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THE ALGEBRAIC BETHE ANSATZ

AND VACUUM VECTORS

Vladimir Dragovi�c

Abstract. We give a presentation of the Algebraic Bethe Ansatz, which applies uniformly
to all 4�4 rank 1 solutions of the Yang equation and uses elementary linear algebra and algebraic
geometry.

1. Introduction. The Algebraic Bethe Ansatz (ABA) is a method of formal
construction of eigenvectors of the Hamiltonian of the Heisenberg ferromagnetic
model:

H = �

NX
i=1

(X�xi+1�
x
i + Y �

y
i+1�

y
i + Z�zi+1�

z
i ):

The operator H maps V 
N to V 
N , V = C2; �xi denotes the operator acting on
i-th V as Pauli matrix and as the identity on the others. The history of the method
started in 1931 with Bethe's solution of the simplest case de�ned by the condition
X = Y = Z. The next step was the so called XXZ model, obtained by putting
X = Y , solved by Yang in 1967. Finally, the general problem, the XY Z model,
was solved by Baxter in 1971.

Both Yang and Baxter exploited the connection with statistical mechanics
on the plane lattice, the �rst of them with the six-vertex and the second with the
eight-vertex model. Fundamental in their work was the relation now known as the
Yang equation: �1 = �2, where

�1 = �ij�
1pq� = L

k
p�L

0l�
q R

ij
kl; �2 = �ij�

2pq� = Rkl
pqL
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are tensors in W 
V 
V , with local transition matrices L and L0 acting on W 
V

and R on V 
 V . The key role is played by the matrices R. We denote them by
Ry in the Yang case and by Rb in the Baxter case. (They are solution of the Yang
{Baxter equation.) The Yang equation implies

R(T 
 T 0) = (T 0 
 T )R;
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where T =
QN

n=1 Ln, Ln:W

N


 V ! W
N

 V acts as L on the n-th W and V ,

and as identity otherwise. Therefore, the operators trV T commute. The connection
between the Heisenberg model and the vertex models mentioned above is in that
the operator H commutes with all trV T . It is well known that H and trV T have
the same eigenvectors.

A beatiful explanation how the ABA �nds these eigenvectors, as well as the
history of the subject, is given in Faddeev and Tahtajan [1]. Starting with the
matrices R = Ry, R = Rb, they �nd the vectors X , Y , U and V satisfying the
relation RX 
 U = Y 
 V . This quadruple of vacuum vectors is computed in [1]
in terms of theta functions, the main computational tool of that paper.

In this paper we give a sort of converse approach starting from vacuum vec-
tors. This presentation of the ABA applies uniformly to all 4� 4 rank 1 solutions
of the Yang equation (the de�nition of the rank is given in [2]). It does not in-
volve computations with theta functions, but uses elementary linear algebra and
algebraic geometry. Our approach, however, depends on the classi�cation of rank
1 solutions given by Krichever in [2] in general situation, and following his ideas of
[2], in the remaining cases by Dragovi�c in [3{5]. We note that one of these cases
represents Cherednik's R-matrix, not considered in [1].

2. Vacuum vector and covector representation. Krichever's method
is based on \the vacuum vector representation" of an arbitrary 2n� 2n matrix L:

LX 
 U = hY 
 V

i.e., Li�j�XiU� = hYjV� , i; j = 1; . . . ; n; �; � = 1; 2. For the vacuum vectors X , Y ,
U , V we shall assume the following convention: Xn = Yn = U2 = V2 = 1, U1 = u,
V1 = v. The vacuum vectors are parametrized by the spectral curve �, de�ned by

P (u; v) = detL(u; v) = det V
�
Li�j�U� = 0:

The spectral polynomial P is of degree 2 in each variable.

In [2{5] it was shown that the 4 � 4 solutions of the Yang equation satisfy
equations of the type

LXl 
 Ul = hXl+1 
 Ul�1;

where Xl and Xl+n = Xl Æ 	
n denote vector functions on the spectral curve �

with certain analytical properties1 such as that the order of poles is two. 	 is
an automorphism of �. In the general situation considered in [2] and represented
by Rb the spectral curve is elliptical and 	 is a translation on the elliptic curve
(denoted in [2] by Krichever). As it was shown in [3, 4] the spectral curves might
be also rational singular or reducible. Corresponding solutions are Cherednik's R-
matrix and Ry; the automorphisms are some fractional-linear transformations. The
automorphisms determine an additional parameter, the Planck constant, which all
of these solutions contain.

1These properties guarantee that the matrix L is uniquely de�ned by the last relation
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We will also consider the covector representation (AjB�)Li�j� = l(CiD�). The
next lemma gives a connection between the vector and covector representations.
Let P ij

L denote the determinant of the contraction of the matrix L over the i-th
bottom and the j-th top index.

Lemma 1. If a 4� 4 matrix L satis�es the condition

L(Xl 
 Ul) = h(Xl+1 
 Ul�1);

then

(Xl+1 
 U l+1)L = g(Xl+2 
 U l):

where X =
�
x
1

�
, X = [ 1 �x ].

Comment. We follow the convention that the second (resp. �rst) component
of vacuum vector (covector) is normalized to unity, and the �rst (second) component
is denoted by corresponding lower case letter.

Proof. Denoting the vacuum covectors of the matrix L by A, B, C, D we
have

(AjB�)Li�j� = l(CiD�);

so P 12
L (a; d) = 0. By the condition of the lemma we have P 12

L (xÆ ; u) = 0. The

last two equations make it possible to take A = XÆ	, D = U . In the same way;
considering the pairs (B;C) and (U Æ 	; X) we obtain B = UÆ	 Æ �, C = X Æ �,
where � is a transformation the spectral curve.

Now we compute �. We have P 21
L (uÆ ; u) = 0, P 21

L (b; u) = 0. There are
two points on the curve � with the same second coordinate equal to u(z). The
corresponding �rst coordinates are (uÆ )(z), (uÆ Æ�u)(z) where �u is the involution
associated with u.

Thus, we have two possibilities for B:

B = U Æ	; B = U Æ	 Æ �u:

In the �rst case the transformation would be identity, while in the second it would
correspond to the shift Ul ! Ul+2, Xl ! Xl+2. Comparing divisors of matrix
elements in the equation AjLi�j�U� = kBX we conclude that appropriate formula

for B is the second one (the matrices on both sides are of demension 2, of rank 1
and with the same kernel and image).

We note that the proof of the Lemma generalizes to the case of arbitrary 4�4
matrices.

3. Local vacuum vectors. As suggested in [1], we change local transition
matrices2 i.e. solutions of the Yang equation L(�):

Lln(�) =M�1
n+l(�)Ln(�)Mn+l�1 =

�
�ln(�) �ln(�)
ln(�) Æln(�)

�
;

2The solutions of the Yang equation belong to one-parametar families 1{5. The parametar
is usualy called spectral.
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where Ml have vacuum vectors as the coloumns:

Ml =

�
xl xl+1
1 1

�
:

The monodromy matrix T (�) =
QN

n=1 Ln(�) then transforms into T l
N (�) =

M�1
N+l(�) T (�) Ml(�). We will denote the elements of T l

n(�) by Al
N (�), B

l
N (�),

Cl
N (�), D

l
N (�).

Our goal is to �nd local vacuum vectors !l which are independent of � and
satisfy the conditions

ln(�)!
l
n = 0; �ln(�)!

l
n = g(�)!l�1n ; Æln(�)!

l
n = g0(�)!l+1n :

Then 
l
N = !l1 
 . . .
 !lN would satisfy

Al
n(�)


l
n = gN(�)
l�1

n ; Dl
n(�)


l
n = gN(�)
l+1

n ; Cl
n(�)


l
n = 0;

and therefore would form a family of generating vectors.

Theorem. The following relations are valid:

ln(�)Ul = 0; �ln(�)Ul = g(�)Ul�1; Æln(�)Ul = g0(�)Ul+1:

Proof. It can be easily seen that l(�) = Xl+1L(�)Xl, so

l(�)Ul = X l+1L(�)XlUl = hXl+1Xl+1Ul�1 = 0:

Similarly, �l(�)Ul = Xl+2L(�)XlUl = gUl�1. Lemma 1 gives the relation
Xl+1U l+1LUl = 0, which implies that

Æl(�)Ul = Xl+1L(�)Xl+1Ul = g0Ul+1;

�nishing the proof.

We also need the images of shifted vacuum vectors.

Lemma 2. The image of a shifted vacuum vector is a combination of two

shifted vacuum vectors, i.e.:

LXl+1 
 Ul = hXl+1 
 Ul + gXl 
 Ul+1:

The proof follows from Lemma 1 by repeating arguments from the end of the
proof of the Theorem.

To apply ABA one needs not only generating vectors, but also commuting
relations between elements of the transfer matrices. The relations from Lemma 1
and 2 suÆce to prove the following.
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Proposition. The elements of the transfer matrices commute according to

the rules:

Bk
l+1(�)B

k+1
l (�) = Bk

l+1(�)B
k+1
l (�);

Bk
l�2(�)A

k+1
l�1 (�) = h0Ak

l (�)B
k+1
l�1 (�) + h00Bk

l�2(�)A
k+1
l�1 (�);

Bk+2
l (�)Dk+1

l�1 (�) = k0Dk
l (�)B

k+1
l�1 (�) + k00Bk+2

l (�)Dk+1
l�1 (�):

Using the Proposition, it is not diÆcult to �nd the relations between �i
necessary for the sum of vectors

	l(�1; . . . ; �n) = Bl�1
l+1(�1) . . .B

l�n
l+n(�n)


l�n
N

to be an eigenvector for the operator trT (�) = Al
l(�) +Dl

l(�) (see [1] for details).

4. Concluding remarks. Krichever construction gives a link between the
Yang{Baxter equation and integrable mapping and integrable systems with discrete

time (see [6, 7]). We explain it briey.

The spectral curve de�nes a 2{2 relation PL(u; v) = 0 in P 1
�P 1. It commutes

with the relation PL0(u; v) = 0 and that is the reason why it is so powerful in the
theory of the Yang{Baxter equation. The same relation arises in billiard systems
within a plain quadric (see [8{10]). The involution we use in the proof of Lemma
1, induced by that relation, corresponds to the passage from xi�1 to xi+1 in the
billiard, where xi�1xi, xixi+1 are successive billiard segments. As is well known
the segments xi�1xi, xixi+1 lie on tangents from xi to a particular quadric confocal
with the billiard border.

The objects we consider have pretty well understood Lie-algebraic nature:

1. R-matrices we use are of A1 type. There are R-matrices constructed for
each type of Dynkin diagram (see [11, 12]).

2. Commuting polynomials which are integrable mappings of A1 are Tchebi-
shev polynomials. Commuting polynomials were recently been constructed for
every root system [13]. It is an interesting question if they are connected with
R-matrices from 1.

3. Heisenberg Hamiltonian is obviously of A1 type. There are some general-
izations for the other root systems and applications of ABA in these cases [14].

4. Convex polihedra generating integrable billiard systems are classi�ed as
aÆne Weil cells (see [15]). What are generalized billiards within quadrics?

The connections among all of these problems is clear on the basic A1 level. It
seems that similar connections should exist on higher levels. One of the diÆculties
in the generalization is that among matrices which are not of even order there are
many without vacuum vectors.
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