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ON THE DIFFERENCE BETWEEN THE PRODUCT

AND THE CONVOLUTION PRODUCT

OF DISTRIBUTION FUNCTIONS

E. Omey

Abstract. If F is a subexponential d.f. it is well known that the tails of the distributions
of the partial sums and partial maxima are asymptotically the same. In this paper we analyse
the di�erence between these two d.f. The main part of the paper is devoted to the asymptotic
behavior of F (x)G(x)�F �G(x), where F (x) and G(x) are d.f. and where � denotes the convolution
product. Under various conditions we obtain a variety of O-, o- and exact (asymptotic) estimates
for F (x)G(x) � F �G(x). Compared to other papers in this �eld, we don't assume the existence
of densities to obtain our estimates.

1. Introduction

Let F denote a distribution function (d.f.) with F (0�) = 0 and F (x) < 1 for
all x. The d.f. F belongs to the subexponential class (i.e. F 2 S) if

lim
1

1� F �2(x)

1� F (x)
= 2 (1.1)

where F �2(x) is the convolution of F with itself, i.e. F �2(x) = PfX + Y � xg,
where X and Y are i.i.d. with d.f. F . If (1.1) holds, then for all n � 2,

lim
1

1� F �n(x)

1� F (x)
= n (1.2)

where F �n is the n-fold convolution of F . Many papers have been devoted to
properties of functions F 2 S and classes of functions related to S. Also some
papers are devoted to the remainder term in (1.1) and (1.2). More precisely, for
n � 2, let Rn(x) be de�ned as follows: Rn(x) = 1� F �n(x) � n(1� F (x)). In the
case where F has a regularly varying density f 2 RV�� (de�ned below) Omey and

AMS Subject Classi�cation (1990): Primary 60F 99, 60E 99; Secondary 60G 70, 60H 99.



112 E. Omey

Willekens [12, 13] proved that

lim
1

Rn(x)

f(x)
= �n(n� 1) (� > 2) (1.3)

lim
1

Rn(x)

(1� F (x))2
= k(�)n(n� 1) (1 � � < 2) (1.4)

lim
1

Rn(x)

f(x)
xR
0

(1� F (y)) dy

= n(n� 1) (� = 2): (1.5)

Here � =
1R
0

(1 � F (y)) dy and k(�) is a constant depending on �. Later there

have been e�orts to remove the condition of a regularly varying density. Geluk and
Pakes [6] studied the class of d.f. F for which

lim
1

R2(x)

(1� F (x))2
= �1 (1.6)

which corresponds to (1.4) with � = 1. In this paper we replace the density
condition by a condition on the asymptotic behavior of F (x+ y)�F (x) as x tends
to in�nity. Among others we shall consider the class D(m;�) of d.f. F (x) for which
there exists a measurable and positive function m(x) such that for some � 2 R and
all y 2 R,

lim
1

F (x+ y)� F (x)

m(x)
= �y: (1.7)

This class (and related classes) of functions has proved to be useful in e.g. local limit
theorems in extreme value theory, in the theory of di�erence equations, convolutions
of functions, see e.g. [14,15]. In this paper we shall consider the following classes
of functions. In each of the de�nitions m is a positive and measurable function,
bounded on bounded intervals. Also without further comments, all O(1), o(1) and
other limit statements are considered to hold as x!1. For appropriate function
u(x) and v(x) we de�ne

u � v(x) =

xZ
0

u(x� y) v(dy); u
 v(x) =

xZ
0

u(x� y)v(y) dy;

RV� = fmjm(xy)=m(x)! y�;8y > 0g;

ORV = fmjm(xy) = O(1)m(x);8y > 0g;

L = fmjm(log(x)) 2 RV0g; OL = fmjm(log(x)) 2 ORVg

SD =

8<
:m 2 L \ L[0;1)jm
m(x)=m(x) ! 2

1Z
0

m(y) dy

9=
; ;
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OSD = fmjm
m(x) = O(1)m(x)g;

D(m) = fFd.f.j kFkm: = sup
x
m � F (x)=m(x) <1g;

D�(m) = fF 2 D(m)jm � F (x)=m(x) ! �g;

OD(m) = fFd.f.j j F (x+ y)� F (x) j= O(1)m(x);8y 2 Rg;

D(m;�) = fFd.f.j(F (x + y)� F (x))=m(x) ! �y;8y 2 Rg;

��(m) = ff :R+ ! R+j(f(xt)� f(x))=m(x) ! � log t;8t > 0g:

Some of these classes of functions have been used before in connection with
asymptotic expansions for convolutions of functions and sequences. Obviously if
m(x) = 1�F (x), then F 2 D1(m) i� R2(x)= �F (x)! 0 i� F 2 S. If F has a density
f 2 SD, then F 2 D(f(x); 1)\D2(f). It can be shown that for all classes where the
quantors 8y 2 R or 8y > 0 appear, the limit relation holds locally uniformly in y,
(see e.g. [2,5]). We summarize some more relations between the previous function
classes:

(i) 1�F (x) 2 ORV\L implies F (x) 2 S and F (x) 2 S implies 1�F (x) 2 L;
(ii) m(x) 2 ORV \ L[0;1) implies m(x) 2 OSD;
(iii) m(x) 2 L \ORV \ L[0;1) implies m(x) 2 SD;
(iv) for m(x) 2 L \ORV:m(x) 2 L[0;1) i� m 2 OSD;
(v) if F (x) 2 D(m;�) with m(x) = (1� F (x))=x, then �F (x) 2 RV��.

Relations (i){(iv) are well known; relation (v) is proved in [15]; see also
section 3 below. Being interested in d.f. F (x) 2 S � L, the auxiliary function m(x)
in OD(m) or D(m;�) should satisfy m(x) = o(1� F (x)). If F (x) 2 D(m;�) with
� 6= 0, then �F (logx) 2 ���(m(logx)) and automatically m(x) = o(1�F (x)) holds
(cf. [5,8]).

Remark. In several of the results below, the condition that F is a d.f. can be
omitted. Often it is suÆcient to assume that F is bounded on bounded intervals.

The paper is organized as follows. In section 2 we consider various closure
properties of the classes D(m) and D�(m). Section 2.2 provides useful O-estimate
of Rn. We also give a number of suÆcient conditions on F and m to conclude
F 2 D(m) or D�(m). In section 3 we discuss closure properties of D(m;�) and in
section 4 we discuss the asymptotic behavior of the convolution of d.f. in OD(m)
or D(m; 0) and we obtain several estimates of F (x)G(x) � F �G(x) under various
assumptions on F and G. In Corollary 4.6 we obtain asymptotic estimates of
the form Rn(x) = O(1) �F (x)=x or Rn(x) = O(1) �F 2(x). In section 5 we discuss
F (x)G(x) � F �G(x) for the classes D(m;�) and this section is divided into three
parts. In part 1 we assume F and G have a �nite mean and obtain estimates
of the form Rn(x) � constant � m(x); the in�nite-mean case in part 2 is more
complicated and the mixed case (i.e. F has a �nite mean and G an in�nite mean)
is a combination of parts 1 and 2. In Corollary 5.7 we summarize the conditions
under which Rn(x) �

�
n
2

�
R2(x) as x!1. In the �nal section 6 we consider some

examples and give two applications.
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2. Closure properties of D(m); D�(m) and OD(m).

2.1. Closure properties. In this section, we consider closure properties of
the classes D(m) and D�(m) introduced in section 1. In the �rst proposition, no
extra conditions on m are used.

Proposition 2.1. (i) F;G 2 D(m) implies F �G 2 D(m); (ii) F;G 2
OD(m)\D(m) implies F �G 2 OD(m)\D(m); (iii) F;G 2 D(m; 0)\D(m)
implies F � G 2 D(m; 0) \ D(m); (iv) Suppose U(x) is locally bounded and
U(x)=m(x) ! �. If F 2 D�(m) \ D(m; 0) then U � F (x)=m(x) ! ��. (v)
F 2 D�(m)\D(m; 0) and G 2 D�(m)\D(m; 0) imply F �G 2 D��(m)\D(m; 0).

Proof. (i) Obviously we have

m � F �G(x) � kFkmm �G(x) � kFkmkGkmm(x):

(ii) For h > 0 and some �xed x0(0 < x0 < x) we decompose F �G(x + h)�
F �G(x) as follows:

I + II + III =

x�x0Z
0

(F (x+ h� y)� F (x� y)) dG(y)

+

xZ
x�x0

(F (x+ h� y)� F (x� y)) dG(y) +

x+hZ
x

F (x+ h� y) dG(y):

Now

0 � I � sup
z�x0

F (z + h)� F (z)

m(z)

x�x0Z
0

m(x� y) dG(y)

� m �G(x) sup
z�x0

F (z + h)� F (z)

m(z)

and 0 � II + III � G(x+ h)�G(x� x0). It follows that

lim sup
1

F �G(x+ h)� F �G(x)

m(x)
� kGkm sup

z�x0

F (z + h)� F (z)

m(z)

+ lim sup
1

G(x+ h)�G(x � x0)

m(x)

(2.1)

The result (ii) follows.

(iii) Similarly to (ii) we arrive at (2.1) which simpli�es to:

lim sup
1

F �G(x + h)� F �G(x)

m(x)
� kGkm sup

z�x0

F (z + h)� F (z)

m(z)
:

Now let x0 " 1 to obtain result (iii).
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(iv) For each " > 0 we can �nd x0 such that j U(x � y)=m(x � y) � � j� ",
for x� y � x0. Now let V (x) = U � F (x)� �m � F (x) and write

V (x) =

x�x0Z
0

(U(x� y)� �m(x� y)) dF (y) +

xZ
x�x0

(U(x� y)� �m(x� y)) dF (y):

It follows that

jV (x)j � "

x�x0Z
0

m(x� y) dF (y) + k(F (x) � F (x� x0))

where k = sup0�z�x0 jU(z)� �m(z)j. Hence lim sup1 jV (x)j=m(x) � "�. Now let
" # 0.

(v) Apply (iv) with U = m �G. �

Remark. In (ii) we proved that OD(m) \ D(m) is closed under �; if we
only consider functions in the class OD(m), more has to be assumed about m to
conclude that OD(m) is closed under �. See section 3 below.

2.2. First estimates of Rn(x). The previous result can be applied to
obtain a �rst useful estimate of Rn.

Corollary 2.2. Assume F 2 D�(m) \D(m; 0). If R2(x)=m(x) ! �, then

for all n, Rn(x)
m(x) ! �n where �n = �

�
n
2

�
if � = 1 and �n = � (�n�1)�n(��1)

(��1)2 if � 6= 1.

Proof. It is easy to prove that

Rn+1(x) = nR2(x) +Rn � F (x): (2.2)

It follows from Proposition 2.1 (iv) and by induction on n, that �n <1 and that

�n+1 = n�+�n� (�2 = �). This shows that �n = �
Pn�1

k=1 k�
n�1�k and the result

follows. �

In the next proposition we obtain O-estimates of Rn.

Proposition 2.3. Suppose �2 = supx�0 jR2(x)j=m(x) <1.

(i) If F 2 D(m), then for n � 2, �n: = supx�0
jRn(x)j
m(x) � �2

�
n
2

�
max(kFknm; 1).

(ii) If F 2 D�(m)\OD(m), then for each " > 0 there exist constants x0 and

k = k(x0) such that for n � 2, n(x0): = supx�x0
jRn(x)j
m(x) � k(�+ ")n

�
n
2

�
.

Proof. (i) Using (2.2) we obtain that �n+1 � n�2 + �nkFkm. By induction

on n it follows that for all n � 2, �n < 1 and that �n � �2
Pn�1

k=1 kkFk
n�1�k
m .

Hence result (i) follows.

(ii) For n � 2 and x0 to be �xed later, de�ne

n(x0) = sup
x�x0

jRn(x)j

m(x)
; G(x0) = sup

x�x0

jF (x)� F (x� x0)j

m(x)
;

and D(x0) = supx�x0
m�F (x)
m(x) .
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Using

Rn � F (x) =

x�x0Z
0

Rn(x� y) dF (y) +

xZ
x�x0

Rn(x� y) dF (y)

we obtain

jRn � F (x)j �n(x0)

x�x0Z
0

m(x� y) dF (y) + sup
0�z�x0

jRn(z)jG(x0)m(x)

�n(x0)m � F (x) + (n+ 1)G(x0)m(x)

and hence supx�x0 jRn � F (x)j=m(x) � n(x0)D(x0) + (n + 1)G(x0). Using the
relation (2.2) again we obtain

n+1(x0) � n2(x0) + n(x0)D(x0) + (n+ 1)G(x0)

� nmax(2(x0); 3=2 �G(x0)) + n(x0)D(x0)

=:nE(x0) + n(x0)D(x0):

Hence n(x0) � E(x0)
Pn�1

k=1 kD
n�k�1(x0). As in part (i) we obtain n(x0) �

E(x0)
�
n
2

�
max(1; Dn�2(x0)) and by an appropriate choice of x0 the result follows.

Remarks. (1) From (2.2) it follows that Rn(x) =
Pn�1

k=1 kF
�n�k�1 � R2(x)

and this equality makes the previous results more transparant.
(2) If � < 1, in Proposition 2.3(ii) we can choose " such that n(x0) � k

�
n
2

�
.

(3) For sets of conditions under which R2(x)=m(x) ! � we refer to [9,12,
11,14]. See also section 5 below.

(4) For the class S with remainder term, Corollary 2.2 and Proposition 2.3
are only useful if m(x) = o(1� F (x)).

In [6] the authors consider the class S2(m) of d.f. for which R2(x) + �F 2(x) =
o(m(x)), where m(x) = o(1 � F (x)). Obviously S2(m) � S. If also m(x) =
O( �F 2(x)), more can be said.

Corollary 2.4. Suppose F 2 S2(m) with m(x) = O( �F 2(x)). Then
(i) F 2 D1( �F 2(x)) \D( �F 2(x); 0) and R2(x)= �F

2(x)! �1.
(ii) For all n � 2, Rn(x)= �F

2(x)! �
�
n
2

�
.

(iii) �F (x) 2 RV0 and �Rn(x) 2 RV0 for all n � 2.

Proof. (i) Using the inequality

R2(x) + �F 2(x) =

xZ
0

(F (x) � F (x� y)) dF (y) � (F (x) � F (A))(F (x) � F (x� A))

we obtain that F 2 D(m; 0). By taking A = x=2 the inequality also shows that

(F (x) � F (x=2))2 = o(m(x)): (2.3)
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Now

0 � �F 2 � F (x)� �F 2(x)F (x) =

xZ
0

(F (x) � F (x� y))(2� F (x) � F (x� y)) dF (y):

Since 0 � F (x) + F (x� y) � 2, we obtain

0 � �F 2 � F (x)� �F 2(x)F (x) � 2

xZ
0

(F (x) � F (x� y)) dF (y)

= 2(R2(x) + �F 2(x)) = o(m(x)):

Using m(x) = O( �F 2(x)), this implies that F 2 D1( �F 2(x)). By the de�nition of
S2(m), the proof of (i) is complete.

Part (ii) follows from (i) and Corollary 2.2. Finally, part (iii) follows from
part (ii), (2.3) and m(x) = O( �F 2(x)). �

2.3. Necessary and suÆcient conditions. To see the implications of the
assumption F 2 D(m) or F 2 D1(m) we assume that m is nonincreasing. For a
�xed number A � x=2 we have :

m � F (x) =

0
@ AZ

0

+

x�AZ
A

+

xZ
x�A

1
Am(x� y) dF (y)

� m(x)F (A) +m(x�A)(F (x �A)� F (A)) +m(A)(F (x) � F (x�A)):

Using this inequality we immediately obtain the following result.

Proposition 2.5. Suppose m is nonincreasing. Then
(i) Allways lim infm � F (x)=m(x) � 1;
(ii) If F 2 D(m), then lim sup(F (x)� F (x�A))=m(x) <1;
(iii) If F 2 D1(m) then m 2 L i� F 2 D(m; 0). �

In the next result we collect suÆcient conditions to conclude F 2 D(m) or
F 2 D�(m).

Proposition 2.6. Suppose m is bounded. Then
(i) If m 2 ORV and F (x=2) � F (x) = O(m(x)), then F 2 D(m) \ OD(m).
(ii) If m 2 ORV\L and F (x=2)�F (x) = o(m(x)), then F 2 D1(m)\D(m; 0).
(iii) If m 2 OSD \ L and F 2 D(m; 0), then F 2 D1(m).
(iv) Suppose m 2 SD and H : = 1�m 2 S. If F 2 D(m;�), then F 2 D�(m),

where � = 1 + �
1R
0

m(s) ds.

Proof. (i) We havem�F (x) =

 
x=2R
0

+
xR

x=2

!
m(x�y) dF (y) =: I+II. Obviously

I � supx=2�z�xm(z)F (x=2) = O(m(x)) and, since m is bounded by, sayK, we also
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have II � K(F (x) � F (x=2)) = O(m(x)). Hence the �rst result follows. To prove
that F 2 OD(m), take y > 0 and x > y. Since F (x+ y)� F (x) � F (2x)� F (x) =
O(m(2x)) and m 2 ORV, the result follows.

(ii) As in part (i) we have m �F (x) = I+ II. Clearly, II = o(m(x)) and using
m 2 ORV\L and Lebesgue's theorem, we obtain I=m(x)! 1. Hence F 2 D1(m).
The second result follows as in (i).

(iii) Let x0 2 N be �xed and write

m � F (x) =

8><
>:

x0Z
0

+

[x�x0]Z
x0

+

xZ
[x�x0]

9>=
>;m(x� y) dF (y) =: I + III + II:

Since m 2 L, we have

m(x� y)=m(x)! 1; locally uniformly in y; (2.4)

and for x � x0,

1=2 � m(x� y)=m(x) � 2 uniformly in 0 � y � 1: (2.5)

From (2.4) it follows that
I=m(x)! F (x0): (2.6)

Also, since m is bounded by, say K, we have III � K(F (x)�F ([x�x0]), and using
F 2 D(m; 0) it follows that

III = o(m(x)): (2.7)

As to II, note that II =
P[x�x0]

k=x0

k+1R
k

m(x � y) dF (y); using (2.5) we obtain II �

2
P[x�x0]

k=x0
m(x�k�1)(F (k+1)�F (k)). By using F 2 D(m; 0) again, for arbitrary

" > 0, we can choose x0 so that (F (k + 1)� F (k)) � "m(k), for all k � x0. Hence

II � 2"
P[x�x0]

k=x0
m(x�k�1)m(k). Using (2.5) and standard arguments we can �nd

a constant C (independent of x0) such that II � "Cm 
m(x). Since m 2 SD, it
follows that

lim sup II=m(x) � "K: (2.8)

Now combine (2.6)-(2.8) to obtain lim sup jm � F (x)=m(x)� 1j � 1� F (x0) + "K.
By letting x0 " 1 and " # 0 we obtain the desired result.

(iv) Since F 2 D(m;�) andm 2 L, we have (F (x+h)�F (x))=m(x)! �h l.u.

in h. If we de�ne R(x): =
R 1
0
(F (x+ h)� F (x)) dh this implies R(x)=m(x) ! �=2.

Now let G(x): =
R 1
0 F (x + h) dh; obviously we have R(x) = G(x) � F (x), R(0) =

G(0), R(1) = 0, and m � F (x) = m �G(x) �m �R(x). Moreover G0(x) � �m(x).
First we estimate m � R. Since m(x) = 1 � H(x) we have m � R(x) = R(x) �
R(0)m(x) �

R x
0
R(x � y) dH(y). Using H 2 S we have H 2 D1(m) \ D(m; 0)

and an application of Proposition 2.1(iv) yields m � R(x)=m(x) ! �=2 � R(0) �
�=2 = �R(0). Next we consider m � G(x) and for �xed x0 write m � G(x) =
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0 +

R x
x0

�
m(x � y) dG(y) =: I + II . Using m 2 L, we have I=m(x) ! G(x0) �

G(0). As to II we have II =
R x
x0
m(x� y)G0(y) dy. Using G0(x) � �m(x), for each

" > 0 we can �nd x0 so that

(�� ")

xZ
x0

m(x� y)m(y) dy � II � (� + ")

xZ
x0

m(x� y)m(y) dy:

Using m 2 SD this implies that

(�� ")

8<
:2

1Z
0

m(y) dy �

x0Z
0

m(y) dy

9=
;

� lim
sup

inf

II

m(x)
� (�+ ")

8<
:2

1Z
0

m(y) dy �

x0Z
0

m(y) dy

9=
; :

Now combine the two estimates and let x0 " 1, " # 0 to obtain

m �G(x)=m(x) ! G(1)�G(0) + �

1Z
0

m(y) dy = 1�R(0) + �

1Z
0

m(y)dy:

The result follows. �

Remarks. (1) If in Proposition 2.6(i), m(x) satis�es m(x) = o( �F (x)), then
automatically �F (x) 2 RV0 with remainder termm(x)= �F (x). (2) The conditions of
Proposition 2.6(i) and (ii) show that R2(x) + �F 2(x) = O(1)m(x) (resp. o(1)m(x)).
To see this it is suÆcient to rewrite

R2(x) + �F 2(x) = 2

x=2Z
0

(F (x)� F (x� y))dF (y) + (F (x)� F (x=2))2:

3. The classes OD(m) and D(m;�)

3.1. Preliminaries. In this subsection we study into further detail, classes
of functions related to OD(m) and D(m;�). More precisely, we shall consider the
classes of positive, measurable functions a(x), f(x) for which one of the relations
below holds.

f 2 OD+(a) i� lim sup
t!1

jf(t+ x)� f(t)j

a(t)
<1; 8x � 0;

f 2 D+(a; c) i� lim sup
t!1

f(t+ x) � f(t)

a(t)
= cx; 8x � 0:

Note that these classes are de�ned in general and not for distribution functions
only. These classes of functions were studied in [15] and in order to state the
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main results of [15], we need some more de�nitions and notations. Recall that for
f 2 ORV, the upper and lower Matuszewska indices �(f) and �(f) are de�ned as
follows :

�(f) = lim
y!1

log lim supx!1 f(xy)=f(x)

log y
; �(f) = lim

y!1

log lim infx!1 f(xy)=f(x)

log y
:

It is well known that f 2 ORV if and only if both �(f) and �(f) are �nite.

A positive function has bounded increase (BI) if �(f) <1 and has bounded
decrease (BD) if �(f) > �1. The function f has positive increase (PI) if �(f) > 0
and it has positive decrease (PD) if �(f) < 0. In studying OD+(a) and D+(a; c),
the results of Bingham et al. [2] provided the necessary framework. In [2] the
authors study classes of functions satisfying general asymptotic relations of the
following form. For a(x) 2 RV�, the class �a is the class of measurable f satisfying

8x � 1; lim
t!1

f(tx)� f(t)

a(t)
= ck�(x); where k�(x) =

xZ
1

u��1du:

The constant c is called the a-index of f . For a(x) 2 BI, the class O�a (resp. o�a)
is the class of measurable f that satisfy:

8x � 1; f(tx)� f(t) = O(a(t)) (resp. o(a(t))) (as t!1):

If A(x): = a(log(x)) 2 BI and f(x) 2 OD+(a(x)) it follows immediately that the
function F (x): = f(logx) belongs to O�A and if a(t) = o(1)f(t) we haveD+(a; c) �
OD+(a) � L. In [15] the following two results were proved.

Propostion 3.1.1. Suppose f 2 OD+(a) (resp. f 2 D+(a; 0)) and let
A(x): = a(log(x)).

(i) If A(x) is of bounded increase, then

f(x) = C + n(x)a(x) +

xZ
X

m(z)a(z) dz; 8x � X

where C;X are constants and n(x) and m(x) are measurable and bounded functions
(resp. n(x) and m(x) are measurable and o(1)).

(ii) If a(x) 2 BI, then f(x) 2 O�b (resp. o�b) with b(x) = xa(x);

(iii) If a(x) 2 BD and A(x) 2 BI, then for each c (0 � c < 1) there exists
constants K (resp. 8" > 0) and X such that for all y with 0 � y � cx,

jf(x)� f(x� y)j � K(1 + y)a(x); (resp. "(1 + y)a(x)); 8x � X:

(iv) If xa(x) 2 PD, then f(x) = C + O(1)xa(x) (resp. C + o(1)xa(x)) and
f(x)! C as x!1.

(v) If xa(x) 2 PI \ BI, then f(x) = O(1)xa(x) (resp. o(1)xa(x)).

(vi) If f 2 OD+(a) with a(x) = f(x)=x, then f 2 ORV:
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Proposition 3.1.2. Assume that f is locally integrable.

(i) If f(x) 2 D+(a; c) with a(x) 2 RV�, then:

(1) if � > �1, then f(x)=xa(x) ! c=(� + 1);

(2) If � < �1, then f(x)! f(1) exists, �nite and

(f(1)� f(x))=xa(x) ! �c=(� + 1).

(3) If � = �1, then f(x) 2 �c(xa(x)).

(ii) If f(x) 2 D+(a; c) with a(x) = f(x)=x, then f(x) 2 RVc.

3.2. Distribution functions in OD(m) and D(m;�). In this section we
analyse in further detail the classes D(m;�) and OD(m). In many cases we shall
assume that m(x) 2 L and/or m(x) 2 ORV. In the �rst proposition we connect
1� F (x) with m(x) and integrals of m(x).

Proposition 3.2.1. (i) If F (x) 2 D(m;�) with � 6= 0, then m(x) 2 L \
L[0;1) and

�F (x) = (�+ o(1))

1Z
x

m(s) ds: (3.2.1)

(ii) If F (x) 2 D(m; 0) and m(x) 2 L \ L[0;1), then (3.2.1) holds.

(iii) If F (x) 2 OD(m) and m(x) 2 OL \ L[0;1), then �F (x) = O(1)
R1
x
m(s) ds.

(iv) If F (x) 2 OD(m) and xm(x) 2 PD, then �F (x) = O(1)xm(x).

Proof. (i) Since F (x) 2 D(m;�) we have

�(y + z) = lim
1

F (x+ y + z)� F (x)

m(x)

= lim
1

F (x+ y + z)� F (x+ y)

m(x+ y)

m(x+ y)

m(x)
+ lim

1

F (x+ y)� F (x)

m(x)

= �z lim
1

m(x+ y)

m(x)
+ �y:

Since � 6= 0 it follows that m(x) 2 L. To prove (3.2.1), note that for " > 0 we can
�nd n0 so that (�� ")m(n) � F (n+1)�F (n) � (�+ ")m(n); n � n0. Hence for
N �M � n0 we obtain

(�� ")
NX

n=M

m(n) � F (N + 1)� F (M) � (�+ ")
NX

n=M

m(n):

It follows that

1X
n=M

m(n) <1 and (�� ")
1X

n=M

m(n) � 1� F (M) � (�+ ")
1X

n=M

m(n):

Using standard arguments we obtain (3.2.1).
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(ii) and (iii) The proof is similar and omitted.

(iv) This is Proposition 3.1.1(iv). �

Remarks. (1) If F (x) 2 D(m;�) with � 6= 0, then the mean E(X) is �nite
i� m(x) 2 L1[0;1).

(2) If F (x) 2 OD(m) with m(x) 2 OL \ L1[0;1), then E(X) <1.

A similar result can be proved for F1(x): =
R x
0
y dF (y). Obviously F (x) 2

OD(m(x)) i� F1(x) 2 OD(xm(x)) and F (x) 2 D(m(x); �) i� F1(x) 2 D(xm(x); �).
Also note that in case the mean E(X) is �nite, it equals E(X) = F1(1).

Proposition 3.2.2. (i) Suppose m(x) 2 L1[0;1). Then

(a) If F (x) 2 OD(m) and m(x) 2 OL, then E(X) <1 and F1(1)�F1(x) =
O(1)

R1
x ym(y) dy; if also x2m(x) 2 PD, then F1(1)� F1(x) = O(1)x2m(x).

(b) If F (x) 2 D(m;�) and m(x) 2 L, then E(X) <1 and F1(1)�F1(x) =
(�+ o(1))

R1
x ym(y) dy;

(ii) Suppose
R1
0

ym(y) dy =1. Then:

(a) If F 2 D(m;�) and m(x) 2 L, then F1(x) = (�+ o(1))
R x
0
ym(y) dy.

(b) If F 2 OD(m) and m(x) 2 OL, then F1(x) = O(1)
R x
0
ym(y) dy; if also

x2m(x) 2 PI \ BI, then E(X) =1 and F1(x) = O(1)x2m(x).

3.3. Closure properties of OD(m) and D(m;�). Now we prove the
analogue of Proposition 2.1 for OD(m) and D(m;�). The main result of this
section is the following:

Proposition 3.3.1. Suppose F 2 D(m;�) and G 2 D(n; �). Then:

(i) If m;n 2 BD \ L (e:g: m; n 2 ORV \ L), then

F �G(x+ h)� F �G(x) = �hm(x) + �hn(x) + o(m(x)) + o(n(x));

(ii) If m 2 SD and n(x)=m(x) ! C, then F �G 2 D(m;�+ �C).

Proof. (i) We have

F �G(x) =

x=2Z
0

F (x� y) dG(y) +

x=2Z
0

G(x � y)dF (y)� F (x=2)G(x=2)

so that (for h > 0):

F �G(x+ h)� F �G(x) =

x=2Z
0

(F (x+ h� y)� F (x� y))dG(y)

+

x=2Z
0

(G(x+ h� y)�G(x � y)) dF (y) +

(x+h)=2Z
x=2

(F (x+ h� y)� F (x=2)) dG(y)
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+

(x+h)=2Z
x=2

(G(x + h� y)�G((x+ h)=2)) dF (y) = I1 + I2 + I3 + I4:

As to I1, use F 2 D(m;�) and �x " > 0 and x0 to see that

(�h� ")

x=2Z
0

m(x� y) dG(y) � I1 � (�h� ")

x=2Z
0

m(x� y) dG(y); 8x � x0:

Using m 2 BD \ L and dominated convergence we have:Z x=2

0

m(x� y) dG(y)=m(x)! 1:

It readily follows that
lim I1=m(x) = �h: (3.3.1)

In a similar way we �nd
lim I2=n(x) = �h: (3.3.2)

To estimate I3 and I4 note that for " > 0 we can �nd x0 so that

0 � I3 + I4 � "(G((x + h)=2)�G(x=2) + F ((x+ h)=2)� F (x=2))

� "((�h=2 + ")n(x=2) + (�h=2 + ")m(x=2)):

Since n;m 2 BD, this yields

0 � I3 + I4 � "K1n(x) + "K2m(x): (3.3.3)

Combining (3.3.1){(3.3.3) gives the proof of (i).

(ii) To prove (ii) we �x x0 > h and write for x � x0,

F �G(x) � F �G(x� h) =

8<
:

x�x0Z
0

+

x�hZ
x�x0

9=
; (F (x � y)� F (x� y � h)) dG(y)

+

xZ
x�h

F (x � y) dG(y) = I + II + III

First consider III ; we have

III =

xZ
y=x�h

x�yZ
z=0

dF (z) dG(y) =

hZ
z=0

x�zZ
y=x�h

dG(y) dF (z)

=

hZ
z=0

(G(x� z)�G(x � h)) dF (z):
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Using G 2 D(n; �) it follows that

lim
1

III

n(x)
= �

hZ
z=0

(h� z) dF (z): (3.3.4)

Next consider II ; using partial integration we have

II =

x�hZ
y=x�x0

x�yZ
z=x�y�h

dF (z) dG(y)

=

0
B@

hZ
z=0

x�hZ
y=x�z�h

+

x0�hZ
z=h

x�zZ
y=x�z�h

+

x0Z
z=x0�h

x�zZ
y=x�x0

1
CA dG(y)dF (z)

=

hZ
z=0

(G(x� h)�G(x� z � h)) dF (z) +

x0�hZ
z=h

(G(x� z)�G(x � z � h)) dF (z)

+

x0Z
z=x0�h

(G(x� z)�G(x � x0)) dF (z):

Using G 2 D(n; �) again we obtain

II

n(x)
! �

hZ
z=0

z dF (z) + �

x0�hZ
z=h

h dF (z) + �

x0Z
z=x0�h

(x0 � z)dF (z): (3.3.5)

Combining the estimates (3.3.4) and (3.3.5), we obtain that

(II + III)

n(x)
! �

x0Z
x0�h

F (z) dz:

It follows that

lim sup

����II + III

m(x)
� C�h

���� � C�h(1� F (x0 � h)): (3.3.6)

Finally we consider I ; since F 2 D(m;�) and m 2 L, for each " > 0 we can �nd
x0 such that

(�h� ")

x�x0Z
0

m(x� y) dG(y) � I � (�h+ ")

x�x0Z
0

m(x� y) dG(y):

To estimate the integral term we write

x�x0Z
0

m(x� y) dG(y) =

0
B@

[x0]Z
0

+

[x�x0]Z
[x0]

+

x�x0Z
[x�x0]

1
CAm(x� y)dG(y) = I1 + I2 + I3:
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Using (2.4) we have
I1=m(x)! G([x0]): (3.3.7)

In I3 we have x0 � x� y � x� [x�x0] � x0+1; using (2.5) we obtain m(x� y) �
2m(x0) and hence I3 � 2m(x0)(G(x � x0)�G([x� x0])). We conclude

lim sup I3=m(x) � 2m(x0)C�: (3.3.8)

For I2 we write (using a constant K which may be di�erent in each inequality)

I2 =

[x�x0]�1X
k=[x0]

k+1Z
k

m(x� y)dG(y)

� K

[x�x0]�1X
k=[x0]

m(x� k)(G(k + 1)�G(k)) (since m 2 L)

� K

[x�x0]�1X
k=[x0]

m(x� k)m(k) (since G 2 D(n; �) and n=m! C)

� K

[x�x0]�1X
k=[x0]

k+1Z
k

m(x� y)m(y)dy (since m 2 L)

� K

[x�x0]Z
[x0]

m(x� y)m(y) dy:

Since m 2 SD it follows that

lim sup
I2

m(x)
� K

1Z
[x0]

m(y) dy: (3.3.9)

Combining the estimates (3.3.7){(3.3.9) we obtain

lim sup

�����
x�x0R
0

m(x� y) dG(y)

m(x)
� 1

����� � (1�G([x0])) + 2�m(x0) +K

1Z
[x0]

m(y) dy:

This shows that

lim sup jI=m(x)� �hj � K1"+K2(1�G([x0]) +K3m(x0) +K4

1Z
[x0]

m(y) dy:

Now combine this last estimate with (3.3.6). Let x0 " 1 and " # 0 to obtain the
desired result. �
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Specializing the previous result, we obtain the following

Corollary 3.3.2. Suppose that F;G 2 D(m;�). Then

(i) If m(x) 2 BD \ L or m(x) 2 SD, then F � G 2 D(m; 2�) and F �n 2
D(m;n�).

(ii) If m(x) = 1 � H(x) 2 SD and H(x) 2 S, then F � G 2 D(m) with
 = 1 + 2�

R1
0 m(y) dy and F �n 2 D�(m) with � = 1 + n�

R1
0 m(y) dy.

Proof. (i) Follows immediately from Proposition 3.3.1.

(ii) Combine (i) with Proposition 2.6(iv). �

The proof of Proposition 3.3.1 can also be used to obtain the following closure
properties for OD(m).

Corollary 3.3.3. (i) If F 2 OD(m) with m 2 BD, then F �2 2 OD(m) and
F �n 2 OD(m).

(ii) If F 2 D(m; 0) with m 2 BD, then F �2 2 D(m; 0) and F �n 2 D(m; 0).

Remarks. (1) Comparing with Proposition 2.1 we see that the condition
m 2 BD replaces the condition F 2 D(m). (2) A result similar to Proposition
3.3.1(i) has been proved by Frenk [4, Lemma 4.1.20].

4. Asymptotic behavior of convolution products:

the classes OD(m) and D(m; 0).

4.1. The asymptotic behavior of F � G(x). In the sequel we shall
estimate the asymptotic behavior of F (x)G(x)�F �G(x) under various conditions
on F and G. A partial result has been obtained already in Proposition 2.6. There
we proved

Proposition 4.1. Suppose F 2 D(m;�) with m(x) = 1�H(x). Then

(i) If H 2 S and m 2 SD, then lim F (x)H(x)�F�H(x)
1�H(x) = �

R1
0
(1�H(x))dx.

(ii) If � = 0 and m 2 OSD \ L, then lim F (x)H(x)�F�H(x)
1�H(x) = 0: �

In the following discussion we shall frequently use the following identity: for
two d.f. F (x) and G(x) we have

F (x)G(x) � F �G(x) =

x=2Z
0

(F (x) � F (x� y)) dG(y) +

x=2Z
0

(G(x) �G(x� y))dF (y)

+ (F (x) � F (x=2))(G(x) �G(x=2)) =: I + II + III:

(4.1)

In Propositions 4.2 and 4.3, we consider the classes OD(m) and D(m; 0).

Proposition 4.2. (a) Suppose F 2 OD(m), G 2 OD(n) with m;n 2 ORV.

(i) There holds: F (x)G(x) � F �G(x) = O(1)m(x)G1(x) +O(1)n(x)F1(x).
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(ii) If E(X) + E(Y ) < 1, then F (x)G(x) �
F �G(x) = O(1)m(x) +O(1)n(x).

(iii) If �(m) > �2 and �(n) > �2, then E(X) = E(Y ) =1 and F (x)G(x)� F �
G(x) = O(1)x2m(x)n(x).

(b) If F 2 D(m; 0), G 2 D(n; 0) with m;n 2 ORV, then the results of (a) hold with
the O(1)-terms replaced by o(1)-terms.

Proof of Proposition 4.2 (a). (i) Consider the �rst term I in (4.1); using

Proposition 3.1.1 (iii) we obtain 0 � I � Km(x)
R x=2
0

max(1; y) dG(y) (x � x0).
Hence I = O(1)m(x)G1(x). Similarly we have II = O(1)n(x)F1(x). Using
Proposition 3.1.1(iii) again, we have III = O(1)xm(x)(G(x) � G(x=2)). Since
G(x) �G(x=2) � (2=x)G1(x) we obtain III = O(1)m(x)G1(x). This proves (i).

(ii) This follows from (i).

(iii) This follows from (i) and Propositon 3.2.2 (ii, b).

Proof of Proposition 4.2 (b). Similar. �

Proposition 4.2 is useful to estimate the di�erence between Fn(x) and F �n(x).

Corollary 4.3. Suppose m 2 ORV. Then

(i) If F 2 OD(m), then for all n � 2, Fn(x)� F �n(x) = O(1)m(x)F1(x).

(ii) If F 2 D(m; 0), then for all n � 2, Fn(x) � F �n(x) = o(1)m(x)F1(x).

Proof. (i) Let G(x): = F �n�1(x); from Corollary 3.3.3 we see that G 2
OD(m). Applying Proposition 4.2 we obtain Fn(x)� F �n(x) = O(1)m(x)G1(x) +
O(1)m(x)F1(x). Since G1(x) = (n� 1)F �n�2 �F1(x) � (n� 1)F1(x) we obtain the
desired result.

(ii) Similar. �

Proposition 4.2 will not be useful if m(x)G1(x) ! 1 or n(x)F1(x) ! 1.
The terms F1(x) and G1(x) were obtained by applying Proposition 3.1.1. If, as in
Proposition 2.6, we strengthen the conditions on F;G then we obtain an estimate
which is independent of F1(x) and G1(x). The result is similar to [6, Theorem 1]
and [7, Lemma 3.1].

Proposition 4.4. (i) Suppose F (x) � F (x=2) = O(m(x)) and G(x) �
G(x=2) = O(n(x)). Then F (x)G(x) � F �G(x) = O(1)m(x) +O(1)n(x).

(ii) If also F 2 D(m; 0) and G 2 D(n; 0), then F (x)G(x) � F � G(x) =
o(1)m(x) + o(1)n(x).

Proof. (i) Use (4.1).

(ii) Use (4.1) and Lebesgue's theorem on dominated convergence. �

Remark. The class of d.f. considered in Proposition 4.4 (i) is connected with
the class O�(m) (cf. [2, Chapter 3]). If for example F 2 ��(m) and G 2 ��(n),
then Proposition 4.4 (ii) applies.

If in Proposition 4.4 we also assume m 2 ORV, then Propositions 2.1 and 2.6
can be used to obtain the following result (cf. [6, Theorem 4] and [7, Corollary
3.2]).
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Corollary 4.5. Suppose F (x)� F (x=2) = O(m(x)) and m 2 ORV.

(i) For all n � 2 we have Fn(x) � F �n(x) = O(1)m(x).

(ii) If also F 2 D(m; 0), then Fn(x)� F �n(x) = o(1)m(x): �

As to Rn(x) (cf. Introduction), using Corollary 4.3 (i) we obtain

Rn(x) = 1� F �n(x)� n(1� F (x)) = O(1)m(x)F1(x) +

�
�

�
n

2

�
+ o(1)

�
�F 2(x):

(4.2)
In terms of the class S with remainder term, (4.2) is only useful if m(x)F1(x) =
o(1) �F (x). In general it is not clear which term (m(x)F1(x) or �F 2(x)) is dominant.
If E(X) <1, then (4.2) reduces to

Rn(x) = O(1)m(x) +

�
�

�
n

2

�
+ o(1)

�
�F 2(x): (4.3)

If E(X) = 1 and �(m) > �2, Proposition 3.2.2 (ii) shows that F1(x) =
O(1)x2m(x). The estimate (4.2) then reduces to

Rn(x) = O(1)x2m2(x) +

�
�

�
n

2

�
+ o(1)

�
�F 2(x): (4.4)

If also �(m) < �1, then Proposition 3.2.1 (iv) and (4.4) yield the estimate

Rn(x) = O(1)x2m2(x): (4.5)

A very useful situation appears when m(x) = �F (x)=x.

Corollary 4.6. Suppose m(x) = �F (x)=x.

(i) If F 2 OD(m), then �F 2 ORV and:

(a) if E(X) <1, then Rn(x) = O(1) �F (x)=x.

(b) if �( �F ) > �1, then Rn(x) = O(1) �F 2(x).

(ii) If F 2 D(m; 0) then �F 2 RV0 and Rn(x) =
�
�
�
n
2

�
+ o(1)

�
�F 2(x).

Proof. (i) From Proposition 3.1.1 (vi) it follows that �F 2 ORV. Hence also
m 2 ORV and if E(X) < 1, (4.3) yields the result a). If �( �F ) > �1, (4.5) gives
the second result.

(ii) From Proposition 3.1.2 (ii) it follows that �F 2 RV0 and hence that �( �F ) >
�1. In this case we have F1(x) = o(1)x �F (x) and using (4.2) we obtain the result
(ii).�

Remarks. (1) The second result should be compared with Corollary 2.4.

(2) The slow variation of 1�F (x) alone is not suÆcient to obtain the conclu-
sion of Corollary 4.6 (ii). The example 1�F (x) = 1=[log(x)] (x � e) is an example
for which the conclusion is false, cf. [6, p.83].

(3) For a re�nement of Corollary 4.6 we refer to Section 5 below.

(4) Let R(x) = � log(1 � F (x)) and assume that R(x) has a derivate
R0(x) which is eventually nonincreasing and R0(x) ! 0. Then F 2 D(m(x) =
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(1�F (x))=x; 0) holds i� xR0(x)! 0. Geluk and Pakes [6] prove that the condition
xR0(x)! 0 is fully equivalent with the conclusion of Corollary 4.6 (ii). This remark
shows that the conditions on F are almost necessary and suÆcient.

4.2. Stability. If the d.f. F is not in OD(m) or D(m; 0), then Corollary
4.3 will not be applicable. The following two propositions may be used to transfer
properties from F to G if the d.f. G is a suitable approximation of F . A related
result was proved in [6, Theorem 3].

Proposition 4.7. (i) If F (x) satis�es F 2(x) � F �2(x) = O(1)W (x) and
if G(x) is a d.f. such that G(x) � F (x) = O(1) �F 2(x), then G2(x) � G�2(x) =
O(1)W (x) +O(1) �F 2(x).

(ii) Suppose 1 � F (x) 2 L and F 2(x) � F �2(x) = o(1)W (x). If G(x) is a
d.f. such that G(x) � F (x) = (c + o(1)) �F 2(x) (c 2 R), then G2(x) � G�2(x) =
o(1)W (x) + o(1) �F 2(x).

Proof. (i) De�ne U(x): = G(x) � F (x) so that by assumption U(x) =
O(1) �F 2(x). Without loss of generality we shall assume that jU(x)j � K �F 2(x)
for all x � 0. First consider �F 2 � F (x); we have

0 � �F 2 � F (x)� �F 2(x)F (x) =

xZ
0

( �F (x � y)� �F (x))( �F (x� y) + �F (x))dF (y)

� 2

xZ
0

( �F (x� y)� �F (x))dF (y) (4:6)

� 2(F 2(x) � F �2(x)):

Hence
�F 2 � F (x) = O(1)W (x) + �F 2(x)F (x): (4.7)

Next consider �F 2 �G(x); as in (4.6) we have

0 � �F 2 �G(x) � �F 2(x)G(x) � 2(F (x)G(x) � F �G(x)): (4.8)

Now use (4.7) and the assumptions about F and U to see that

F �G(x) = U � F (x) + F � F (x)

� K �F 2 � F + F � F (x)

= O(1)W (x) +O(1) �F 2(x) + F 2(x)

(4.9)

and similarly
F (x)G(x) = O(1) �F 2(x) + F 2(x): (4.10)

Using (4.9) and (4.10) in (4.8) we obtain

�F 2 �G(x) = O(1)W (x) +O(1) �F 2(x): (4.11)

Now we consider U � U(x) = U �G(x) � U � F (x). Using jU(x)j � K �F 2(x), (4.7)
and (4.11) we obtain

U � U(x) = O(1)W (x) +O(1) �F 2(x): (4.12)



130 E. Omey

On the other hand we have G �G(x) = U�U(x)+2U�F (x)+F�F (x). Using (4.7),
(4.12) and the assumptions about U and F , we obtain

G �G(x) � F � F (x) = O(1)W (x) +O(1) �F 2(x): (4.13)

Since also G2(x)�F 2(x) = U(x)(G(x)+F (x)) = O(1) �F 2(x), using (4.13) we �nally
obtain G2(x)�G �G(x) = O(1)W (x) +O(1) �F 2(x).

(ii) By assumption we have U(x) = (c + o(1)) �F 2(x). From (4.6) now we
deduce

�F 2 � F (x) = o(1)W (x) + �F 2(x)F (x): (4.14)

Now we consider U � F (x) and U�G(x). Choose " > 0 and x0 so that c � " �
U(x)= �F 2(x) � c+ "; 8x � x0. We have

U � F (x) =

x�x0Z
0

U(x� y) dF (y) +

xZ
x�x0

U(x� y) dF (y)

� (c+ ")

x�x0Z
0

�F 2(x� y)dF (y) +O(1)(F (x) � F (x� x0))

� (c+ ") �F 2 � F (x) +O(1)(F (x) � F (x� x0)):

Since for each A > 0, F 2(x) � F �2(x) � (F (x) � F (x � A))(F (x) � F (A)), by
assumption we have F (x)� F (x� A) = o(1)W (x). Hence U � F (x) � (c+ ") �F 2 �
F (x) + o(1)W (x). Similarly we obtain U � F (x) � (c � ") �F 2 � F (x) + o(1)W (x).
Using (4.14) we arrive at

U � F (x) = o(1)W (x) + c �F 2(x) + o(1) �F 2(x): (4.15)

Next consider �F 2 �G(x); using (4.8), (4.15) and F�G(x) = U�F (x) + F�F (x) we
obtain �F 2 �G(x) = o(1)W (x) + o(1) �F 2+ �F 2G. To estimate U�G(x) we proceed as
in the proof of (4.15) now using 1� F (x) 2 L and

G(x)�G(x�A) = U(x)�U(x�A) + F (x)� F (x�A) = o(1) �F 2(x) + o(1)W (x):

We obtain

U �G(x) = o(1)W (x) + c �F 2(x) + o(1) �F 2(x): (4.16)

Results (4.15) and (4.16) imply that U � U(x) = o(1)W (x) + o(1) �F 2(x). On the
other hand we have G�G(x) = U�U(x)+2U�F (x)+F�F (x). Using (4.15) and the
estimate for U�U , we obtain G�G(x)�F �F (x) = o(1)W (x)+o(1) �F 2(x)+2c �F 2(x).
Since also G2(x) � F 2(x) = U(x)(G(x) + F (x)) = 2c �F 2(x) + o(1) �F 2(x) we �nally
obtain

G2(x) �G �G(x) = o(1)W (x) + o(1) �F 2(x): �

Remark. If G(x) is such that �G(x) � a �F (x) = O(1) �F 2(x) (a 6= 0) (or
�G(x) � a �F (x) = (c+ o(1)) �F 2(x)), the conclusions of Proposition 4.7 remain valid.
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A result similar to Proposition 4.7 is obtained in the next proposition. In the
proposition we analyse stability if G(x) is a d.f. such that (1 � G(x))=(1 � F (x))
converges to 1 with a certain rate.

Proposition 4.8. (i) Suppose 1� F (x) 2 ORV and that F (x) satis�es

F 2(x)� F �2(x) = O(1)W (x): (4.17)

Suppose G(x) is a d.f. such that

1�G(x) = (1 + r(x))(1 � F (x)) (4.18)

where r(x) satis�es jr(x)j � s(x) and s(x) 2 ORV with s(x)! 0. Then

G2(x)�G�2(x) = O(1)W (x) +O(1)s(x) �F (x) +O(1) �F 2(x): (4.19)

(ii) Suppose 1 � F (x) 2 ORV and that F (x) satis�es F 2(x) � F �2(x) =
o(1)W (x). Suppose G(x) is a d.f. such that (4.18) holds with r(x)=s(x) ! c 2 R

where s(x) 2 ORV \ L and s(x)! 0. Then

G2(x)�G�2(x) = o(1)W (x) + o(1)s(x) �F (x) + o(1) �F (x)
p
W (x): (4.20)

Moreover, if also jr(x)j � K �F (x) and r(x)= �F (x) ! c 2 R with 1�F (x) 2 ORV\L,
then (4.20) can be replaced by

G2(x)�G�2(x) = o(1)W (x) + o(1) �F 2(x): (4.21)

Remarks. (1) Proposition 4.8 and its proof remain valid if we start from the
assumption �G(x) = a �F (x) + r(x) �F (x) where a > 0.

(2) If r(x) = O(1)(1 � F (x)), Proposition 4.7 shows that the assumption
1� F (x) 2 ORV is superuous.

Proof. Before proving the results we rewriteG2(x)�G�2(x) in a more suitable
form. We have

G2(x)�G�2(x) = 2

x=2Z
0

( �G(x�y)� �G(x))dG(y)+(G(x)�G(x=2))2 =: I+T1: (4.22)

Using (4.18) we have

I = 2

x=2Z
0

(1 + r(x � y))( �F (x� y)� �F (x))dG(y) + 2 �F (x)

x=2Z
0

r(x � y)dG(y)

� 2 �F (x)r(x)G(x=2) =: II + T2 � T3:

Since by assumption, r(x) = o(1), II can be replaced by

II = 2(1 + o(1))

x=2Z
0

( �F (x� y)� �F (x))dG(y) =: 2(1 + o(1))III:
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Using partial integration and then (4.18) we obtain

III =

xZ
x=2

(G(x=2)�G(x� z)) dF (z)

=

xZ
x=2

(F (x=2)� F (x� z)) dF (z)

+

xZ
x=2

r(x � z) �F (x � z)dF (z)� r(x=2) �F (x=2)

xZ
x=2

1 dF (z):

Using partial integration in the �rst term and then using the analogue of (4.22) for
F (x), this term can be replaced by 1=2(F 2(x) � F �2(x)) � 1=2(F (x) � F (x=2))2.
Hence II can be replaced by II = T4 � T5 + T6 � T7, where

T4 = (1 + o(1))(F 2(x)� F �2(x)); T6 = 2(1 + o(1))

xZ
x=2

r(x � z) �F (x� z) dF (z)

T5 = (1 + o(1))(F (x) � F (x=2))2; T7 = 2(1 + o(1))r(x=2) �F (x=2)(F (x)� F (x=2)):

Combining the di�erent terms we have G2(x)�G�2(x) = T1+ T2� T3+ T4� T5+
T6 � T7.

Proof. (i) By assumption we have T4 = O(1)W (x) and jT3j � 2s(x) �F (x).
Since jr(x)j � s(x) 2 ORV, we also obtain jT2j = O(1) �F (x)s(x). By using the O-
regular variation of s(x) and 1�F (x) we obviously also have jT7j = O(1)s(x) �F 2(x).
Using (4.18) we obtain T1 = O(1) �F 2(x). To analyse T5 we use the inequality

F 2(x) � F �2(x) � (F (x) � F (x=2))2 (4.23)

and (4.17) to obtain T5 = O(1)W (x). Finally consider T6; using the boundedness
of r(x) we have

jT6j � K

xZ
x=2

�F (x� z) dF (z)

� K

0
B@

xZ
x=2

( �F (x � z)� �F (x))dF (z) + �F (x)(F (x) � F (x=2))

1
CA

� K(F 2(x) � F �2(x)) +K �F (x)(F (x) � F (x=2)):

Hence T6 = O(1)W (x)+O(1) �F 2(x). Combining these 7 estimates we obtain (4.19).

(ii) By assumption T4 = o(1)W (x) and as in part (i) we have T5 =
o(1)W (x). By the conditions on s(x) and r(x) we have T2=(s(x) �F (x)) ! 2c and
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T3=(s(x) �F (x)) ! 2c. Also, since �F 2 ORV we have T7 = o(1) �F (x)s(x). Now con-
sider T6; as in part (i) we have jT6j � K(F 2(x)�F �2(x))+K �F (x)(F (x)�F (x=2)).

Using (4.23) and T5 = o(1)W (x) we obtain T6 = o(1)W (x) + o(1) �F (x)
p
W (x).

Finally consider T1; using (4.18) we obtain

T1 = ((1 + r(x))(F (x) � F (x=2)) + ((r(x) � r(x=2)) �F (x=2))2

= O(1)T5 +O(1)(r(x) � r(x=2))(F (x) � F (x=2)) �F (x=2)

+ (r(x) � r(x=2))2 �F 2(x=2)

= o(1)W (x) + o(1) �F 2(x) + o(1)s2(x) �F 2(x):

Combining these 7 estimates we obtain (4.20).

In order to prove (4.21) we reconsider T6; in the case where jr(x)j � K �F (x),
we have

T6 = O(1)

xZ
x=2

�F 2(x� z) dF (z) = O(1)

8><
>: �F 2 � F (x)�

x=2Z
0

�F 2(x� z)dF (z)

9>=
>; :

First consider �F 2 � F (x); we have

�F 2 � F (x)� �F 2(x)F (x) =

xZ
0

( �F 2(x� z)� �F 2(x)) dF (z)

= O(1)

xZ
0

( �F (x� z)� �F (x)) dF (z)

= O(1)(F 2(x) � F �2(x)) = o(1)W (x)

As to the second term, since 1 � F (x) 2 ORV \ L, an application of Lebesque's

theorem yields
R x=2
0

�F 2(x � z) dF (z)= �F 2(x) ! 1. Combining these estimates we

obtain T6 = o(1)W (x) + o(1) �F 2(x). Now (4.21) follows as before. �

Using a similar method of proof we also obtain

Corollary 4.9. Under the conditions of Proposition 4.8 we have

F (x)G(x) � F �G(x) = O(1)W (x) +O(1)s(x) �F (x) +O(1) �F 2(x):

resp.

F (x)G(x) � F �G(x) = o(1)W (x) + o(1)s(x) �F (x) + o(1) �F
p
W (x):

resp.
F (x)G(x) � F �G(x) = o(1)W (x) + o(1) �F 2(x): �
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5. Asymptotic behavior of convolution products: the class D(m;�)

In our next results we discuss the case where F 2 D(m;�) and G 2 D(n; �)
where � � 0 and � � 0. If � is positive then automatically m 2 L. If we de�ne
U(x) = F (x) � �M(x) where M(x) =

R x
0 m(y) dy, it follows that U(x) 2 D(m; 0).

Now consider I =
R x=2
0 (F (x)� F (x� y)) dG(y). Obviously we have

I =

x=2Z
0

(U(x)� U(x� y)) dG(y) + �

x=2Z
0

(M(x) �M(x� y))dG(y) = I1 + �I2:

Using the approach of Proposition 4.2 we obtain jI1j � "m(x)G1(x) for x � x0.
Similarly we can write

II =

x=2Z
0

(V (x) � V (x� y)) dF (y) + �

x=2Z
0

(N(x)�N(x� y)) dF (y) = II1 + �II2:

where V (x) = G(x) � �N(x) and N(x) =
R x
0
n(y) dy. Obviously V 2 D(n; 0) and

we obtain jII1j � "n(x)F1(x) for x � x0. It remains to analyse I2, II2 and III . If
E(X) and E(Y ), the means corresponding to the distribution functions F (x) and
G(x), are �nite, the analysis is easy.

Part 1: Finite-means case. Theorem 5.1. Suppose F (x) 2 D(m;�),
G(x) 2 D(n; �), E(X) + E(Y ) < 1 and m;n 2 L \ ORV. Then F (x)G(x) �
F�G(x) = �E(Y )m(x) + �E(X)n(x) + o(m(x)) + o(n(x)).

Proof. Let us consider I2; using partial integration we have

I2 =

x=2Z
0

xZ
x�y

m(z) dz dG(y) =

xZ
z=x=2

x=2Z
y=x�z

dG(y)m(z) dz

=

x=2Z
z=0

( �G(z)� �G(x=2))m(x� z)dz =

x=2Z
0

�G(z)m(x� z) dz � �G(x=2)

xZ
x=2

m(z) dz:

Since m 2 L \ORV we obtain

lim
I2

m(x)
=

1Z
0

�G(z) dz � limx �G(x=2) lim

1Z
1=2

m(xz)

m(x)
dz

= E(Y )� 0 � O(1) = E(Y ):

Similarly we have lim II2=n(x) = E(X).

Next consider III = (F (x) � F (x=2))(G(x) � G(x=2)). Using Proposition
3.1.1(iii) and the �niteness of E(X) and E(Y ) we have

III = O(1)xm(x)(G(x) �G(x=2)) = o(1)m(x);
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also III = O(1)xn(x)(F (x) � F (x=2)) = o(1)n(x) holds. Combining these esti-
mates, we obtain the desired result. �

Corollary 5.2. Suppose F 2 D(m;�), E(X) < 1 and m 2 L \ ORV.
Then for all n � 2,

lim
Fn(x)� F �n(x)

m(x)
= 2�

�
n

2

�
E(X): (5.1)

Moreover, if �(m) < �1, then for all n � 2,

lim
Rn(x)

m(x)
= lim

1� F �n(x) � n(1� F (x))

m(x)
= 2�

�
n

2

�
E(X): (5.2)

Proof. The result for n = 2 follows from Theorem 5.1. For n > 2, we use
Corollary 3.3.2 to obtain F �n 2 D(m;n�). Since

R1
0 (1 � F �n(x)) dx = nE(X),

Theorem 5.1 applies again and we obtain

lim
F �n(x)F (x) � F �n+1(x)

m(x)
= n�E(X) + n�E(X) = 2n�E(X):

Finally note that

Fn+1(x)� F �n+1(x) = F (x)(Fn(x)� F �n(x)) + F (x)F �n(x) � F �n+1(x);

so that

lim
Fn+1(x)� F �n+1(x)

m(x)
= lim

Fn(x) � F �n(x)

m(x)
+ 2n�E(X):

The result (5.1) now follows by induction on n.

To prove (5.2) we write

Rn(x) = Fn(x) � F �n(x) +
1� Fn(x)� n(1� F (x))

(1� F (x))2
(1� F (x))2:

Using (5.1) we obtain

Rn(x) = 2�

�
n

2

�
E(X)m(x)�

�
n

2

�
�F 2(x) + o(1)m(x) + o(1) �F 2(x): (5.3)

To prove (5.2) we use Proposition 3.2.1 (iv) to obtain 1�F (x) = O(1)xm(x). Using
E(X) < 1 this gives �F 2(x) = O(1)m(x)x �F (x) = o(1)m(x). Relation (5.2) now
follows from (5.3). �

Remarks. (1) Since Rn+1(x) = nR2(x)+Rn�F (x) the previous result implies
that lim(Rn � F (x))=m(x) = 2�

�
n
2

�
E(X). If � > 0, this implies that F 2 D(m)

and Proposition 2.3 applies.

(2) If � > 0 and m(x) = o( �F 2(x)) or � = 0 and m(x) = O( �F 2(x)), it follows
from (5.1) with n = 2 that lim(F 2(x) � F �2(x))= �F 2(x) = 0. Using the inequality
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F 2(x)� F �2(x) � (F (x)� F (x=2))2 we obtain lim �F (x=2)= �F (x) = 1. This implies
1�F (x) 2 RV0 and hence E(X) =1 which we excluded here. This remark shows
that in many cases m(x) will be the dominant term in (5.3).

(3) Under the conditions of Corollary 5.2, the special choice G(x) = 1� �F 2(x)
yields G(x) 2 D(m; 0). An application of Theorem 5.1 yields

lim
�F 2(x) � F (x)� �F 2(x)F (x)

m(x)
= �

1Z
0

�F 2(s) ds:

This result should be compared with Corollary 2.4, Proposition 4.1 and the proof
of Proposition 4.7.

The special choice m(x) = (1� F (x))=x in Corollary 5.2 yields

Corollary 5.3. Suppose F 2 D(m;�) with m(x) = (1 � F (x))=x, and
assume E(X) <1. Then for all n � 2, (5.1) and (5.2) hold.

Proof. From Proposition 3.1.2 it follows that 1� F (x) 2 RV��, � � 1 and
consequently that Corollary 5.2 is applicable. �

Part 2: In�nite-means case. If E(X) = E(Y ) =1 we shall assume F 2
D(m;�) and G 2 D(n; �) where the auxiliary functions m(x), n(x) are regularly
varying. Recall the following results of Proposition 3.1.2.

Proposition 5.4 Suppose F 2 D(m;�), G 2 D(n; �) with m 2 RVÆ and
n 2 RV�.

(i) If Æ + 1 < 0, (resp. = 0, resp. > 0), then �F (x)=xm(x) ! ��=(1 + Æ)
(resp. F 2 ��(xm(x)), resp. � = 0).

(ii) If �+1 < 0, (resp. = 0, resp > 0), then �G(x)=xn(x) ! ��=(1+ �) (resp.
G 2 ��(xn(x)), resp. � = 0). �

Using the decompositions (4.1) and I = I1 + �I2 of the beginning of Section
5, we proceed with estimating I2. Using partial integration we have

I2 =

x=2Z
y=0

xZ
z=x�y

m(s) ds dG(y) =

xZ
s=x=2

x=2Z
y=x�s

dG(y) ds

=

x=2Z
0

( �G(s)� �G(x=2))m(x� s)ds

=

x=2Z
0

�G(s)m(x � s) ds� �G(x=2)

x=2Z
0

m(x� s) ds =:A�B:

We consider the cases �+ 1 < 0 and �+ 1 = 0 separately.
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Case 1: �+ 1 < 0. For " > 0 we write

A = x

1=2Z
0

�G(xs)m(x(1� s)) ds = x

8><
>:

"Z
0

+

1=2Z
"

9>=
>; �G(xs)m(x(1 � s)) ds =:A1 +A2:

Using the regular variation of m and n and uniform convergence, we have

lim
A2

x2n(x)m(x)
= �

�

1 + �

1=2Z
"

s1+�(1� s)Æds: (5.4)

Next consider A1; using uniform convergence we have m(x(1� t))=m(x)! (1� t)Æ

uniformly in 0 � t � ". For x suÆciently large, this implies

(1� ")xm(x)

"Z
0

�G(xs) ds � A1 � (1 + ")xm(x)

"Z
0

�G(xs)ds:

Now we estimate x
R "
0
�G(xs) ds =

R "x
0

�G(s)ds. Since E(Y ) =1 we haveZ 1

0

yn(y) dy =1

and lim
R "x
0

�G(t) dt=
R "x
0

yn(y)dy = ��=(1 + �). If � + 1 > �1, this shows thatR "x
0

�G(t) dt � ��
1+�x

2n(x)"2+� and hence that A1 = O(1)"2+Æ . Now combine the

estimates for A1 and A2 and let "! 0 to obtain

lim
A

x2m(x)n(x)
= �

�

1 + �

1=2Z
0

s1+�(1� s)Æds: (5.5)

If �+1 = �1, we have
R "x
0

�G(t) dt � �
R "x
0 yn(y) dy. Since in this case

R x
0 yn(y) dy 2

�(x2n(x)) we have x2n(x) = o(1)
R x
0 yn(y) dy and we obtain

(1� ")� � lim
sup

inf

A1

m(x)
xR
0

yn(y) dy

� (1 + ")�:

Moreover, from (5.4) we have A2 = o(m(x)
R x
0
yn(y) dy). Combining the two esti-

mates and then letting "! 0, we obtain

A = (� + o(1))(m(x)

xZ
0

yn(y) dy): (5.6)

Next we consider B; using Proposition 5.4 and the regular variation of m and n we
obtain

B �
��

1 + �
x2n(x)m(x)

�
1

2

�1+� 1=2Z
0

(1� t)Ædt: (5.7)
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If �+ 1 = �1, this yields

B = o(m(x)

xZ
0

yn(y) dy): (5.8)

Combining (5.5) and (5.7) or (5.6) and (5.8) we obtain

(5:9:a)

8>>><
>>>:

if �+ 1 > �1: lim I2=(x
2m(x)n(x)) = �

1=2R
t=0

1=2R
z=t

z�(1� t)Ædzdt

if �+ 1 = �1: lim I2=(m(x)
xR
0

yn(y) dy) = �:

Note that �+ 1 < �1 is not possible here since we assumed E(Y ) =1.

Case 2: �+ 1 = 0. In this case for " > 0 we have

I2 = x

1=2Z
0

( �G(xs) � �G(x=2))m(x(1� s))ds

= x

8><
>:

"Z
0

+

1=2Z
"

9>=
>; ( �G(xs)� �G(x=2))m(x(1� s))ds =:A+B:

Using uniform convergence, we obtain

limB=(x2m(x)n(x)) = ��

1=2Z
"

log(2s)(1� s)Æds:

As to A, we have m(x(1� s))=m(x)! (1� s)Æ uniformly in 0 � s � ". Hence

0 �
A

m(x)
� Kx

"Z
0

( �G(xs)� �G(x=2))ds =:KC(x):

Now C(x) = "xG(x=2) �
R "x
0

G(t) dt and C(x)=x" = G(x=2) � G(x") + G(x") �R "x
0 G(t) dt. Since G 2 ��(xn(x)) we obtain (cf. [5,8]) limG(x)=(x")2n(x") =

� � � log(2") and hence 0 � lim supA=x2n(x)m(x) � K"(� � � log(2")). Now
combine the estimates for A and B and let "! 0 to obtain

lim
I2

x2m(x)n(x)
= ��

1=2Z
0

log(2s)(1� s)Æds = �

1=2Z
0

1=2Z
t

z�1dz(1� t)Ædt: (5.9.b)

As a second step, we estimate I1. At the beginning of Section 5 we obtained
jI1j � "m(x)G1(x). The classical properties of regularly varying functions show
that for �1 < � + 1 � 0, G1(x)=x

2n(x) ! �=(2 + �) and for � + 1 = �1, that
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G1(x)=
�R x

0 yn(y) dy
�
! �. Since " was arbitrary, using (5.9.a) and (5.9.b) we

obtain

(5:10)

8>>><
>>>:

if � 1 < �+ 1 � 0: lim I=x2m(x)n(x) = ��
1=2R
t=0

1=2R
t=z

z�(1� t)Æ dz dt

if �+ 1 = �1: lim I=(m(x)
xR
0

yn(y) dy) = ��:

For the second term II in (4.1), we obtain in a similar way that

(5:11)

8>>><
>>>:

if � 1 < Æ + 1 � 0: lim II=x2m(x)n(x) = ��
1=2R
t=0

1=2R
z=t

zÆ(1� t)� dz dt

if Æ + 1 = �1: lim II=(n(x)
xR
0

ym(y) dy) = ��:

As to the third term III in (4.1), using Proposition 5.4 we have

lim
III

x2m(x)n(x)
= lim

(F (x) � F (x=2))(G(x) �G(x=2))

xm(x) xn(x)

= ��

1Z
1=2

1Z
1=2

sÆt� ds dt; Æ + 1 � 0; �+ 1 � 0:

(5.12)

Combining (5.10) up to (5.12) we summarize our �ndings in the following

Theorem 5.5. Suppose F 2 D(m;�), G 2 D(n; �), E(X) = E(Y ) =1 and
m 2 RVÆ, n 2 RV� with Æ+1 � 0 and �+1 � 0. Let R(x) = F (x)G(x)�F �G(x).

(i) If �1 < Æ + 1, �+ 1 � 0, then

R(x)

x2m(x)m(x)
! ��

8><
>:

1=2Z
0

1=2Z
t

(z�(1� t)Æ + zÆ(1� t)�) dz dt+

1Z
1=2

1Z
1=2

zÆt� dz dt

9>=
>; :

(ii) If Æ + 1 = �+ 1 = �1, then

R(x) = (�� + o(1))m(x)

xZ
0

yn(y) dy + (��+ o(1))n(x)

xZ
0

ym(y) dy:

(iii) If Æ + 1 = �1, �1 < �+ 1 � 0 (resp. �+ 1 = �1, �1 < Æ + 1 � 0), then

R(x) = (�� + o(1))n(x)

xZ
0

ym(y) dy

0
@resp. m(x)

xZ
0

yn(y)dy

1
A : �
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Remarks. (1) In Theorem 5.5(i), the limit can be rewritten as

��C(�; Æ) = ��

1Z
t=0

tZ
z=0

(1� z)�tÆ dz dt:

Using the hypergeometric function (cf. [1]) we have

(�+ 1)(Æ + 1)C(�; Æ) = 1� F (Æ + 1;��� 1; Æ + 2; z = 1)

= 1�
�(Æ + 2)�(�+ 2)

�(Æ + �+ 3)
(�1 < �+ 1; Æ + 1 < 0):

(5.12)

For � = Æ = �1, we have C(�1;�1) = �2=6 and for � = �1; �1 < Æ + 1 < 0, we
have C(�1; Æ) =  + �0(Æ + 2)=�(Æ + 2) where  is Eulers' constant.

(2) If m(x) = n(x) 2 RVÆ, �1 � Æ + 1 � 0 we have x2m(x) � (Æ + 2)�R x
0 ym(y) dy and Theorem 5.5 yields

R(x) = (��K(Æ) + o(1))

0
@m(x)

xZ
0

ym(y)dy

1
A (5.13)

where K(Æ) = 2 if Æ = �2 and K(Æ) = (2 + Æ)C(Æ; Æ) if �1 < Æ + 1 � 0.

In the case where F (x) = G(x) we obtain:

Corollary 5.6. Suppose F 2 D(m;�), E(X) = 1 and m(x) 2 RVÆ,
�2 � Æ � �1. Then for all n � 2,

lim
Fn(x)� F �n(x)

A(x)
= �2K(Æ)

�
n

2

�
(5.14)

where A(x) = m(x)
R x
0
ym(y) dy, and

lim
Rn(x)

A(x)
= �2

�
n

2

��
K(Æ)�

Æ + 2

(Æ + 1)2

�
; if Æ + 1 < 0 (5.15a)

lim
Rn(x)
�F 2(x)

= �

�
n

2

�
if Æ + 1 = 0: (5.15b)

Proof. If n = 2, (5.12) is the content of Theorem 5.5, cf. (5.13). For n � 2,
we can use Corollary 3.3.2 to see that F �n(x) 2 D(m;n�). Another application of
(5.13) yields

F �n(x)F (x) � F �n+1(x) = (n�2K(Æ) + o(1))A(x):

Since Fn+1(x)�F �n+1(x) = F (x)(Fn(x)�F �n(x)) +F �n(x)F (x)�F �n+1(x), we
obtain

lim
Fn+1(x) � F �n+1(x)

A(x)
= lim

Fn(x)� F �n(x)

A(x)
+ n�2K(Æ):
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By induction on n, we obtain (5.14). To prove (5.15), we rewrite Rn(x) as follows:

Rn(x) = Fn(x) � F �n(x) +
1� Fn(x) � n(1� F (x))

�F 2(x)
�F 2(x): (5.16)

If Æ+1 < 0, Proposition 5.4 gives lim �F 2(x)=x2m2(x) = �2=(1+Æ)2 and this implies
�F 2(x)=A(x) ! �2(Æ+2)=(1+Æ)2. Combining this with (5.16) and (5.14) we obtain
(5.15a). If Æ + 1 = 0, Proposition 5.4 implies limx2m2(x)= �F 2(x) = 0 and now
(5.15b) follows again from (5.14) and (5.16). �

Remark. Using (5.12) and the de�nition of K(Æ), the relation (5.15a) can be
rewritten as

lim
Rn(x)

A(x)
= �2

�
n

2

�
L(Æ) (5.17)

where L(Æ) = 2 if Æ = �2 and L(Æ) = (2+Æ)(�(Æ+2))2

(1+Æ)2�(2Æ+3) if �1 < Æ + 1 < 0. Note that

the limit in (6.17) is zero only if � = 0 and/or if Æ = �3=2.

A combination of Corollary 5.2 and Corollary 5.6 yields the following corol-
lary, which uni�es the results of this section.

Corollary 5.7. Suppose F 2 D(m;�), � 6= 0 and suppose that:
(i) E(X) <1 and m 2 L \ORV or (ii) E(X) =1 and m 2 RVÆ, Æ 6= �3=2.
Then for all n � 2, limRn(x)=R2(x) =

�
n
2

�
. �

In the next corollary we complete Corollary 5.3.

Corollary 5.8. Suppose F 2 D(m;�) with m(x) = (1 � F (x))=x and
E(X) = 1. Then 1 � F (x) 2 RV�� and the results of Corollary 5.6 hold with
Æ = ��� 1. �

Part 3: mixed case. If E(X) = 1 and E(Y ) < 1 we can combine the
e�orts of part 1 and part 2 to estimate F (x)G(x) � F�G(x). We shall prove

Theorem 5.9. Suppose F 2 D(m;�), G 2 D(n; �), E(X) =1, E(Y ) <1.
Also assume m 2 RVÆ, �1 � Æ + 1 � 0 and n 2 RV�, � < �2. Then

lim(F (x)G(x) � F �G(x))=m(x) = �E(Y ):

If � = Æ = �2 and m(x) = (c+ o(1))n(x)
R x
0 ym(y) dy (0 � c <1), then

lim
(F (x)G(x) � F �G(x))

n(x)
xR
0

ym(y) dy

= �� + c�E(Y ):

Proof. Using the methods and notations of Parts 1 and 2, we readily obtain
the following estimates:

(1) lim I=m(x) = �E(Y );

(2) lim II=(x2m(x)n(x)) = �� Const, if �1 < Æ + 1 � 0, and

lim II
.�

n(x)
xR
0

ym(y) dy
�
= �� if � = �2;
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(3) lim III=x2m(x)n(x) = �� Const.

If � = Æ = �2, the desired result follows; if � < �2 and �1 < Æ + 1 � 0 we
have x2m(x)n(x)=m(x) = x2n(x)! 0 and the desired result follows. �

6. Examples and applications

6.1. Examples. 6.1.1. Assume that F (x) has a density f(x) = O(1)m(x)
(resp. o(1)m(x)) where m(x) 2 ORV. In this case F 2 OD(m) and Corollary 4.3
applies. Now assume G(x) is the d.f. de�ned by �G = [1= �F (x)]�1, where as usual [x]
denotes the integer part of x. It is readily seen that �G(x) = �F (x)+(1+o(1)) �F 2(x)
and if 1 � F (x) 2 L, Proposition 4.7 yields G2(x) � G�2(x) = O(1)m(x)F1(x) +
O(1) �F 2(x) (resp. o(1)m(x)F1(x) + o(1) �F 2(x)).

6.1.2. If Æ = �3=2, then (5.17) shows that Rn(x) = o(1)A(x) and it seems to
be necessary to consider a third-order approximation here. A partial answer to this
has been given in [12, Lemma 2.5] where we considered stable distributions on R+.
If F is stable with index � = 1=2, then F 2 D(m(x) = x�3=2; �) and (5.17) shows
that Rn(x) = o(1) �F 2(x). In [12, Lemma 2.5] we proved that limRn(x)=R2(x) =�
n+1
3

�
. If F is stable with index �, 0 < � < 1, � 6= 1=2 we also showed [12, p. 349]

that for some constant k(�),

lim
Rn(x)�

�
n
2

�
R2(x)

�F 3(x)
=

�
n

3

�
k(�);

which gives a rate of convergence result in Corollary 5.7.

6.1.3. Theorem 5.9 is applicable in the following situation. Suppose that
F (x) 2 D( �F p(x); �) (p > 1). In this case it is easily veri�ed that the d.f. G(x) where
G(x): = 1� �F p(x), belongs to the classD( �F 2p�1(x); p�). If � 6= 0, Proposition 3.2.1
implies that �F (x)=

R1
x

�F p(y) dy ! � and it easily follows that �F (x) � Cx�1=(p�1)

where C denotes some positive constant. If p > 2, we can apply Theorem 5.9 to
obtain

lim
(F (x)G(x) � F �G(x))

m(x)
= �

1Z
0

�F p(y)dy

and hence

lim
�F p � F (x)
�F p(x)

= 1 + �

1Z
0

�F p(y) dy:

6.2. Subordinate probability distributions. Suppose F is a d.f.on R

and fpngN the probability distribution of an integer-valued r.v. N . The d.f. H(x)
de�ned by H(x) =

P1
n=0 pnF

�n(x) is called subordinated to F with subordinator
fpngN . Such type of d.f. arise in many stochastic models, see e.g. [18] and the
references given there. In studying the asymptotic behavior of 1 � H(x) it is
wellknown that subexponential d.f. play an essential role. Here we focus on the
second-order behavior of 1�H(x). Clearly we have

R(x): = 1�H(x) �E(N)(1� F (x)) =

1X
n=2

pnRn(x) (6.1)
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and Proposition 2.3 will allow us to use Lebesgue's theorem. Under appropriate
conditions on the sequence fpngN it follows from Proposition 2.3 and (6.1) that

R(x) = O(1)m(x): (6.2)

Using Corollary 5.7 we obtain an asymptotic equality instead of the O-estimate
(6.2).

Theorem 6.1. Suppose F (x) satis�es the conditions of Corollary 5.7 and

assume
P1

0 pnx
n is analytic at x = 1. Then limR(x)=R2(x) = E

�
N
2

�
. �

This result uni�es the results of [12, 13, 6].

Classical examples are the Compound Poisson and Compound Geometric d.f.

6.3. In�nitely divisible d.f. Our next application is devoted to the
relation between the tail of an in�nitely divisible d.f. (i.d.) and its Levy measure �.
If F is i.d. with Levy measure � we set � = �([1;1)) and de�ne the d.f. Q(x) as
Q(x) = ��1�([1; x]) (x � 1). It is known (see e.g. [3]) that F can be written as

F (x) = U�V (x) (6.3)

where V (x) = e�
1X
n=0

�n

n!
Q�n(x) and where U(x) is a d.f. satisfying for all " > 0,

1� U(x) = o(1)e�"x: (6.4)

The d.f. V (x) being compound Poisson, Theorem 6.1 applies and we obtain

lim
1

1� V (x) � �(1�Q(x))

R2;Q(x)
=
�2

2
(6.5)

where R2;Q(x) = 1�Q�2(x)� 2(1�Q(x)). To obtain an asymptotic result for F ,
we �rst estimate U(x)V (x)� U�V (x). Using (4.1) we have

U(x)V (x)� U � V (x) =

x=2Z
0

(U(x)� U(x� y)) dV (y)

+

x=2Z
0

(V (x)� V (x� y)) dU(y)

+ (U(x)� U(x=2))(V (x) � V (x=2)) =: I + II + III:

Using (6.4), for each " > 0 we have I = o(1)e�"x=2 and III = o(1)e�"x=2.
To estimate II we shall apply Lebesgue's theorem. Under the conditons of
Corollary 5.7 (for Q(x)) we have Q(x) 2 D(R2;Q(x); 1=2E(Z)), where E(Z) =
1R
0

�Q(y) dy and E(Z) � 1. Also R2;Q(x) 2 L. Using (6.5) we also have

V (x) 2 D(R2;Q(x);�=(2E(Z))). Now we apply Lebesgue's theorem and obtain

lim
II

R2;Q(x)
=

�

2E(Z)

1Z
0

y dU(y):
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Hence

U(x)V (x)� U(x) � V (x) =

0
@ �

2E(Z)

1Z
0

y dU(y) + o(1)

1
AR2;Q(x):

Using this estimate and (6.5) we obtain

lim
1� F (x) � �(1�Q(x))

R2;Q(x)
=
�2

2

0
@1 + 1

�E(Z)

1Z
0

y dU(y)

1
A : (6.6)

If E(Z) <1 we have R2;Q(x) � 2mQ(x)�E(Z). In this case (6.6) can be replaced
by

lim
1� F (x)� �(1�Q(x))

mQ(x)
= ��

0
@�E(Z) +

1Z
0

y dU(y)

1
A = ��

1Z
0

y dF (y):

Summarizing our results, we have proved:

Theorem 6.3. (i) Suppose F is i.d. with Levy measure �. Suppose that
Q(x) 2 D(mQ; �) where Q(x): = ��1�([1; x]) and where mQ(x) 2 L \ORV. If the

mean of F is �nite, then lim(1� F (x)� �([x;1)))=mQ(x) = ��
R1
0
y dF (y).

(ii) If the mean of F is in�nite and if Q(x) satis�es the conditions of Corollary
5.7(ii), then lim(1� F (x)� �([x;1)))=R2;Q(x) = �2=2: �

6.4. Concluding remarks. 6.4.1. To obtain third order results we can
analyse Qn(x) de�ned by Qn(x) = Rn(x) �

�
n
2

�
R2(x) (n � 3). It is not hard to

show that Qn+1(x) =
�
n
2

�
Qn(x) + Qn � F (x) so that depending on Q3(x) several

parts of Section 2 can be applied here. If F (x) 2 D(m) and Q3(x) = O(1)m(x),
then Proposition 2.3 gives Qn(x) = O(1)m(x) for all n � 3. The exact asymptotic
behaviour of Q3 (and Qn) has been analysed in [9,18] in the case where F has a
�nite mean and a di�erentiable density. The in�nite mean case will be treated in
a forthcoming paper.

6.4.2. Several results of Sections 4 and 5 also hold for the convolution of
densities. In [14] the behaviour of f 
 g(x) � f(x)g(x) has been analysed for
L1[0;1)-functions. The in�nite mean case is treated in [19].

6.4.3. It seems to be of interest to study the class of d.f. F (x) for which
Rn(x)=R2(x) exists for all n � 3.
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