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ON A GRAPH INVARIANT RELATED TO THE SUM

OF ALL DISTANCES IN A GRAPH

A. Dobrynin and I. Gutman

Abstract. Let W(G) be the sum of distances between all pairs of vertices of a graph G.
For an edge e of G, connecting the vertices u and v, the number nu(e) counts the vertices of G that
lie closer to u than to v. In this paper we consider the graph invariant W�(G) =

P
e
nu(e)nv(e),

de�ned for any connected graph G. According to a long-known result in the theory of graph
distances, if G is a tree then W�(G) =W(G). We establish a number of properties of the graph
invariant W�.

1. Introduction

In this paper we consider �nite connected undirected graphs without loops
or multiple edges. Let G be such a graph, possessing n vertices and m edges. The
vertex and edge sets of G are denoted by V(G) and E(G), respectively.

The distance between the vertices of G is de�ned in the usual manner [1],
namely d(x; y) = d(x; y jG) is equal to the number of edges in the shortest path
connecting the vertices x and y of the graph G. If G is connected, then d(x; y)
exists for all x; y 2 V(G).

The distance of a vertex v of G is de�ned as

d(v) = d(v jG) =
X

x2V(G)

d(v; x jG)

whereas the distance of the graph G is

W =W(G) =
1

2

X
v2V(G)

d(v jG):

Clearly, W(G) is equal to the sum of distances between all pairs of vertices in G.
This quantity is sometimes called the Wiener number (or Wiener index), because
the American scientist Harold Wiener seems to be the �rst to study W and to
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determine its properties [7]. The Wiener number has noteworthy applications in
chemistry [4, 5, 7].

Let u and v be two adjacent vertices of the graph G and e be the edge between
them. Throughout this paper it will be always assumed that the edge labeled by e
corresponds to a pair of vertices labeled by u and v; e = (u; v)

De�ne the sets Bu(e) and Bv(e) of vertices of G:

Bu(e) = fx jx 2 V(G); d(x; u) < d(x; v)g

Bv(e) = fx jx 2 V(G); d(x; v) < d(x; u)g.

Observe that if d(x; u) = d(x; v), then the vertex x is neither in Bu(e) nor in
Bv(e). Let further nu(e) = jBu(e)j ; nv(e) = jBv(e)j.

The following result was both stated and proved in Wiener's �rst work [7] on
the distance of graphs.

Theorem 1. If G is a tree then

W(G) =
X

e2E(G)

nu(e)nv(e) (1)

The identity (1) motivated us to introduce [2] and examine a novel graph invariant
W� =W�(G):

De�nition 1. If G is a connected graph, then

W� =W�(G) =
X

e2E(G)

nu(e)nv(e): (2)

From Theorem 1 and De�nition 1 it is immediately seen that if G is a tree,
then W�(G) =W(G).

Furter details on the relation between the invariantsW and W� are given in
the subsequent section.

1. Relations between W and W�

We �rst provide a proof of the long-known Theorem 1. The reason for this is
that the arguments utilized in the proof will enable us to deduce a few additional
results on the invariant W�.

Proof of Theorem 1. Let G be a connected graph and e = (u; v) an edge.
Suppose that the following conditions are obeyed:

(a) The shortest path between any two vertices of G is unique;

(b) if x 2 Bu(e) and y 2 Bv(e), then, and only then, the shortest

path between x and y contains the edge e.

If both (a) and (b) hold, then the product nu(e)nv(e) counts the number of times
the edge e belongs to the shortest path between pairs of vertices of G. The sum
of nu(e)nv(e) over all edges of G is equal to the number of edges in the shortest
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paths between all pairs of vertices of G, i.e., equal to the sum of distances between
all pairs of vertices of G, i.e. equal to W(G).

It is evident that the conditions (a) and (b) are ful�lled if G is a tree. Con-
sequently, the equation (1) hold for trees. �

Corollary 1. The equality W� = W holds for all graphs that satisfy the
conditions (a) and (b).

Corollary 2. If conditions (a) and (b) are not simultaneously satis�ed,
then W� >W.

Proof. If (a) is violated, then the right-hand side of (2) counts the edges of
more than one shortest path between pairs of vertices of G. If (b) is violated, then
the right-hand side of (2) counts some edges that do not belong to shortest paths
between pairs of vertices. In both cases W� will exceed W. �

Corollary 3. If G is a connected cyclic bipartite graph, then W�(G) >
W(G).

Proof. Consider a circuit of G having minimal size (say 2k). Two vertices of
this circuit, being at maximal distance (= k) are connected by two distinct shortest
paths. Hence condition (b) from the proof of the Theorema 1 is violated. �

In the case of non-bipartite graphs it may happen thatW�(G) =W(G). The
simplest example for the equality between the two graph invariants is the complete
graph Kn; n � 1 [2].

Theorem 2. Let K be the class of connected graphs in which every block is
a complete graph. Then for G 2 K; W�(G) =W(G).

Proof of the Theorem 2. It is suÆcient to observe that the graphs from K
satisfy the conditions (a) and (b) from the proof of the Theorem 1. �

Note that K contains the complete graphs (when the number of blocks is one)
and the trees (when every block is a two-vertex complete graph).

Conjecture. W�(G) =W(G) holds if and only if G 2 K.

2. The Invariant W� of Bipartite Graphs

Lemma 1. If G is a connected bipartite graph on n vertices, and e its arbi-
trary edge, then nu(e) + nv(e) = n. If G is non-bipartite, then for the edges lying
on odd-membered circuits, nu(e) + nv(e) < n.

Proof of the above Lemma is given in [2].

Lemma 2. If G is a connected graph and e an arbitrary edge, then

nu(e)� nv(e) = d(vjG)� d(ujG) (3)
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Proof. Denote by B0(e) the set of vertices of G which are at equal distance
to both u and v. Then, of course, B0(e) [Bu(e) [Bv(e) = V(G).

Further,

d(ujG) =
X

x2Bu(e)

d(x; u) +
X

x2Bv(e)

d(x; u) +
X

x2B0(e)

d(x; u) (4)

d(vjG) =
X

x2Bu(e)

d(x; v) +
X

x2Bv(e)

d(x; v) +
X

x2B0(e)

d(x; v) (5)

Subtracting (4) from (5) and taking into account

d(x; v) = d(x; u) + 1 if x 2 Bu(e)

d(x; v) = d(x; u)� 1 if x 2 Bv(e)

d(x; v) = d(x; u) if x 2 B0(e)

we straightforwardly arrive at (3). �

Theorem 3. If G is a connected bipartite graph with n vertices and m edges,
then

W�(G) =
1

4

2
4n2m�

X
e2E(G)

[d(vjG)� d(ujG)]
2

3
5 (6)

Proof. By Lemmas 1 and 2, 2nu(e) = n + [d(vjG) � d(ujG)] and 2nv(e) =
n� [d(vjG) � d(ujG)]. Substituting this back into (2) we arrive at (6). �

Denote byN(v) = N(vjG) the set of all neighbors of the vertex v of the graph
G. Clearly, jN(v)j = deg(v), where deg(v) is the degree of v.

Corollary 4. Using the notation of Theorem 3,

W�(G) =
1

4

2
4n2m�

X
v2V(G)

d(vjG)

2
4d(vjG) deg(v) �

X
u2N(v)

d(ujG)

3
5
3
5 : (7)

Proof.

X
e2E(G)

[d(v) � d(u)]2 =
1

2

X
v2V(G)

X
u2N(v)

[d(v)2 + d(u)2 � 2d(v)d(u)]

=
X

v2V(G)

d(v)

2
4d(v) deg(v) �

X
u2N(v)

d(u)

3
5

(8)

because X
v2V(G)

X
u2N(v)

d(v)2 =
X

v2V(G)

d(v)2 deg(v)
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and X
v2V(G)

X
u2N(v)

d(u)2 =
X

v2V(G)

d(v)2 deg(v):

Substituting (8) back into (6) we obtain (7). �

In the case of trees, equations (6) and (7) automatically become statements
about the graph distanceW. In the case, however, we can say more because of the
identity X

u2N(v)

d(u) = d(v) deg(v) + n deg(v)� 2(n� 1): (9)

Relation (9) follows immediately from Lemmas 1 and 2, and from the fact
that for trees

P
u2N(v)

nu(e) = n� 1. By combining (7) and (9) we get

Corollary 5. If T is a tree with n vertices, then

W(T ) =W�(T ) =
1

4

2
4n(n� 1) +

X
v2V(T )

d(vjT ) deg(v)

3
5 (10)

A result equivalent to (10) was recently obtained by Klein et al. [6], using
a completely di�erent way of reasoning. Another approach leading to (10), also
based on a completely di�erent way of reasoning, was put forward by one of the
authors [3].
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