION BY BLASCHKE-POTAPOV PRODUCTS

Dušan R. Georgijević

Abstract

A theorem on approximation of bounded operator functions by finite BlaschkePotapov products is proved, where a quantity defined in terms of the Potapov-Ginzburg factorization is simultaneously approximated.

Let H be a fixed separable (non-trivial) Hilbert space and C, S_{1} the spaces of all bounded, respectively nuclear operators on H. We will denote by $\|\cdot\|$ the norm in C (the uniform norm) and by $\|\cdot\|_{1}$ the norm in S_{1} (the trace norm). The identity operator on H will be denoted by I. By D we will denote the unit disc $|z|<1$ in the complex plane.

According to [1], let G be the class of operator functions $\theta: D \rightarrow C$ analytic on D (in the sense of the uniform norm), such that:
(1) $\theta(z)^{*} \theta(z) \leq I, z \in D$; (2) there exists $\theta(0)^{-1} \in C$; (3) $\theta(0)-I \in S_{1}$.

The Blaschke-Potapov products and the Potapov multiplicative integrals are important examples of G functions [2], [1]. An operator function $B: D \rightarrow C$ is called a Blaschke-Potapov product if

$$
\begin{equation*}
B(z)=\prod_{j=1}^{\curvearrowleft q} b\left(P_{j} ; a_{j}, z\right):=\prod_{j=1}^{q}\left[\frac{\left|a_{j}\right|}{a_{j}} \frac{a_{j}-z}{1-\bar{a}_{j} z} P_{j}+\left(I-P_{j}\right)\right], z \in D \tag{1}
\end{equation*}
$$

where: $q \leq \infty, 0<\left|a_{j}\right|<1, P_{j}$ are orthogonal projections, $\operatorname{Tr} P_{j}=\operatorname{dim} P_{j} H=$ $: p_{j}<\infty, \sum\left(1-\left|a_{j}\right|\right) p_{j}<\infty$. Thereby, it is understood that the partial products converge to the Blaschke-Potapov product $B(z)$ in the sense of the trace norm, uniformly on compact subsets of D. If $q<\infty$, then B is a finite Blaschke-Potapov product.

A function $F: D \rightarrow C$ is called a Potapov multiplicative integral if

$$
\begin{equation*}
F(z)=\int_{0}^{\curvearrowleft c} \exp \{-v(y(x), z) d E(x)\}, \quad z \in D \tag{2}
\end{equation*}
$$

where: $v(t, z)=\left(1+e^{-i t} z\right)\left(1-e^{-i t} z\right)^{-1}, y$ is a nondecreasing scalar function $(0 \leq$ $y(x) \leq 2 \pi), E:[0, c] \rightarrow S_{1}$ is an hermitian-increasing operator function satisfying $\operatorname{Tr} E(x)=x, x \in[0, c]$. It is understood here that the integral products converge to the Potapov multiplicative integral $F(z)$ in the sense of the trace norm, uniformly on compact subsets of D. The function y in (2) can be chosen to be left continuous and to take the value 2π only at the point $x=c$ or nowhere on $[0, c]$. Such function y will be called canonical.

Each product of a Potapov multiplicative integral and a Blaschke-Potapov product is a G function. The converse is also true, in a sense. Namely, if $\theta \in G$, then there exist a Potapov multiplicative integral F, a Blaschke-Potapov product B and a unitary operator U on H, with $U-I \in S_{1}$, such that

$$
\begin{equation*}
\theta(z)=F(z) U B(z), \quad z \in D \tag{3}
\end{equation*}
$$

[1]. If the function y in (2) is canonical, then c, y, a_{j} and $p_{j}(j=1,2, \ldots, q)$ are uniquely determined by θ.

Remark 1. The factorization (3) implies that $\theta(z)-I \in S_{1}, z \in D$, whenever $\theta \in G$. It follows that $\operatorname{det} \theta(z)$ exists for every $z \in D$ [3, p. 199-206]. One can easily see that this determinant can be expressed in terms of the factorization (3):

$$
\begin{align*}
\operatorname{det} \theta(z) & =\operatorname{det} F(z) \operatorname{det}(U B(z)) \tag{4}\\
\operatorname{det} F(z) & =\exp \left\{-\int_{0}^{c} v(y(x), z) d x\right\} \tag{5}\\
\operatorname{det}(U B(z)) & =\lambda \prod_{j=1}^{q}\left[\frac{\left|a_{j}\right|\left(a_{j}-z\right)}{a_{j}\left(1-\bar{a}_{j} z\right)}\right]^{p_{j}},|\lambda|=|\operatorname{det} U|=1 .
\end{align*}
$$

Thus, $\operatorname{det} \theta \in H^{\infty}$ and the zeros of det θ are exactly the zeros of the Blaschke product $\operatorname{det}(U B)$ (for $\operatorname{det} F(z) \neq 0, z \in D)$. Since a scalar Blaschke product is determined by its zeros (accounting their multiplicities) up to a constant factor of modulus one, it follows that $\operatorname{det} \theta$ is a Blaschke product if and only if $|\operatorname{det} F(z)|=1$, $z \in D$, i.e. if and only if $c=0$ (for $\operatorname{det} F(0)=e^{-c}$). In other words, $\operatorname{det} \theta$ is a Blaschke product if and only if $\theta=U B$ for some Blaschke-Potapov product B and some unitary operator U on H, with $U-I \in S_{1}$.

It is convenient to extend the notion of Blaschke-Potapov product. If B is a Blaschke-Potapov product and U a unitary operator on H, with $U-I \in S_{1}$, then let the product $U B$ also be called a Blaschke-Potapov product.

Thus, a G function θ is a (finite) Blaschke-Potapov product, in the extended sense, if and only if $\operatorname{det} \theta$ is a (finite) Blaschke product.

Remark 2. If B_{1} and B_{2} are (finite) Blaschke-Potapov products, then the product $B_{1} B_{2}$ is also a (finite) Blaschke-Potapov product.

The factorization (3) and the notation used in (1) and (2) enable us to introduce the following quantity:

$$
\begin{equation*}
R_{m}(\theta ; w):=\int_{0}^{c}\left|1-e^{-i y(x)} w\right|^{-m} d x+\sum_{j=1}^{q}\left|1-\bar{a}_{j} w\right|^{-m}\left(1-\left|a_{j}\right|\right) p_{j} \tag{6}
\end{equation*}
$$

for $\theta \in G,|w| \leq 1, m \in N$, where the function y is canonical.
The integral in (6) can be replaced by an integral with respect to the representing measure of $\operatorname{det} F$, where $\theta=F U B$ (factorization (3)). Namely, if we set

$$
\sigma(t):=\sup \{x: x \in[0, c] \wedge(y(x)<t \vee x=0)\}, t \in[0,2 \pi]
$$

then we have

$$
\int_{0}^{c} v(y(x), z) d x=\int_{0}^{2 \pi} \frac{1+e^{-i t} z}{1-e^{-i t} z} d \sigma(t), \quad z \in D
$$

i.e. $d \sigma$ is the representing measure of $\operatorname{det} F$ (see (5)), and

$$
\begin{equation*}
\int_{0}^{c}\left|1-e^{-i y(x)} w\right|^{-m} d x=\int_{0}^{2 \pi}\left|1-e^{-i t} w\right|^{-m} d \sigma(t) \tag{7}
\end{equation*}
$$

Remark 3. The above considerations imply that $R_{m}\left(\theta_{1} \theta_{2} ; w\right)=R_{m}\left(\theta_{1} ; w\right)+$ $R_{m}\left(\theta_{2} ; w\right)$, for arbitrary G functions θ_{1} and θ_{2}. Indeed, if $\theta_{1} \theta_{2}=\theta, \theta_{1}=F_{1} B_{1}, \theta_{2}=$ $F_{2} B_{2}, \theta=F B\left(F_{1}, F_{2}, F\right.$ - Potapov multiplicative integrals, B_{1}, B_{2}, B - BlaschkePotapov products) and if $d \sigma_{1}, d \sigma_{2}, d \sigma$ are the representing measures of $\operatorname{det} F_{1}$, $\operatorname{det} F_{2}$, $\operatorname{det} F$ respectively, then it must be $\operatorname{det} \theta=\operatorname{det} \theta_{1}$. $\operatorname{det} \theta_{2}$ and, consequently, $\operatorname{det} F=\operatorname{det} F_{1} . \operatorname{det} F_{2}, \operatorname{det} B=\operatorname{det} B_{1} . \operatorname{det} B_{2}($ see $(4)), d \sigma=d \sigma_{1}+d \sigma_{2}$. Applying the definition (6) in which the integral is replaced by the integral on the right-hand side of (7), we obtain $R_{m}(\theta ; w)=R_{m}\left(\theta_{1}, w\right)+R_{m}\left(\theta_{2} ; w\right)$.

Remark 4. If a sequence $\left(\theta_{n}\right)$ of G functions converges to a G function θ, in the sense of trace norm, uniformly on compact subsets of D, and if we have for each fixed n a sequence ($B_{n \nu}$) of finite Blaschke-Potapov products, tending to θ_{n} as $\nu \rightarrow \infty$, in the same way, then we can find a sequence $\left(B_{n}\right)$ of finite BlaschkePotapov products wich converges to θ. This is easy to do: one need only choose B_{n} to be a $B_{n \nu}$ satisfying $\max \left\{\left\|F_{n}(z)-B_{n \nu}(Z)\right\|_{1}:|z| \leq 1-n^{-1}\right\}<n^{-1}$, for every fixed n.

We shall consider approximation of G functions by finite Blaschke-Potapov products. We will show that any $\theta \in G$ can be approximated in such a way that $R_{m}(\theta ; w)$ is also approximated, for fixed w and m satisfying $R_{m}(\theta ; w)<\infty$.

Theorem 1. Let $\theta \in G,|w| \leq 1, m \in N$, and let $R_{m}(\theta ; w)<\infty$. Then there exists a sequence $\left(B_{n}\right)$ of finite Blaschke-Potapov products such that $B_{n}(z) \rightarrow \theta(z)$,
$n \rightarrow \infty$, in the sense of trace norm, uniformly on compact subsets of D, and that $R_{m}\left(B_{n} ; w\right) \rightarrow R_{m}(\theta ; w), n \rightarrow \infty$.

Proof. Since $\theta \in G$, the factorization (3) holds. It suffices to consider separately the cases $\theta=F$ and $\theta=U B$, for if $\left(B_{l n}\right)$ and $\left(B_{2 n}\right)$ are sequences of finite Blaschke-Potapov products such that $B_{l n}(z) \rightarrow F(z), B_{2 n}(z) \rightarrow U B(z)$, $R_{m}\left(B_{l n} ; w\right) \rightarrow R_{m}(F ; w), R_{m}\left(B_{2 n} ; w\right) \rightarrow R_{m}(U B ; w)$, as $n \rightarrow \infty$, then, by Remarks 2 and $3,\left(B_{l n} B_{2 n}\right)$ is a sequence of finite Blaschke-Potapov products for which $B_{l n}(z) B_{2 n}(z) \rightarrow F(z) U B(z)=\theta(z)$ and $R_{m}\left(B_{l n} B_{2 n} ; w\right)=R_{m}\left(B_{l n} ; w\right)+$ $R_{m}\left(B_{2 n} ; w\right) \rightarrow R_{m}(F ; w)+R_{m}(U B ; w)=R_{m}(\theta ; w)$ as $n \rightarrow \infty$.

Let $\theta=F, F$ a Potapov multiplicative integral. Since the integral products of the form

$$
\prod_{j=0}^{n-1} \exp \left\{-v\left(y\left(\xi_{j}\right), z\right) \Delta E\left(x_{j}\right)\right\}, \xi_{j} \in\left[x_{j}, x_{j+1}\right], \Delta E\left(x_{j}\right)=E\left(x_{j+1}\right)-E\left(x_{j}\right)
$$

converge to $F(z)$ as max $\Delta x_{j} \rightarrow 0$, in the trace norm, uniformly on compact subsets of D, we can choose a sequence of integral products

$$
F_{n}(z)=\prod_{j=0}^{k_{n}-1} \exp \left\{-v\left(y\left(\xi_{n j}\right), z\right) \Delta E\left(x_{n j}\right)\right\}=: \prod_{j=0}^{\mathfrak{n}_{n}-1} f_{n j}(z), n \in N
$$

such that $F_{n}(z) \rightarrow F(z), n \rightarrow \infty$, in the trace norm, uniformly on compact subsets of D, and that

$$
\begin{align*}
& R_{m}\left(F_{n} ; w\right)=\sum_{j=0}^{k_{n}-1}\left|1-e^{-i y\left(\xi_{n j}\right)_{W}}\right|^{-m} \Delta x_{n j} \rightarrow \\
& \int_{0}^{c}\left|1-e^{-i y(x)} w\right|^{-m} d x=R_{m}(F ; w), \quad n \rightarrow \infty \tag{8}
\end{align*}
$$

with $\operatorname{Tr} \Delta E\left(x_{n j}\right)=\Delta x_{n j}<1$ and $e^{i y\left(\xi_{n j}\right)} \neq w, 0 \leq j \leq k_{n}-1, n \in N$. (The first equality in (8) follows from Remark 3 and from the fact that

$$
f_{n j}(z)=\int_{0}^{\curvearrowleft c_{n j}} \exp \left\{-v\left(y\left(\xi_{n j}\right), z\right) d E_{n j}(x)\right\}
$$

where $c_{n j}:=\Delta x_{n j}$ and $E_{n j}(x):=x c_{n j}^{-1} \Delta E\left(x_{n j}\right), 0 \leq x \leq c_{n j}$.)
In view of Remark 4, the searching for an appropriate sequence of finite Blaschke-Potapov products for θ can be reduced to the finding of a suitable sequence of finite Blaschke-Potapov products for any $F_{n}, n \in N$. But according to Remarks 2 and 3, it suffices to find a suitable sequence of finite Blaschke-Potapov products for any $f_{n j}, 0 \leq j \leq k_{n}-1$, and then multiply them to obtain an appropriate sequence for F_{n}.

This allows us to assume $\theta(z)=\exp \{-v(\eta, z) A\}$, where $\eta \in[0,2 \pi], e^{i \eta} \neq w$, and A is a positive operator on H, with $\operatorname{Tr} A<1$.

As the operator A is nuclear and positive, it is the limit, in the trace norm, of a sequence of finite sums $A_{n}:=\sum_{j=1}^{n} \lambda_{j} P_{j}$, where $\lambda_{j}, 0<\lambda_{j}<1$, are eigenvalues of A, and $P_{j}\left(\operatorname{Tr} P_{j}<\infty\right)$ are the corresponding orthogonal projections. Since the function $v(\eta, \cdot)$ is bounded on compact subsets of $D\left(\right.$ for $|v(\eta, z)| \leq 2(1-|z|)^{-1}$, $z \in D$), it follows that

$$
\begin{equation*}
K_{n}(z):=\exp \left\{-v(\eta, z) A_{n}\right\} \rightarrow \theta(z), \quad n \rightarrow \infty \tag{9}
\end{equation*}
$$

in the trace norm, uniformly on compact subsets of D, and that

$$
\begin{equation*}
R_{m}\left(K_{n} ; w\right)=\left|1-e^{-i \eta} w\right|^{-m} \operatorname{Tr} A_{n} \rightarrow\left|1-e^{-i \eta} w\right|^{-m} \operatorname{Tr} A=R_{m}(\theta, w), \quad n \rightarrow \infty \tag{10}
\end{equation*}
$$

Note that $K_{n}(z)=\int{ }_{0}^{\curvearrowleft c_{n}} \exp \left\{-v(\eta, z) d E_{n}(x)\right\}$, where $c_{n}:=\operatorname{Tr} A_{n}$, and $E_{n}(x):=$ $x c_{n}^{-1} A_{n}, 0 \leq x \leq c_{n}, n \in N$.

Clearly, we have

$$
\begin{equation*}
K_{n}(z)=\prod_{j=1}^{n} \exp \left\{-v(\eta, z) \lambda_{j} P_{j}\right\}=: \prod_{j=1}^{n} k_{j}(Z), \quad n \in N \tag{11}
\end{equation*}
$$

Since $K_{n} \rightarrow \theta$ and $R_{m}\left(K_{n} ; w\right) \rightarrow R_{m}(\theta ; w)$ as $n \rightarrow \infty$ (see (9), (10)), the finding of an appropriate sequence of finite Blaschke-Potapov products for θ reduces to the searching for a suitable sequence for any K_{n} (by Remark 4) and since each K_{n} is a finite product of the functions k_{j} (see (11)), this reduces further to the finding of a sequence for any k_{j} (by Remarks 2 and 3).

Thus we may assume that θ has the form $\theta(z)=\exp \{-v(\eta, z) \lambda P\}, z \in D$, where: $\eta \in[0,2 \pi], e^{i \eta} \neq w ; 0<\lambda<1 ; P^{*}=P, P^{2}=P$; $\operatorname{Tr} P:=p$. Starting with such a θ, set $a_{n}:=\left(1-\lambda n^{-1}\right) e^{i \eta}$ and $B_{n}(z):=\left[b\left(P ; a_{n}, z\right)\right]^{n}, n \in N$. Then we have, for $z \in D$ and $n \in N$:

$$
\begin{aligned}
\| \exp & \left\{-v(\eta, z) \lambda n^{-1} P\right\}-b\left(P ; a_{n}, z\right) \|_{1} \\
\leq \leq & \left\|\exp \left\{-v(\eta, z) \lambda n^{-1} P\right\}-I+v(\eta, z) \lambda n^{-1} P\right\|_{1} \\
& +\left\|I-v(\eta, z) \lambda n^{-1} P-\left[I+\frac{1+\left|a_{n}\right| a_{n}^{-1} z}{1-\bar{a}_{n} z}\left(\left|a_{n}\right|-1\right) P\right]\right\|_{1} \\
\leq & \sum_{j=2}^{\infty} \frac{1}{j!}\left\|\left[v(\eta, z) \lambda n^{-1} P\right]^{j}\right\|_{1} \\
& +\left\|-\frac{1+e^{-i \eta} z}{1-e^{-i \eta} z} \lambda n^{-1} P+\frac{1+e^{-i \eta} z}{1-\left(1-\lambda n^{-1}\right) e^{-i \eta} z} \lambda n^{-1} P\right\|_{1} \\
\leq & \frac{4}{(1-|z|)^{2}} \lambda^{2} n^{-2} \exp \left\{\frac{2}{1-|z|} \lambda n^{-1}\right\} p+\frac{2}{(1-|z|)^{2}} \lambda^{2} n^{-2} p
\end{aligned}
$$

Since $\left\|L^{n}-M^{n}\right\|_{1} \leq\|L-M\|_{1}\left\|L^{n-1}+L^{n-2} M+\ldots+M^{n-1}\right\| \leq\|L-M\|_{1} \cdot n$ whenever $L, M \in C, L-I \in S_{1}, M-I \in S_{1}, L M=M L,\|L\| \leq 1,\|M\| \leq 1$, it
follows

$$
\begin{aligned}
& \left\|\exp \{-v(\eta, z) \lambda P\}-\left[b\left(P ; a_{n}, z\right)\right]^{n}\right\|_{1} \\
& \quad \leq\left\|\exp \left\{-v(\eta, z) \lambda n^{-1} P\right\}-b\left(P ; a_{n}, z\right)\right\|_{1} \cdot n \\
& \quad \leq \frac{4}{(1-|z|)^{2}} \lambda^{2} n^{-1} \exp \left\{\frac{2}{1-|z|} \lambda n^{-1}\right\} p+\frac{2}{(1-|z|)^{2}} \lambda^{2} n^{-1} p \rightarrow 0, n \rightarrow \infty
\end{aligned}
$$

uniformly on compact subsets of D. Thus $B_{n}(z) \rightarrow \theta(z)$ as $n \rightarrow \infty$, in the trace norm, uniformly on compact subsets of D.

It remains to show $R_{m}\left(B_{n} ; w\right) \rightarrow R_{m}(\theta ; w), n \rightarrow \infty$. This follows from $R_{m}\left(B_{n} ; w\right)=\left|1-\bar{a}_{n} w\right|^{-m} n\left(1-\left|a_{n}\right|\right) p, R_{m}(\theta ; w)=\left|1-e^{-i \eta} w\right|^{-m} \lambda p$ and $a_{n} \rightarrow$ $e^{i \eta}$ as $n \rightarrow \infty$, with $n\left(1-\left|a_{n}\right|\right)=\lambda, n \in N$.

In the case $\theta(z)=U B(z), z \in D$, the statement follows easily from the nature of convergence of the partial products.

The proof is finished.
Remark 5. The above theorem remains correct if we allow $R_{m}(\theta ; w)$ to be ∞, but we can not get then $R_{m}\left(B_{n} ; w\right)-R_{m}(\theta ; w) \rightarrow 0, n \rightarrow \infty$, i.e. $R_{m}\left(B_{n} ; w\right)$ does not approximate $R_{m}(\theta ; w)$.

Our theorem generalizes the result of Ahern and Clark [4] concerning the scalar case $\operatorname{dim} H=1$. Ginzburg [5] also considered approximation of bounded operator functions by the finite Blaschke-Potapov products, but without approximation of the quantity R_{m}.

REFERENCES

[1] Ю.П. Гинзбург, О мультипликативных представлениях ограниченных аналитических оператор-функиий, ДАН СССР 170 (1966), 23-26.
[2] В.П. Потапов,Мултипликативная структура Ј-жерастягивающих матрич-функиий, Тр. Моск. матем. о-ва, 4 (1955), 125-236.
[3] И.Ц. Гохберг, М.Г. Крейн,Введение в теорию линейных несамосопряжсеных операторов в гильбертовом пространстве, Наука, Москва, 1965.
[4] P.R. Ahern, D.N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332-342.
[5] Ю.П. Гинзбург, О почти инвариантных спектральных свойствах сжатий и мультипликативных свойствах аналитических оператор-функций, Функц. анал. и его прил., 5 (3) (1971), 32-41.

Katedra za matematiku	(Received 1105 1992)
Mašinski fakultet	(Revised 11041994)
11000 Beograd	
Yugoslavia	

