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Abstract. Let (7, 1 < p, ¢ < o0, be the mixed-norm sequence space. We investigate the
Hausdorff measure of noncompactness of the operator T : ™5 +— "V, defined by the multiplier
Ty(a) = {Anan}, A= {Xn} €1, a = {an} € "%, and prove necessary and sufficient conditions
for T\ to be a compact.

1. Introduction and preliminaries

A complex sequence {\,} is of class "7, 0 < p,q < oo, if

i ( > |/\n|”> " < 00, (1.0.1)

m=0 “nel(m)

where 1(0) = {0} and I(m) = {n € N : 2™~ < n < 2™}, for m > 0. In the case
where p or q is infinite, replace the corresponding sum by a supremum. It is known
that (77, 1 < p,q < 00, with norm

== (X (S |An|p)q/p)l/q, (102)

m=0 “nel(m)

is a Banach space, usually called the mixed-norm space [??. Note that PP = [P,
and that if p or ¢ is infinite, then the corresponding sum should be replaced by
supremum: thus

1/p
||A||p,oo=sup( ) w) . (1.03)
m nel(m)

For any two subsets E and F' of [*°, the set of multipliers from E to F' (denoted
by (E, F)) is the set of all A\ = {\,} € {* such that Aa = {\,a,} is an element of
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F for all a = {a,} € E. Let Ty : E — F be the operator defined by T (a) = Aa,
(a € E). For the convenience of a reader, recall the following well known theorem
of Kellog [6, Theorem 1]

THEOREM 1.1. Let 1 < r,s,u,v < oo, and define p and q by

1/p=1/u=1/r if r>u, p=oco if r<u,
1/g=1/v—1/s if s>, g=00 if s<w.

Then (I, 1%0) =[P4,

Kellog proved that the operator Ty : I™® +— [*? defined by Th(z) = Az,
(x € 1™%) is a bounded linear operator and that its operator norm ||T)|| is equal to
[IAll-

If @ is a bounded subset of a metric space X, then the Hausdorff measure of
noncompactness of @, is denoted by x(Q), and

x(Q) =inf{e > 0:Q has a finite e-net in X} (1.0.4)

The function y is called the Hausdorff measure of noncompactness, and for its
properties see [1], [2], or [8]. Denote by @ the closure of (). For the convenience of
the reader, let us mention that: If ), Q1 and @, are bounded subsets of a metric
space (X,d), then

x(Q) =0 < @ is a totally bounded set, (1.0.5)
x(@Q) = x(@Q), (1.0.6)

Q1 C Q2 = x(Q1) < x(Q2), (1.0.7)
X(Q1 U @2) = max{x(Q1), x(Q2)}, (1.0.8)
x(Q1 N Q2) < min{x(Q1), x(Q2)}- (1.0.9)

If our space X is a Banach space, then the function x(Q) has some additional
properties connected with the linear structure. We have e.g.

X(Q1 + Q2) < x(Q1) + x(Q2), (1.0.10)
X(AQ) = |Alx(Q) foreach XeC. (1.0.11)

If X and Y are Banach spaces, then let us denote by B(X,Y") the set of all
bounded linear operators from X into Y. For A € B(X,Y) the Hausdorff measure
of noncompactness of A, denoted by ||A|ly, is defined by ||4|]y = x(AS), where
S ={z € X : ||z|| = 1} is the unit sphere in X. It is known that ||A||, = x(4AK),
where K = {x € X : ||z|| < 1} is the unit ball in X. Further, A is compact if and
only if [|A]ly, =0, || |y is a seminorm on B(X,Y), and ||A]], < ||4]].

In this paper, we investigate the Hausdorff measure of noncompactness of the
operator T).
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2. Results

We start with the following auxiliary result.

LEMMA 2.1. Let Q be a bounded subset of P2, p € [1,00], q € [1,00), and let
P, :[P"— [P n=1,2,..., be the operator defined by

P,(z) = (x1,...,20,0,...), x=(z,) €l
Then
Q) = lim sup |(7 - o)l (2.1.1)

n—oo -TEQ

Proof. Tt is clear that @ C P,Q+(I—P,)Q. Now, by the elementary properties
of function x (see [1], [2], or [8]) we have

X(Q) < X(PnQ) + X(([ - Pn)Q) = X(([ - Pn)Q)
< sup [|(I = P,)z]|. (2.1.2)
T€EQ

Since the limit in (2.1.1) obviously exists, from (2.1.2) we get

Q) < Tim  sup [I(T - Po)ell (2.1.3)
n—oo -TEQ
Hence, it is enough to proove “>” in (2.1.1). Let ¢ > 0 and {z1,...,2x} be
[X(Q) + €]-net of Q. If K = {x € [P7: ||z|| < 1}, then it is easy to see that
QCH{z,..., 2z} + [x(Q) + € K. (2.1.4)

By (2.1.4), for any = € @ there are z € {z1,...,2;} and s € K such that ¢ =
z+ [x(Q) + €]s. Thus

sup [|(I — Po)z|| < sup [[(1 — Po)zill + [x(Q) + e]. (2.1.5)
zeQ 1<i<k

Now, from the choice of p and ¢ it follows that

lim sup [|(7 — Pa)zll < x(Q) +e.

n— 00 IGQ

The lemma is proved.

Let us mention that we have not been able to prove Lemma 2.1 for ¢ = oo.
Also, we have not known any formula (similar to (2.1.1)) for x(Q), @ C I*°, and
set it as an open problem.

Now we prove the main result of the paper.

THEOREM 2.2. Let r,s,u,v,p and q be as in Theorem 1.1. Then, for \ €
(™, 1%v) = IP1, we have

ITAllx =0, ifv<s, (2.2.1)
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ITxlly =lmsup|A,|, ifs<v<oo andr <u, (2.2.2)
n—o00
1/p
1T\l = limsup( Z |)\n|p> , ifs<v<ooandr > u, (2.2.3)
m nel(m)
1
—limsup [A,| < ||Tally < limsup |A,|, ifv =00 andr < u, (2.2.4)
2 n—o00 n— 00
1 1/p 1/p
L nmsup( ) w) < Il < nmsup( ) w) L ifv=oo
2 m—»00 m—»00
nel(m) nel(m)
and r > u. (2.2.5)

Proof. Set S = {z € 1™ : ||z|| = 1}. To prove (2.2.1) suppose that v < s.
fl<u<r<ooand 1l <wv < s < oo, then, by Theorem 1.1, p and ¢ are real
numbers. Now for A € [P?, by Lemma 2.1 we have

el v/uy 1/v
7]l = Jim sup (Z( ) |Aka:k|u) ) , (2.26)
n [oe] IG

m=n “ke€I(m)

where z = (z1, x2, ...) € S. By the proof of [6, Theorem 1] we have

<§::n< 2 |Akmk|u>v/u>1/v§ <i< > |’\n|”>q/p>1/qllxllr,s. (2.2.7)

keI(m) m=n “nel(m)

Now, (2.2.1) follows by (2.2.6) and (2.2.7).

Now, suppose that 1 < u <r < o and 1 < v < s = co. Hence, ¢ = v,
and again by [6, Theorem 1] from (2.2.6) we get the inequality (2.2.7) (of course
for s = 00), and so (2.2.1) holds. Let us remark that all the other possibilities for
r, s, u, v in the case v < s could be proved in a similar way, and we omit the
proof.

Let us prove (2.2.2). Now p = ¢ = oo. If L is a subset of integers, set
L(z) = L(z;) = (x(L);), * = (x;) € I™°, where z(L); = z; if i € L, and z(L); =0
if i ¢ L. Let € > 0. Then there is a subsequence {\,, } of {\,} such that

[An, | > limsup |A,| — €. (2.2.8)
n—o0
Set M = {n, : k =1,2,...}, and let ¢; = {4;;} € [*°, 4 = 1,2,.... Now, for
K ={z €™ :||z|| < 1}, by Lemma 2.1 we get

1Tl = X(TAK) > x(Tarx) K) > x({M (Ni)e; =i € N})
> limsup |A,| — €.

n—o0

(2.2.9)

Hence
ITxllx > limsup |A|. (2.2.10)
n—00
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To prove the opposite inequality, suppose that € > 0. Then L = {n : |\,| >
lim sup,,_, o [An| + €} is a finite set, and

TA(K) = Tn\pong) (K) + Trng) (K).

Hence
X(TA(K)) < X(Ta\pan) (K)) + x(Toon) (K)) = x(Tapon) (K)).
Now
ITN\L) e = X(Tanpon) () < N Ta\poll < limsup [A,| + €,
n—oo
and we get

ITxllx < limsup [Ay|. (2.2.11)
n— 00

Clearly, now (2.2.2) follows from (2.2.10) and (2.2.11).

Let us prove (2.2.3). Now p < oo and ¢ = co. If L is a subset of integers,
then set L(z) = L(x;) = (z(L);), = (x;) € I™*, where z(L); = z; if i € L, and
z(L); =01if i ¢ L. Let € > 0. Then there is a subsequence {I(mg)} of {I(m)} such
that

1/p 1/p
( > |An|”> >limsup< > |An|p> —¢, keN. (2.2.12)

nel(my) nree nel(m)

Set M = {my, - k=1,2,...}, and ¢ = (X ey Mal?) /", k= 1,2,.... For
each k, define the sequence xy(n), by

ck|/\n|p/r’ ifne I(mk)
zk(n) =

) (2.2.13)
0, otherwise.

Now zi(n) € I™® and ||z (n)|| =1, k = 1,2,.... Further, by Lemma 2.1 we get
ITa 1 = X(TAE) 2 x(Tani) K) 2 x({M (Xi)zy - k € N})

1/p
Zlimsup< Z |)\n|p> — €. (2.2.14)
k—roo nel(my)
Hence
1/p
||TA||x21imsup< Z |)\n|p> . (2.2.15)
n—00 nel(m)

To prove the opposite inequality, suppose that € > 0. Then
1/p 1/p
L= {m: ( Z |)\n|”> >1imsup< Z |/\n|p> +e}
nel(m) m—eo nel(m)

is a finite set, and
TA(K) = Tn\pong) (K) + Trng) (K).
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Hence
X(TA(K)) < X(Ta\pa) () + x(Tpoan (K)) = x(Tapong) (K))-
Now
1/p
ITa\ 2o I = X(Tnvpoaa) () < NITameoll < limsup< Z |>\n|p> +€,
m—00 nEl(m)
and we get
1/p
I3 < timsw( 35 D) (2.2.16)
m—00 nEl(m)

Now (2.2.3) follows from (2.2.15) and (2.2.16).

Let us remark that from the proof of (2.2.11) ((2.2.16)) we get also the second
inequalitity in (2.2.4) ((2.2.5)). To prove the first inequality in (2.2.4), similary as
in the proof of 7>" in (2.2.2) (we use the same notations) we have

ITAlly = X(TAK) 2 X(Tar(an) ) 2 x({M (Xi)e; = i € N}). (2.2.17)
Now we can not invoke Lemma 2.1 (recall that v = 00), but since

IM(Xi)e; — M(Xi)ej|| > limsup [A,| —€, i #
n—oo
by [1, Theorem 1.1.7 and Remark 1.3.2] we have

x{MA\e;:i=1,2,...}) > %(lim sup [An| — €). (2.2.18)

n—o0

Hence from (2.2.17) and (2.2.18) we have the first inequality in (2.2.4).

Finally, to prove the first inequality in (2.2.5), similary as in the proof of ”>”
in (2.2.3) (we use the same notations) we have

1Ty = X(TAK) 2 X(Trnni) K) 2 x(EM (Xi)ay : k€ N}). (2.2.19)
Now, again, we can not invoke Lemma 2.1 (recall that v = o0), but since
1/p
1M (\)z; — M(\)zj|| > lim sup( > |/\n|”> —€,  i#]
m—00 nel(m)
by [1, Theorem 1.1.7 and Remark 1.3.2] we have
1 1/p
X{M )z k€ NY) > 5 (hm sup< > |An|p> - e). (2.2.20)
m—0o nel(m)

From (2.2.19) and (2.2.20) we have the first inequality in (2.2.5). This completes
the proof of Theorem 2.2.
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Now as a corollary of the above theorem we have
COROLLARY 2.3. Let r,s,u,v,p and q be as in Theorem 1.1. Then, for
Ae (I™%,1%Y) =11, we have:
i) T\ is a compact, if v < s,

ii) Ty is a compact + limsup |\,| =0, if s < v and r < u,
n—oo

1/p
iii) Ty is a compact <> limsup< Z |)\n|p> =0,if s<v andr > u.
m—eo nel(m)
Remark. Let us remark that it was observed (see [4, Lemma 2.4] or [5, Lemma
1.1.2]) that Kellog’s theorem is true for 0 < r, s, u,v < 0.

If X is an infinite-dimensional normed space and K is the unit ball in X,
then it is known that x(K) = 1. In the next lemma we prove that it is also true
in the spaces [P, 0 < p < 1. Recall that I, 0 < p < 1 is a metric space with the

metric d(z,y) =Y o _g |Tn — Yn|?.

LEMMA 2.4. Let Q, Q1 and Q)5 be bounded subsets of I, 0 < p < 1. Then

X(Q) = inf. S X;L jzi]?, (2.4.1)

X(Q1 + Q2) < x(Q1) + x(Q2), (24.2)
x(aQ) = |a|Px(Q) for any scalar a, (2.4.3)
Y(K) =1. (2.4.4)

Proof. For (2.4.1) see [7, Theorem 4.1.] (let us remark thar this result also
follows from Lemma 2.1). (2.4.2) follows from [3, p. 6], and (2.4.1) implies (2.4.3).

To prove (2.4.4) let us remark that clearly x(K) < 1. If x(K) = s < 1, then

we find € > 0 such that s + € < 1. Now, there is (s + €)-net of K, say {z1,...,z}-
Hence
K C U{:rz (s+e)K}, (2.4.5)
and
s=x(K) < Jnax, x{zi+ (s +€)K})=(s+¢)Ps. (2.4.6)

Since s+e<1, from (2.4.5) it follows s =0, i.e. K is totally bounded. Hence
we get a contradiction, and the proof is complete.
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