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FUNCTIONAL EQUATIONS

AND TEMPERED ULTRADISTRIBUTIONS
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Communicated by Stevan Pilipovi�c

Abstract. We introduce a method of solving functional equations based on the theory of
ultradistributions.

1. Introduction. In [1] Baker studied complex valued functions and dis-
tributions f , of several real variables, satisfying functional equations of the form

mX
�=0

a�f(x+ k�) = Q(x); x 2 Rd;

where a0; a1; . . .am 2 C; k0; k1; . . . km 2 Rd, m 2 N, and Q is a polynomial.
He introduced a method for soloving such an equation based on the theory of
distributions. In this paper we investigate a wider class of functional equations and
complex valued functions and ultradistributions which are solutions of a functional
equation of the form

1X
�=0

a�f(x+ k�) = Q(x); x 2 Rd; (1.1)

where fa�g� and fk�g� are sequences in C and Rd, respectively, and Q is an entire
function with the appropriate growth rate.

We investigate the equation (1.1) in the frame of the theory of tempered
ultradistributions. Our method is based on Komatsu's theory of Beurling (resp.
Roumieu) type ultradistributions and the properties of the Fourier transform on
the spaces of tempered ultradistributions, which were obtained in [5] and [4]. Fol-
lowing an idea analogous to Baker's one for distributions [1], we will show that
under certain assumptions on sequences fa�g� and fk�g�, if a solution f of (1.1)

AMS Subject Classi�cation (1991): Primary 39B 40; Secondary 39A 10, 46 F12.



Functional equations and tempered ultradistributions 55

is a function which satis�es some mild regularity conditions, then f is almost ev-
erywhere equal to an entire function with appropriate growth rate. The method is
illustrated by two examples.

2. Notation and background. The symbols N, Z, R and C denote the
sets of natural numbers, integers, real numbers and complex numbers, respectively,
and N0 = N [ f0g. The letter d denotes a �xed element of N. In the paper we
suppose that:

1. fM�g� is the sequence of positive numbers which satisfy the following
conditions (see [2]):

(M.1) M2
� �M��1M�+1, � 2 N;

(M.2) M� � AH�min0����M���M�, �; � 2 N0, for some A;H � 0;

(M.3)

1X
�=�+1

M��1

M�
� A�

M�

M�+1
, � 2 N.

2. So-called associated function M for the sequence fM�g�, is given by

M(�) = sup
�2N0

log(��=M�); � > 0:

An example of a sequence fM�g�, which satis�es the conditions (M.1), (M.2)
and (M.3), is the Gevrey sequence f�s�g�; s > 1. In this special case,M(�) behaves
as �1=s, when � tends to in�nity.

We denote by D(Mp) (resp. DfMpg) the space of ultradi�erentiable functions,

on Rd, of Beurling (resp. Roumieu) type and by D
0(Mp) (resp. D

0fMpg) spaces
introduced in Komatsu's theory of Beurling (resp. Roumieu) type ultradistributions
onRd. For the de�nitions and properties of the spaces we refer to [2]. The common
notation for the symbols (Mp) and fMpg will be �.

The space S(Mp) (resp. SfMpg) is projective (resp. inductive) limit of S
Mp;m
2 ,

m > 0, where SMp;m is the space of all smooth functions ' on Rd such that

�m;2(') =

0
@ X
�;�2Nd

0

Z
Rd

���� mj�j+j�j

Mj�jMj�j
x�'(�)(x)

����
2

dx

1
A
1=2

<1; (2.1)

where if � = (�1; . . .�d) 2 N
d
0, then j�j denotes �1 + � � �+ �d. Its dual space, the

space of tempered Beurling (resp. Roumieu) type ultradistributions, is denoted by

S
0(Mp) (resp. S

0fMpg. These spaces were investigated in [4] and [6], and in the case
M� = �s�, s > 1, in [5].

A function Q is an ultrapolynomial of class (Mp) (resp. fMpg), if it is entire
and sati�es the following condition: there exist l > 0 and C > 0 (resp. for each
l > 0 there exists C > 0), such that

jQ(x)j � C exp(M(ljxj)); x 2 Rd; (2.2)
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or equivalently [2]:

Q(x) =
X
�2Nd

0

b�x
� ; x 2 Rd;

where b� 2 C, for each � 2 Nd, and for some L > 0 and C > 0 (resp. for each
L > 0 there exists C > 0)

jb�j � CLj�jMj�j; � 2 N
d
0: (2.3)

In the special case when M� = �s�, � 2 N, s > 1, the condition (2.2) is equivalent
to

jQ(x)j � C exp((lx)1=2); x 2 R:

We say that a function f :Rd ! C is a regular tempered ultradistribution of
class �, if it is locally integrable and the regular ultradistribution determined by f ,
via the mapping

'!

Z
Rd

f'; ' 2 S�;

is a tempered ultradistribution of class �. For this it is suÆcient that f is measurable
and of ultrapolynomial growth of class (Mp) (resp. fMpg), i.e. that it satis�es the
estimation of the form (2.2).

A regular ultradistribution determined by a function f will also be denoted
by f .

If f is a function Rd ! C and k 2 Rd, then Tkf denotes the function de�ned
by

(Tkf)(x) = f(x+ k); x 2 Rd:

If � 2 S�, then the Fourier transform of � is de�ned by

F�(x) =

Z
Rd

�(t) exp(�ixt)dt; x 2 Rd:

The Fourier transform of a tempered ultradistribution f is de�ned by

hFf; �i = hf;F�(x)i; � 2 S�:

It is a topological automorphism of space S
0� ([4], [5]).

3. Main theorem. In this section we will give precise formulation of the
assertion announced in the Introduction.

Theorem 1. Let T be a nonempty subset of Rd. Assume that for each
t0 2 T there exist a sequence fkt0;�g� in Rd, and a sequence of complex numbers
fat0;�g�, such that there exist l > 0 and C > 0 in case (Mp) (resp. for each l > 0
there exists C > 0 in case fMpg), such that jat0;�j � Cl�=M�; � 2 N: Put
Zt0 = fx 2 Rd;

P1
�=0 at0;� exp(ikt0;�x) = 0g, and suppose that

T
t02T

Zt0 is a

subset of f0g � Rd.



Functional equations and tempered ultradistributions 57

(a) Suppose that f 2 S
0� and that for each t0 2 T there exists an ultrapolynomial

Qt0 of class �, such that the following equation holds in S
0�:

1X
�=0

at0;�Tkt0;�f = Qt0 : (3.1)

Then, f is an ultrapolynomial of class �.

(b) Let f :Rd ! C be a regular rempered ultradistribution of class � and let for
each t0 2 T there exist an ultrapolynomial Qt0 , such that

1X
�=0

at0;�f(x+ kt0;�) = Qt0(x); for almost all x 2 Rd: (3.2)

Then, there is an ultrapolynomial P of class �, such that f(x) = P (x), for almost
all x 2 Rd. If moreover, f is continuous, then f is an ultrapolynomial of class �.

Proof. (a) Suppose that f 2 S
0�, and that (3.1) holds. From the assumption

of the theorem it follows that the function Qt0 is an element of the space S
0�, and

that

F

 
1X
�=0

at0;�Tkt0 ;�f

!
= FQt0 :

Since, the Fourier transform is continuous and automorphism of the space S
0�, we

have

F

 
1X
�=0

at0;�Tkt0 ;�f

!
=

1X
�=0

at0;�F(Tkt0 ;�f):

Using the following equality

F(Tkt0 ;�f)(�) = exp(ikt0;��)Ff(�); � 2 Rd;

we obtain  
1X
�=0

a� exp(ikt0;�x)

!
Ff = F(Qt0): (3.3)

The function Qt0 is ultrapolynomial, therefore

FQt0 =
X
�2Nd

b�Æ
(�);

where for some L > 0 and C > 0 (resp. for each L > 0 there exists C > 0)
the constants b� ; � 2 Nd, satisfy the estimation (2.3). From the above equality
and [3, Theorem 3.1] it follows that suppF(Qt0) � f0g: Elements of the sumP1

�=0 a� exp(ikt0;�x) are smooth functions since the sum converges absolutely,

therefore it is a smooth function. Since Ff and FQt0 are elements of S
0�, from

above and (3.3) it follows that:

suppFf �

(
x 2 Rd;

1X
�=0

at0;� exp(ikt0;�x) = 0

)
[ f0g:
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In other words we proved that

suppFf �
\
t02T

(Zt0 [ f0g) = f0g:

By [3, Theorem 3.1], it follows,

Ff =
X
�2Nd

c�Æ
(�);

where for some L > 0 and C > 0 (resp. for each L > 0 there exists C > 0) the
constants C�, � 2 N

d, satisfy the estimation of the form (2.3). Applying the inverse
Fourier transform on both sides of the above equation, we obtain

f =
1

2�

X
�2Nd

c�x
(�):

Thus, f is an ultrapolynomial of class �.

(b) Suppose that (3.2) holds and that the function f :Rd ! C is a regular
tempered ultradistribution of class �. From the �rst part of this theorem it follows
that there exists an ultrapolynomial P of class �, such thatZ

Rd

P'dx =

Z
Rd

f'dx; ' 2 S�:

Therefore f(x) = P (x) for almost all x 2 Rd. �

4. Applications to functinal equations. As an illustration of our
method, we prove the following two theorems, in which we consider a wider class
of functional equations and their solutions than those considered in [1, Theorem 1
and Theorem 6].

Theorem 2. Let fb�g� be a sequence of positive real numbers such that

jb�j � Cl�=M�; � 2 N; (4.1)

for some l > 0 and C > 0 (resp. for each l > 0 there exists C > 0). Let
P1

�=1 b� =
1, and fh�g� be a sequence in Rd, such that the following implication holds:

If x 2 Rd and h�x 2 2�Z for all � 2 N; then x = 0:

(In case d = 1 it is suÆcient that h� and h� are rationally independent for some
� and � such that 1 � � � �).

(a) If f 2 S
0�; Q is an ultrapolynomial of class �, and

f =
1X
�=1

b�Th�f +Q;

then there exists an ultrapolynomial P such that f = P in S
0�.
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(b) If a function f :Rd ! C is a regular tempered ultradistribution of class �,
which satis�es

f(x) =

1X
�=1

b�f(x+ h�) +Q(x); for almost all x 2 Rd; (4.2)

where Q is an ultrapolynomial of class �, then there exists an ultrapolynomial P of
class � such that f(x) = P (x), for almost all x 2 Rd.

Proof. (a) The equation (4.2) can be written equivalently as

1X
�=0

a�Tk�f = Q;

where a0 = 1, k0 = 0, a� = �b�; k� = h�, for � 2 N. We will prove that the as-
sumptions of Theorem 1 (a) are ful�led, which implies that f is an ultrapolynomial
of class �.

Put

Z =

(
x 2 Rd;

1X
�=0

a� exp(ik�x) = 0

)
;

and

g(x) = 1�

1X
�=1

b� exp(ih�x); x 2 Rd:

Suppose x 2 Z, i.e. x 2 Rd and g(x) = 0. Then

1X
�=1

b� exp(ih�x) = 1 =

1X
�=1

b� =

1X
�=1

b�j exp(ih�x)j;

which implies that

lim
n!1

nX
�=1

b�(exp(ih�x) � 1) = 0:

Since b� > 0, � 2 N, we must have exp(ih�x) = 1. Thus h�x 2 2�Z, � � 1. It
follows x = 0.

We have proved that Z � f0g. This completes the proof of the assertion (a).

(b) As in (a) one can prove that the assumptions for the assertion (b) imply
the assumptions of the assertion (b) in Theorem 2. Thus (b) follows from Theorem
2 (b). �

As an illustration of the above assertion we consider the equation

dX
�=1

(f(x+ ke�) + f(x� ke�)) = 2df(x); x 2 Rd; (4.3)

where k 2 R, and fe1; . . . edg is the usual basis for Rd. We will show that its
classical solutions which are of ultrapolynomial growth are ultrapolynomials. Notice
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that the di�erence equation (4.3) is an analog of the Laplace equation in the d-
dimensional case.

Theorem 3. Suppose that 0 < a < b and that a=b is irrational. Moreover
suppose that a function f :Rd ! C is a regular tempered ultradistribution of class
� and that (4.3) holds for almost all x 2 Rd. If k = a or k = b, then there exists
an ultrapolynomial P of class �, such that f(x) = P (x) for almost all x 2 Rd.

Proof. Assume k = a. The equation (4.3) can be written equivalently in the
form

f(x) =

2dX
�=1

b�f(x+ h�); x 2 Rd;

where

b� =
1

2d
; � 2 f1; 2; . . . ; 2dg; h� =

�
ke�; � 2 f1; 2; . . . ; dg;
�ke�; � 2 fd+ 1; d+ 2; . . . ; 2dg

Now we can apply the assertion (b) in the previous theorem. �
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