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Abstract. Let lp;q; 1 � p; q � 1, be the mixed-norm sequence space. We investigate the
Hausdor� measure of noncompactness of the operator T� : lr;s 7! lu;v, de�ned by the multiplier
T�(a) = f�nang, � = f�ng 2 l1, a = fang 2 lr;s, and prove necessary and suÆcient conditions
for T� to be a compact.

1. Introduction and preliminaries

A complex sequence f�ng is of class l
p;q, 0 < p; q � 1, if

1X
m=0

� X
n2I(m)

j�nj
p

�q=p
<1; (1.0.1)

where I(0) = f0g and I(m) = fn 2 N : 2m�1 � n < 2mg, for m > 0. In the case
where p or q is in�nite, replace the corresponding sum by a supremum. It is known
that lp;q, 1 � p; q �1, with norm

k�k = k�kp;q =

� 1X
m=0

� X
n2I(m)

j�nj
p

�q=p�1=q
; (1.0.2)

is a Banach space, usually called the mixed-norm space lp;q. Note that lp;p = lp,
and that if p or q is in�nite, then the corresponding sum should be replaced by
supremum: thus

k�kp;1 = sup
m

� X
n2I(m)

j�nj
p

�1=p
: (1.0.3)

For any two subsets E and F of l1, the set of multipliers from E to F (denoted
by (E;F )) is the set of all � = f�ng 2 l1 such that �a = f�nang is an element of
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F for all a = fang 2 E. Let T� : E 7! F be the operator de�ned by T�(a) = �a,
(a 2 E). For the convenience of a reader, recall the following well known theorem
of Kellog [6, Theorem 1]

Theorem 1.1. Let 1 � r; s; u; v �1, and de�ne p and q by

1=p = 1=u� 1=r if r > u; p =1 if r � u;

1=q = 1=v � 1=s if s > v; q =1 if s � v:

Then (lr;s; lu;v) = lp;q.

Kellog proved that the operator T� : lr;s 7! lu;v de�ned by T�(x) = �x,
(x 2 lr;s) is a bounded linear operator and that its operator norm kT�k is equal to
k�k.

If Q is a bounded subset of a metric space X , then the Hausdor� measure of
noncompactness of Q, is denoted by �(Q), and

�(Q) = inff� > 0 : Q has a �nite �-net in Xg (1.0.4)

The function � is called the Hausdor� measure of noncompactness, and for its
properties see [1], [2], or [8]. Denote by Q the closure of Q. For the convenience of
the reader, let us mention that: If Q, Q1 and Q2 are bounded subsets of a metric
space (X; d), then

�(Q) = 0() Q is a totally bounded set; (1.0.5)

�(Q) = �(Q); (1.0.6)

Q1 � Q2 () �(Q1) � �(Q2); (1.0.7)

�(Q1 [Q2) = maxf�(Q1); �(Q2)g; (1.0.8)

�(Q1 \Q2) � minf�(Q1); �(Q2)g: (1.0.9)

If our space X is a Banach space, then the function �(Q) has some additional
properties connected with the linear structure. We have e.g.

�(Q1 +Q2) � �(Q1) + �(Q2); (1.0.10)

�(�Q) = j�j�(Q) for each � 2 C: (1.0.11)

If X and Y are Banach spaces, then let us denote by B(X;Y ) the set of all
bounded linear operators from X into Y . For A 2 B(X;Y ) the Hausdor� measure
of noncompactness of A, denoted by kAk�, is de�ned by kAk� = �(AS), where
S = fx 2 X : kxk = 1g is the unit sphere in X . It is known that kAk� = �(AK),
where K = fx 2 X : kxk � 1g is the unit ball in X . Further, A is compact if and
only if kAk� = 0, k k� is a seminorm on B(X;Y ), and kAk� � kAk.

In this paper, we investigate the Hausdor� measure of noncompactness of the
operator T�.
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2. Results

We start with the following auxiliary result.

Lemma 2.1. Let Q be a bounded subset of lp;q, p 2 [1;1], q 2 [1;1), and let

Pn : lp;q 7! lp;q, n = 1; 2; . . . , be the operator de�ned by

Pn(x) = (x1; . . . ; xn; 0; . . . ); x = (xm) 2 lp;q:

Then

�(Q) = lim
n!1

sup
x2Q

k(I � Pn)xk: (2.1.1)

Proof. It is clear thatQ � PnQ+(I�Pn)Q:Now, by the elementary properties
of function � (see [1], [2], or [8]) we have

�(Q) � �(PnQ) + �((I � Pn)Q) = �((I � Pn)Q)

� sup
x2Q

k(I � Pn)xk:
(2.1.2)

Since the limit in (2.1.1) obviously exists, from (2.1.2) we get

�(Q) � lim
n!1

sup
x2Q

k(I � Pn)xk: (2.1.3)

Hence, it is enough to proove \�" in (2.1.1). Let � > 0 and fz1; . . . ; zkg be
[�(Q) + �]-net of Q. If K = fx 2 lp;q : kxk � 1g, then it is easy to see that

Q � fz1; . . . ; zkg+ [�(Q) + �]K: (2.1.4)

By (2.1.4), for any x 2 Q there are z 2 fz1; . . . ; zkg and s 2 K such that x =
z + [�(Q) + �]s: Thus

sup
x2Q

k(I � Pn)xk � sup
1�i�k

k(I � Pn)zik+ [�(Q) + �]: (2.1.5)

Now, from the choice of p and q it follows that

lim
n!1

sup
x2Q

k(I � Pn)xk � �(Q) + �:

The lemma is proved.

Let us mention that we have not been able to prove Lemma 2.1 for q = 1.
Also, we have not known any formula (similar to (2.1.1)) for �(Q), Q � l1, and
set it as an open problem.

Now we prove the main result of the paper.

Theorem 2.2. Let r; s; u; v; p and q be as in Theorem 1.1. Then, for � 2
(lr;s; lu;v) = lp;q, we have

kT�k� = 0, if v < s, (2:2:1)
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kT�k� = lim sup
n!1

j�nj, if s � v <1 and r � u, (2:2:2)

kT�k� = lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p
, if s � v <1 and r > u, (2:2:3)

1

2
lim sup
n!1

j�nj � kT�k� � lim sup
n!1

j�nj, if v =1 and r � u, (2:2:4)

1

2
lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p
� kT�k� � lim sup

m!1

� X
n2I(m)

j�nj
p

�1=p
, if v =1

and r > u. (2:2:5)

Proof. Set S = fx 2 lr;s : kxk = 1g. To prove (2.2.1) suppose that v < s.
If 1 � u < r < 1 and 1 � v < s < 1, then, by Theorem 1.1, p and q are real
numbers. Now for � 2 lp;q, by Lemma 2.1 we have

kT�k� = lim
n!1

sup
x2S

� 1X
m=n

� X
k2I(m)

j�kxkj
u

�v=u�1=v
; (2.2.6)

where x = (x1; x2; . . . ) 2 S. By the proof of [6, Theorem 1] we have

� 1X
m=n

� X
k2I(m)

j�kxkj
u

�v=u�1=v
�

� 1X
m=n

� X
n2I(m)

j�nj
p

�q=p�1=q
kxkr;s: (2.2.7)

Now, (2.2.1) follows by (2.2.6) and (2.2.7).

Now, suppose that 1 � u < r < 1 and 1 � v < s = 1. Hence, q = v,
and again by [6, Theorem 1] from (2.2.6) we get the inequality (2.2.7) (of course
for s = 1), and so (2.2.1) holds. Let us remark that all the other possibilities for
r; s; u; v in the case v < s could be proved in a similar way, and we omit the
proof.

Let us prove (2.2.2). Now p = q = 1. If L is a subset of integers, set
L(x) = L(xi) = (x(L)i), x = (xi) 2 lr;s, where x(L)i = xi if i 2 L, and x(L)i = 0
if i 62 L. Let � > 0. Then there is a subsequence f�nkg of f�ng such that

j�nk j > lim sup
n!1

j�nj � �: (2.2.8)

Set M = fnk : k = 1; 2; . . . g, and let ei = fÆijg 2 l1, i = 1; 2; . . . . Now, for
K = fx 2 lr;s : kxk � 1g, by Lemma 2.1 we get

kT�k� = �(T�K) � �(TM(�i)K) � �(fM(�i)ei : i 2 Ng)

� lim sup
n!1

j�nj � �: (2.2.9)

Hence

kT�k� � lim sup
n!1

j�nj: (2.2.10)
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To prove the opposite inequality, suppose that � > 0. Then L = fn : j�nj >
lim supn!1 j�nj+ �g is a �nite set, and

T�(K) = TNnL(�i)(K) + TL(�i)(K):

Hence

�(T�(K)) � �(TNnL(�i)(K)) + �(TL(�i)(K)) = �(TNnL(�i)(K)):

Now
kTNnL(�i)k� = �(TNnL(�i)(K)) � kTNnL(�i)k � lim sup

n!1
j�nj+ �;

and we get
kT�k� � lim sup

n!1
j�nj: (2.2.11)

Clearly, now (2.2.2) follows from (2.2.10) and (2.2.11).

Let us prove (2.2.3). Now p < 1 and q = 1. If L is a subset of integers,
then set L(x) = L(xi) = (x(L)i), x = (xi) 2 lr;s, where x(L)i = xi if i 2 L, and
x(L)i = 0 if i 62 L. Let � > 0. Then there is a subsequence fI(mk)g of fI(m)g such
that � X

n2I(mk)

j�nj
p

�1=p
> lim sup

n!1

� X
n2I(m)

j�nj
p

�1=p
� �; k 2 N: (2.2.12)

Set M = fmk : k = 1; 2; . . . g, and ck =
�P

n2I(mk)
j�nj

p
��1=r

, k = 1; 2; . . . : For

each k, de�ne the sequence xk(n), by

xk(n) =

�
ckj�nj

p=r; if n 2 I(mk)

0; otherwise:
(2.2.13)

Now xk(n) 2 lr;s and kxk(n)k = 1, k = 1; 2; . . . . Further, by Lemma 2.1 we get

kT�k� = �(T�K) � �(TM(�i)K) � �(fM(�i)xk : k 2 Ng)

� lim sup
k!1

� X
n2I(mk)

j�nj
p

�1=p
� �:

(2.2.14)

Hence

kT�k� � lim sup
n!1

� X
n2I(m)

j�nj
p

�1=p
: (2.2.15)

To prove the opposite inequality, suppose that � > 0. Then

L �

�
m :

� X
n2I(m)

j�nj
p

�1=p
> lim sup

m!1

� X
n2I(m)

j�nj
p

�1=p
+ �

�

is a �nite set, and
T�(K) = TNnL(�i)(K) + TL(�i)(K):
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Hence

�(T�(K)) � �(TNnL(�i)(K)) + �(TL(�i)(K)) = �(TNnL(�i)(K)):

Now

kTNnL(�i)k� = �(TNnL(�i)(K)) � kTNnL(�i)k � lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p
+ �;

and we get

kT�k� � lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p
: (2.2.16)

Now (2.2.3) follows from (2.2.15) and (2.2.16).

Let us remark that from the proof of (2.2.11) ((2.2.16)) we get also the second
inequalitity in (2.2.4) ((2.2.5)). To prove the �rst inequality in (2.2.4), similary as
in the proof of "�" in (2.2.2) (we use the same notations) we have

kT�k� = �(T�K) � �(TM(�i)K) � �(fM(�i)ei : i 2 Ng): (2.2.17)

Now we can not invoke Lemma 2.1 (recall that v =1), but since

kM(�i)ei �M(�i)ejk � lim sup
n!1

j�nj � �; i 6= j;

by [1, Theorem 1.1.7 and Remark 1.3.2] we have

�(fM(�i)ei : i = 1; 2; . . .g) �
1

2

�
lim sup
n!1

j�nj � �
�
: (2.2.18)

Hence from (2.2.17) and (2.2.18) we have the �rst inequality in (2.2.4).

Finally, to prove the �rst inequality in (2.2.5), similary as in the proof of "�"
in (2.2.3) (we use the same notations) we have

kT�k� = �(T�K) � �(TM(�i)K) � �(fM(�i)xk : k 2 Ng): (2.2.19)

Now, again, we can not invoke Lemma 2.1 (recall that v =1), but since

kM(�i)xi �M(�i)xjk � lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p
� �; i 6= j;

by [1, Theorem 1.1.7 and Remark 1.3.2] we have

�(fM(�i)xk : k 2 Ng) �
1

2

�
lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p
� �

�
: (2.2.20)

From (2.2.19) and (2.2.20) we have the �rst inequality in (2.2.5). This completes
the proof of Theorem 2.2.
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Now as a corollary of the above theorem we have

Corollary 2.3. Let r; s; u; v; p and q be as in Theorem 1.1. Then, for

� 2 (lr;s; lu;v) = lp;q, we have:

i) T� is a compact, if v < s,

ii) T� is a compact $ lim sup
n!1

j�nj = 0, if s � v and r � u,

iii) T� is a compact $ lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p
= 0, if s � v and r > u.

Remark. Let us remark that it was observed (see [4, Lemma 2.4] or [5, Lemma
1.1.2]) that Kellog's theorem is true for 0 < r; s; u; v � 1.

If X is an in�nite-dimensional normed space and K is the unit ball in X ,
then it is known that �(K) = 1. In the next lemma we prove that it is also true
in the spaces lp, 0 < p < 1. Recall that lp, 0 < p < 1 is a metric space with the
metric d(x; y) =

P1
m=0 jxn � ynj

p.

Lemma 2.4. Let Q, Q1 and Q2 be bounded subsets of lp, 0 < p < 1. Then

�(Q) = inf
n2N

sup
(xk)2Q

1X
i=n

jxij
p; (2.4.1)

�(Q1 +Q2) � �(Q1) + �(Q2); (2.4.2)

�(�Q) = j�jp�(Q) for any scalar �; (2.4.3)

�(K) = 1: (2.4.4)

Proof. For (2.4.1) see [7, Theorem 4.1.] (let us remark thar this result also
follows from Lemma 2.1). (2.4.2) follows from [3, p. 6], and (2.4.1) implies (2.4.3).

To prove (2.4.4) let us remark that clearly �(K) � 1: If �(K) = s < 1, then
we �nd � > 0 such that s+ � < 1: Now, there is (s+ �)-net of K, say fx1; . . . ; xkg.
Hence

K �

k[
i=1

�
xi + (s+ �)K

	
; (2.4.5)

and

s = �(K) � max
1�i�k

�(fxi + (s+ �)Kg) = (s+ �)ps: (2.4.6)

Since s+ � < 1; from (2.4.5) it follows s = 0; i.e. K is totally bounded. Hence
we get a contradiction, and the proof is complete.
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