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SOME HERMITE METRICS IN COMPLEX FINSLER SPACES

Irena �Comi�c and Jovanka Niki�c

Abstract. In many papers and books (as [1], [3]{[8] and others) the complex and almost
complex structures de�ned on real spaces are examined. In this paper they are de�ned on complex
Finsler spaces. The complex Finsler space E0 is formed in such a way, that its tangent space T (E0)
is equal to T (F1) � iT (F2), where F1 and F2 are two 2n-dimensional Finsler spaces. Using the
nonlinear connections N and �N of F1 and F2 respectively, the adapted basis B0 of T (E0) is formed.
In T (E0) di�erent almost complex structures are given and the form of the corresponding Hermite
metrics is determined.

1. Complex Finsler spaces. Let E be a 4n-dimensional, real C1 dif-
ferentiable manifold E. In a local chart, u 2 E has coordinates (xa; ya; _xa; _ya),
a; b; c; d; e; f; g = 1; 2; . . . ; n:

The allowable coordinate transformations in E have the form

xa
0

= xa
0

(x); _xa
0

= Aa0

a (x) _x
a; Aa0

a = @xa
0

=@xa;

ya
0

= ya
0

(y); _ya
0

= Ba0

a (y) _ya; Ba0

a = @ya
0

=@ya;
(1.1)

where rank [Aa0

a ] = n, rank [Ba0

a ] = n.

We shall use the notations A a0

b c = @2xa
0

=@xb@xc, B a0

b c = @2ya
0

=@yb@yc.

Let us consider such a complex space E0, which is in 1{1 correspondence with
E. If the notation

za = xa + iya; _za = _xa + i _ya;

�za = xa � iya; _�z = _xa � i _ya
(2.2)

is used, then to each u = (xa; ya; _xa; _ya) 2 E corresponds one and only one u0 =
(za; �za; _za; _�z

a
) 2 E0. The allowable coordinate transformation in E0 are determined

by (1.1) and (1.2). Such a complex space E0 of real dimension 4n will be called
complex Finsler space.
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The functions za
0

= xa
0

+ iya
0

= za
0

(x; y); _za
0

= _xa
0

+ i _ya
0

= _za
0

(x; y; _x; _y)
in the general case of (1.1) are not complex analytic, i.e. the equations

@za
0

@�zk
= 0;

@ _za
0

@�zk
= 0;

@za
0

@ _�z
k
= 0;

@ _za
0

@ _�z
k
= 0 (1.3)

are not satis�ed. They would have this property only when Aa0

a (x) = Ba0

a (y) =

Aa0

a = const., but this case of linear transformations for the Finsler geometry is not
interesting.

T (E) can be considered as a direct summ of T (F1) and T (F2), where
F1 = F1(x; _x), F2 = F2(y; _y) are two Finsler spaces, with the allowable coordi-
nate transformations (1.1).

The basis vectors of T (E) and T (E0) are connected by the relations

@

@za
=

1

2

�
@

@xa
� i

@

@ya

�
;

@

@xa
=

@

@za
+

@

@�za
;

@

@�za
=

1

2

�
@

@xa
+ i

@

@ya

�
;

@

@ya
=

1

i

�
@

@�za
�

@

@za

�
:

The above relations are valid, when (z; �z; x; y) are substituted by ( _z; _�z, _x; _y).

The 1-forms from T �(E) and T �(E0) are connected by the formulae:

dza = dxa + idya; dxa = (dza + d�za)=2;

d�za = dxa � idya; dya = (dza � d�za)=2i:
(1.4)

The above relations are valid, when (z; �z; x; y) are substituted by ( _z; _�z; _x; _y).

To obtain the adapted basis in T (E) we introduce two kinds of nonlinear
connections: Na

b (x; _x) and
�Na
b (y; _y), as arbitrary functions, which, with respect to

(1.1), satisfy the relations

Na
b (x; _x) = Na0

b0 (x
0; _x0)Ab0

b A
a
a0 �A a

b0 c0 _x
c0Ab0

b ;

�Na
b (y; _y) = �Na0

b0 (y
0; _y0)Bb0

b B
a
a0 �B a

b0 c0 _y
c0Bb0

b :
(1.5)

Using (1.5), the adapted basis B =

�
Æ

Æxa
;
Æ

Æya
;
@

@ _xa
;
@

@ _ya

�
of T (E) is formed,

where
Æ

Æxa
=

@

@xa
�N b

a(x; _x)
@

@ _xb
;

Æ

Æya
=

@

@ya
� �N b

a(y; _y)
@

@ _yb
:

The adapted basis of T �(E) is B� = fdxa; dya; Æ _xa; Æ _yag, where dxa, dya, d _xa, d _ya

are determined by (1.4) and

Æ _xa = d _xa +Na
b (x; _x)dx

b; Æ _ya = d _ya + �Na
b (y; _y)dy

b:
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The basis B of T (E) induces in the similar way the adapted basis B0 of T (E0),
where

B0 =

�
Æ

Æza
;
Æ

Æ�za
;
Æ

Æ _za
;
Æ

Æ _�z
a

�
;

Æ

Æza
=

�
@

@�za
+

@

@za

�
�N b

a(x; _x)

�
@

@ _�zb
+

@

@ _zb

�
;

Æ

Æ _za
=

@

@ _�za
+

@

@ _za
;

Æ

Æ�za
=

�
@

@�za
�

@

@za

�
� �N b

a(y; _y)

�
@

@ _�zb
�

@

@ _zb

�
;

Æ

Æ _�za
=

@

@ _�za
�

@

@ _za
:

T (E0) is a vector space of real dimension 4n over the �eld of real numbers.

The adapted bases B of T (E) and B0 of T (E0) are connected by the relations:

Æ

Æza
=

Æ

Æxa
;

Æ

Æ�za
= i

Æ

Æya
;

Æ

Æ _za
=

@

@ _xa
;

Æ

Æ _�z
a = i

@

@ _ya
:

The basis B� of T �(E) induces the adapted basis

B0� = fÆza; Æ�za; Æ _za; Æ _�z
a
g = fdxa;�idya; Æ _xa;�iÆ _yag

of T �(E0). In what follows we shall use �ve kinds of indices:

a; b; c; d; e; f; g = 1; 2; . . . ; n; i; j; h; k; l;m; p; q = n+ 1; . . . ; 2n;

A;B;C;D;E; F;G = 2n+ 1; . . . ; 3n; I; J;H;K;L;M;P;Q = 3n+ 1; . . . ; 4n;

�; �; ; Æ; �; �; � = 1; 2; . . . ; 4n:

Using these indices the adapted basis B0 of T (E0) gets the form

B0 =

�
Æ

Æza
;
Æ

Æ�zi
;
Æ

Æ _zA
;
Æ

Æ _�z
I

�
=

�
Æ

Æxa
; i

Æ

Æyi
;
@

@ _xA
; i

@

@ _yI

�
= f@�g:

To every �eld T on E, there corresponds, by de�nition one and only one
tensor �eld on E0, denoted also by T , such that the product of coeÆcients of T
on E0 and the corresponding tensor product of basic vectors on E0 are equal to
the corresponding product on E. The coeÆcients of T on E0 are the same as the
corresponding coeÆcients on E, or di�er from them by the factor �1, i or �i. Each
product of the coeÆcient of T and the corresponding basic vector T on E0 should
be real. That means, that the coeÆcients of any tensor �eld T on E0 are real or
imaginary functions. The metric tensor g on E0 is de�ned in such a way by (1.12).

The complex Finsler space in which the coeÆcients of tensors have both real
and imaginary parts has the real dimension 8n. In such a space the Cauchy{
Riemann conditions (1.3) should be satis�ed but, as it was noted earlier, it follows
from these equations that only linear transformations of x, y, _x, _y are allowed,
which are not interesting for Finsler spaces. That is the reason, why we restrict
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our attention to such complex Finsler spaces in which the tensor �elds have real or
imaginary coeÆcients.

The generalized linear connection

r : T (E0)
 T (E0)! T (E0)((X;Y )! rXY;X; Y;rXY 2 T (E0))

is de�ned in the following way

r@�@� = � 
� �@ : (1.6)

We shall use the notation

� 
� � =

8>>>><
>>>>:

F 
� �; for � = 1; . . . ; n;

F 
� i ; for � = n+ 1; . . . ; 2n;

C 
� A; for � = 2n+ 1; . . . ; 3n;

C 
� I ; for � = 3n+ 1; . . . ; 4n:

(1.7)

The torsion tensor T (X;Y ) = rXY �rYX � [X;Y ] for the generalized con-
nection r has the form T (X;Y ) = T 

� �Y
�X�@ , where

T 
� � = � 

� � � � 
� � (1.8)

except the following components:

T C
b a = F C

b a � F C
a b + ÆbN

C
a � ÆaN

C
b ; T D

b C = C D
b C � F D

C b + ÆCN
D
b ;

T H
j i = F H

j i � F H
i j + Æj �N

H
i � Æi �N

H
j ; T H

i K = C H
i K � F H

K i + ÆK �NH
i :

(1.9)

Theorem 1.1 The distribution T (E0) is involutive, i.e. [@�; @� ] = 0 for all

�; � = 1; . . . ; 4n i�

K c
b a(x; _x) =

@N c
a(x; _x)

@ _xb
= 0; R c

b a(x; _x) =
ÆNc

a(x; _x)

Æxb
�
ÆN c

b (x; _x)

Æxa
= 0;

�K c
b a(y; _y) =

@ �Nc
a(y; _y)

@ _yb
= 0; �R c

b a(y; _y) =
Æ �Nc

a(y; _y)

Æyb
�
Æ �Nc

b (y; _y)

Æyb
= 0:

(1.10)

Proof. By direct calculation we obtain

�
Æ

Æxa
;
Æ

Æxb

�
= R C

b a (x; _x)
@

@ _xC
;

�
i
Æ

Æyi
; i

Æ

Æyj

�
= i �R H

j i (y; _y)i
@

@ _yH
;

�
Æ

Æxa
;

@

@ _xB

�
= K C

B a(x; _x)
@

@ _xC
;

�
i
Æ

Æyi
; i

@

@ _yJ

�
= i �K H

J i (y; _y)i
@

@ _yH
;

�
Æ

Æxa
; i

Æ

Æyj

�
= 0;

�
Æ

Æxa
; i

@

@ _yJ

�
= 0;

�
@

@ _xA
;

@

@ _xB

�
= 0;

�
@

@ _xA
; i

@

@ _yJ

�
= 0;

�
i
@

@ _yI
; i

@

@ _yJ

�
= 0: (1.11)
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If

i = a+ n; A = a+ 2n; I = a+ 3n;

j = b+ n; B = b+ 2n; J = b+ 3n;

h = c+ n; C = C + 2n; H = c+ 3n;

then R C
b a = R c

b a, K
C
B a = K c

b a,
�R H
j i = �R c

b a,
�K H
j i = �K c

b a. From these relations
and (1.11) follows (1.10).

More about the generalized connection and torsion tensor in complex Finsler
spaces can be found in [2].

The metric tensor on T �(E)
 T �(E) expressed in the basis B is given by

g = [dxa; dyi; Æ _xA; Æ _yI ]

2
64
�gab �gaj �gaB �gaJ
�gib �gij �giB �giJ
�gAb �gAj �gAB �gAJ
�gIb �gIj �gIB �gIJ

3
75


2
64
dxb

dyj

Æ _xB

Æ _yJ

3
75 ;

i = a+ n; A = a+ 2n; I = a+ 3n; a = 1; . . . ; n;

j = b+ n; B = b+ 2n; J = b+ 3n; b = 1; . . . ; n:

We shall suppose that the above matrix has rank 4n, is symmetric and posi-
tively de�nite.

The metric g on T �(E0)
 T �(E0) in the basis B0� has the form

g = [dxa;�idyi; Æ _xA;�iÆ _yI ]

2
64
gab gaj gaB gaJ
gib gij giB giJ
gAb gAj gAB gAJ
gIb gIj gIB gIJ

3
75


2
64

dxb

�idyj

Æ _xB

�iÆ _yJ

3
75 ;

where

gab = �gab; gaj = i�gaj ; gaB = �gaB ; gaJ = i�gaJ ;

gij = ��gij ; giB = i�giB ; giJ = ��giJ ;

gAB = �gAB ; gAJ = i�gAJ ;

gIJ = ��gIJ :

De�nition. The 4n-dimensional di�erentiable manifold E0, in which the al-
lowable coordinate transformations are induced by (1.1), the adapted basis B0 of
T (E0) is formed by N(x; _x), �N(y; _y) ((1.5)) the generalized connection r is de�ned
by (1.6), (1.7), the torsion tensor T by (1.8), (1.9), the metric tensor g by (1.12),
will be called complex Finsler space E0(z; �z; _z; _�z;N; �N;r; T; g).

As usual the connection r in the complex Finsler space is called metric
connection i� rXg = 0 for all X 2 T (E0). Under the conditions (1.10) and
� 
� � = � 

� � 8�; �;  = 1; 2; . . . ; 4n the coeÆcients of the metric connections are

given by 2� 
� � = gÆ(@�gÆ� + @�g�Æ � @Æg��).
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It looks very similar to the Levi{Civita connection, but the summation goes
over all Æ = 1; . . . ; 4n.

2. Di�erent almost complex structures and the corresponding Her-

mite metrics. It is known, that the almost complex structure F on E0 is a
tensor �eld of type (1,1), such that at every point u0 2 E0, F 2 = �I , where
I denotes the identity transformation of Tu0(E0). The metric tensor g de�ned
on E0 is called Hermitian i� g(FX;FY ) = g(X;Y ). The complex Finsler space
E0(z; �z; _z; _�z;N; �N;r; T; g) endowed with the almost complex structure F and the
Hermite metric g, will be denoted by E0(z; �z; _z; _�z;N; �N;r; T;Hg; F ) or shorter
E0(Hg; F ).

In the complex Finsler space E0(z; �z; _z; _�z;N; �N;r; T; g), some Hermite metric
for the almost complex structure F , can be obtained in the following way [1]:

Hg(X;Y ) = g(X;Y ) + g(FX;FY );

where g is determined by (1.12).

The torsion tensor of the almost complex structure F , or the Nijenhuis tensor
of F is de�ned by

[F; F ](X;Y ) = N(X;Y ) = [FX;FY ]� [X;Y ]� F [FX; Y ]� F [X;FY ]

for any X;Y 2 T (E0). If the Nijenhuis tensor of F vanishes identically on E0, we
say that F is a complex structure on E0.

If the almost complex structure F is parallel with respect to the generalized
metric connection r, i.e. rXg = 0, rXF = 0 for all X 2 T (E0), then E0(Hg; F ) is
called K�ahler complex Finsler space endowed with Hermite metric.

Remark 1. For every almost complex structure F , it is obvious, that �F is
also almost complex structure, i.e. (�F )2 = �I .

Remark 2. The Hermite metric for the almost complex structure �F con-
cides with the Hermite metric for F , i.e. from g(FX;FY ) = g(X;Y ) it follows
g(�FX;�FY ) = g(X;Y ).

Remark 3. For the Hermite metric g and almost complex structure F the
relation g(X;FX) = 0 is valid for all X 2 T (E0).

Proposition 2.1.The structure J de�ned on T (E0) by:

J

�
Æ

Æxa

�
= i

@

@ _yI
; J

�
i
Æ

Æyi

�
= �

@

@ _xA
;

J

�
@

@ _xA

�
= i

Æ

Æyi
; J

�
i
@

@ _yI

�
= �

Æ

Æxa
;

(2.1)

satis�es the relation J2 = �I. To the almost complex structure J in the basis

B0 = fÆ=Æxa; iÆ=Æyi; @=@ _xA ; i@=@ _yIg corresponds the matrix

J )

2
64
0 0 0 �1
0 0 1 0
0 �1 0 0
1 0 0 0

3
75
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(1 stands instead of n� n matrix I).

Proposition 2.2 The metric g determined by (1.12) is a Hermite metric

with respect to J i�

gab = gIJ ; gij = gAB ; gaJ = gIb = 0; gAj = giB = 0;

gaj = gib = �gAJ = �gIB; gaB = gAb = giJ = gIj :
(2.3)

Proof. The �rst relation in (2.3) follows from

g

�
Æ

Æxa
;
Æ

Æxb

�
= gab; g

�
J

Æ

Æxa
; J

Æ

Æxb

�
= g

�
i
@

@ _yI
; i

@

@ _yJ

�
= ��gIJ = gIJ :

The others can be obtained in a similar way.

From (2.3), it follows that to the Hermite metric g, with respect to the almost
complex structure J given by (2.1), in the basis B0� corresponds the matrix

Hg(J))

2
64
A B C 0
B E 0 C
C 0 E �B
0 C �B A

3
75 ; (2.4)

where A = [gab], B = [gaj ], C = [gaB], E = [gij ]. Remarks 1, 2 and 3 are valid for
the almost complex structure J and for the Hermite metric Hg(J).

Proposition 2.3 The structures Li given bellow, are almost complex struc-

tures and the matrices Hg(Li) are the corresponding Hermite metrics for Li,
i = 1; 8 (both expressed in the basis B0 and its dual B0�).

i : 1 2 3 4

Li :

2
64
i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 i

3
75
2
64
�i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 i

3
75

2
64
i 0 0 0
0 �i 0 0
0 0 i 0
0 0 0 i

3
75

2
64
i 0 0 0
0 i 0 0
0 0 �i 0
0 0 0 i

3
75

Hg(Li) :

2
64
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3
75
2
64
0 B C D
B 0 0 0
C 0 0 0
D 0 0 0

3
75
2
64
0 B 0 0
B 0 F G
0 F 0 0
0 G 0 0

3
75
2
64
0 0 C 0
0 0 F 0
C F 0 I
0 0 I 0

3
75

i : 5 6 7 8

Li :

2
64
i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 �i

3
75
2
64
�i 0 0 0
0 �i 0 0
0 0 i 0
0 0 0 i

3
75
2
64
�i 0 0 0
0 i 0 0
0 0 �i 0
0 0 0 i

3
75
2
64
�i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 �i

3
75

Hg(Li) :

2
64
0 0 0 D
0 0 0 G
0 0 0 I
D G I 0

3
75
2
64
0 0 C D
0 0 F G
C F 0 0
D G 0 0

3
75
2
64
0 B 0 D
B 0 F 0
0 F 0 I
D 0 I 0

3
75
2
64
0 B C D
B 0 0 G
C 0 0 I
D G I 0

3
75
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(i stands instead of n � n matrix iI , B = [gaj ], C = [gaB], D = [gaJ ], F = [giB ],
G = [giJ ], I = [gAJ ]. Remarks 1{3 are valid for Li, i = 1; 8.

Proposition 2.4 The structure F de�ned on T (E0) by

F

�
Æ

Æxa

�
= a

Æ

Æxa
� b�1(1 + a2)

@

@ _xA
;

F

�
i
Æ

Æyi

�
= c

�
i
Æ

Æyi

�
� d�1(1 + c2)

�
i
@

@ _yI

�
;

F

�
@

@ _xA

�
= b

Æ

Æxa
� a

@

@ _xA
;

F

�
i
@

@ _yI

�
= d

�
i
Æ

Æyi

�
� c

�
i
@

@ _yI

�
(2.6)

satis�es the relation F 2 = �I and in the basis B0 is determined by the matrix

F )

2
64

a 0 b 0
0 c 0 d

�b�1(1 + a2) 0 �a 0
0 �d�1(1 + c2) 0 �c

3
75 :

In the above matrix every of the real scalar �elds a b, c, d, b 6= 0, d 6= 0
denotes the corresponding scalar matrix of type n� n.

The almost complex structure F de�ned by (2.7) is the generalization of the
almost complex structure J de�ned by Ichiy�o in [3], (2.1).

Proposition 2.5 The metric g determined by (1.12) is a Hermite metric

with respect to F i� its matrix in the basis B0� has the form:

2
64
A B C D
B E F G
C F H I
D G I J

3
75 ;

where

A = [gab]; B = (a+ c)�1[b�1(a2 + 1)F + d�1(c2 + 1)D]

C = (1 + a2)�1abA; D = [gaJ ] E = [gij ]; F = [gAj ]

G = (1 + c2)�1cdE; H = (1 + a2)�1b2A

I = (a+ c)�1(dF + bD); J = (1 + c2)�1d2E:

Theorem 2.1. The almost complex structures J ((2.1), (2.2)), Li i = 1; 8
(2.6) and F ((2.6), (2.7)) are complex structures on E0 i� the relations (1.10) are

valid.

Proof. By calculation of the Nijenhuis tensorsN
�

Æ
Æxa

; Æ
Æxb

�
; . . . ,N

�
i@
@ _yI

; i@
@ _yJ

�
for the almost complex structures J , Li (i = 1; 8) and F we obtain some linear
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combinations of the Lie brackets, which appear in (1.11). From (1.11) and Theorem
1.1 it follows that the Nijenhuis tensor for the almost complex structures J , Li (i =
1; 8) and F is equal to zero i� (1.10) is satis�ed. �
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