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ON HB-RECURENT HYPERBOLIC KAEHLERIAN SPACES

Nevena Pusié

Abstract. We consider a hyperbolic Kaehlerian space with recurrent HB-tensor. We
obtain some geometrical characterization of such a space. Particularly, we prove that HB-recurrent
hyperbolic Kaehlerian space cannot be non-trivially Ricci-recurrent. Also, we give an analogue of
Olszak’s lemma.

0. Introduction. If ann (= 2m)-dimensional pseudo-Riemannian space M,
with metric (g;;) is provided by a nondegenerate structure tensor (F}) satisfying
the conditions

M, is called a hyperbolic Kaehlerian space.

As it was proved in [4], a nondegenerate structure has n (the dimension of
the space) linearly independent eigenvectors in the tangent space. In [4] was also
proved

PROPOSITION 1. (A) Every vector in the tangent space of a hyperbolic Kaehle-
rian space is transformed by the structure into an orthogonal vector. (B) The
scalar square of a vector-original is opposite to the scalar square of the vector-
image. [

In accordance with Proposition 1, eigenvectors of the structure are isotropic
(null-vectors). As the structure has n linearly independent eigenvectors, there exists
a basis of the tangent space of a hyperbolic Kaehlerian space where these isotropic
vectors serve as basic vector fields. In such a basis, metric tensor is hybrid and
the structure tensor is pure. Covariant structure tensor is also hybrid. Using
this coordinate system, we can show that a hyperbolic Kaehlerian space admits
isotropic vector fields which are not eigen for the structure. Moreover, such a
coordinate system shows that a hyperbolic Kaehlerian space is naturally divided
into two totally geodesic subspaces of equal dimension. Such a basis is called a
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separated basis. Also, according to Proposition 1(B) there exist vectors of positive
scalar square (space-like vectors) and vectors of negative scalar square (time-like
vectors). Space-like vectors may serve as a domain for the involution (F]’) and its
codomain will be the set of time-like vectors. We may choose such a basis; then
the metric tensor will be pure tensor of signature (n,n) and (F}) will be a hybrid
tensor. Such a basis is called an adapted basis.

For all the considerations in this paper we shall use an arbitrarily chosen
basis — it will be neither separated nor adapted. However, all our results may be
transferred into these special bases and some of them may look even simpler.

In [4] were investigated the properties of hyperbolic Kaehlerian space. Par-
ticularly, there was investigated a conformal connection (as there is no conformal
transformation which can be introduced naturally) and a tensor which is an invari-
ant for all conformal connections on a hyperbolic Kaehlerian space

1
n+4
+ F;Skj — F,;Slj + ijSl’ — F[]S]Zc + QS;FM + QSMF;

K

=~ (Gigks — Ghons + Fiy Fi, — F Fij — 2FFut)]

HB ;’kl :K;kl - kaj — 61K + g Ki — 91K,

By K]’:kl we denote the curvature tensor of the Levi-Civita connection for the
metric (g;5), by K;; the corresponding Ricci tensor and by K the corresponding
curvature scalar. We also have Sj; = Ko Ff. In [4] was proved that the tensor Sj;
is skew-symmetric. The HB-tensor has algebraic properties similar to a curvature
tensor

HB ijr = —HB jirs, HBjre = —HB jju, HBjjer = HB i

(0.1) , ,
HB ;5 + HB ;55 + HB 45, = 0, HB;M =0, HB zle]t — HBélet’ =0.

Here we are going to investigate a hyperbolic Kaehlerian space satisfying

(0.2) HB ijri,s = ksHB ik

for some nonzero vector field k.

In order to avoid very long and complicated calculations, we introduce the
following abbreviations:

1
IH,, = — | Ky, — —qp.; II,.. =1I;
kj n+4|: kj 2(n+2)gk]j|a kj ik
1 K
Tpj=—— |Stj + ————Fy; |, Ti; =T
kj n+4|: kj+2(n+2) k]:|7 kj ik

One can easily see that these tensors are related to each other by Ty; =
HkaF]?. We can write

(0-3) HB ;’kl = K;kl - D;’kla
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where
Dlyy = 6ily; — 04105 + gi; 1 — gi1j, + F/ Ty — F{Ti; + Fii T — Ty,
+ 2T} Fi + 2Tw F}.

All these abbreviations are from [4].

We shall use the results of Prasad [3] about a Kaehlerian space with recurrent
Bochner tensor, the results of Adati and Miyazawa [1] about (pseudo) Riemannian
spaces with recurrent Weyl conformal curvature tensors, commenting the Roter’s
construction of the metric tensor for the essential case [6] and the results of Pusié
[5] about hyperbolic Kaehlerian spaces which are HB-symmetric. Also, we shall
prove a lemma analogous to Olszak’s lemma [2].

1. An Einstein HB-recurrent hyperbolic Kaehlerian space. Supposse
that the hyperbolic Kaehlerian space is an Einstein space, i.e. that

K
(1.1) Kij = i
wherefrom

K

On an Einstein space the curvature scalar is a global constant so these two tensors
are parallel.

Supposse, now, that the space is HB-recurrent that is, that (0.7) holds. Using
(1.1) and (1.2) we can express the covariant derivative of the curvature tensor:

(1.3) Kijri,s = ks | Kijr — (q1igk; — grigi; — FriFrj + FriFij — 2FjF)

K
n(n + 2)
As the space is an Einstein space, the well-known formula K%, . = Kjr; — Kjik
gives K Frts =0 Applying effectively the second Bianchi identity to the curvature
tensor

Kijr,s + Kijis e + Kijsrg =0

and taking into account (1.3), we obtain, after transvection by x°

(1.4) ksk® | Kijr — (91i9kj — grigij — F1iFj + FriFij — 2F Fj) | = 0.

n(n + 2)
So, we proved

THEOREM 1. If a HB -recurrent hyperbolic Kaehlerian space is an Einstein
space, then the formula (1.4) is valid and one of the following cases occurs:

(a) the recurrence vector ks vanishes and the space is HB -parallel,

(b) ksk® =0 the recurrence vector is isotropic,

(€) Hijri = Kijri — n(%m(gligkj — grigiy — F1iFyj + FriFlj — 2Fu Fji) =0,

which means that the space is a space of almost constant curvature. O
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For further investigation we shall use two Walker’ s lemmas [7]:
LEMMA 1. The curvature tensor satisfies the identity:

(1.5) Kijrt,m,s — Kijri,s,m + Kkims,i,j — Kkims,j,i + Kmsijeg — Kmsijige = 0. O

LEMMA 2. If aqp and by are two number sets with following properties:
(1.6) (oB = GBa, Gapby + apyba +ayebs =0 for a,f8,v=1,... ,N
then either all aqg vanish or all by vanish. O

According to (1.3), the following is valid:
(L.7) Kijrt,s,m = (Ksm+Eskm)Hijir or Kijit sm—Kijrim,s = (Ks,m—Em,s)Hijki-
One can easily see that the tensor H;j;; has the property H;jr = Hyyij- If we apply
the formula (1.5), then we obtain
(Km,s = bs,m) Hijrt + (Kij — 8£5,6) Hrims + (Krg — Ki,x) Hmsi; = 0.

If we arrange pairs of indices in this way: (ms) — «, (ij) — 3, (kl) — 7; then
the formula above gets the form (1.6) and, by Lemma 2 we obtain &y, s = £g,m oOr
H;jp = 0.

We have proved

THEOREM 2. If a HB -recurrent hyperbolic Kaehlerian space is an Einstein

space, then either the recurrence vector is a gradient or the space is a space of
almost constant curvature. O

2. HB-recurrent Ricci recurrent hyperbolic Kaehlerian space. Sup-
posse now, that the hyperbolic Kaehlerian space, besides (0.7), satisfies the condi-
tion Kj;j, = kjK;j. First, we can prove the following

THEOREM 3. At a HB -recurrent Ricci-recurrent hyperbolic Kaehlerian space
the recurrence vector of the Ricci tensor is a gradient if and only if the recurrence
vector of HB -tensor is a gradient. O

Proof. Using (0.3) we get HB ;g = Kijp — Dijri or
Kijktm,s = (Km,s + kmbs)HB gjpg + (57, 5 + K ks) Dijia -
By Lemma 1, we obtain
(Km,s — Bm,s)HBijrr + (Kij — £5,iHB kims + (kg — K1,6)HB psij
+ (Kp.s = Fsm) Dijet + (K7 j — K5 ;) Diims + (Kf,; — K7 1,) Dmsij = 0.

If one of these two vectors, for example, k,,, is a gradient, then the whole
first row in the formula above vanishes. We can apply Lemma 2 to the second row.
The tensor Djj; is also invariant with recpect to interchanging places of the first
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and the second pair of indices. Then either D;;;; = 0 and the space is recurrent
(trivial case) or the vector k%, is a gradient. W

Further we shall prove

THEREM 4. If a HB-recurrent hyperbolic Kaehlerian space, which is not
flat is Ricci-flat, then the space is recurrent and the recurrence vector is zero or
null-vector. O

Proof. 1If the space is Ricci-flat, then the curvature scalar vanishes, HB-tensor
is equal to curvature tensor and K}, = = ksK};. As the space is Ricci-flat, we
have Kj"lkl,a = K1 — Kji,;; = 0. Further, as the curvature tensor is recurrent, the
Bianchi identity will look this way

ks K + ke Kjs + kK g = 0.

After transvection by k°, we obtain nsnsKJ’:kl = 0 and the recurrence vector is
either a zero vector or it is isotropic. Il

Now we shall prove that both &, and s, are gradient vector fields. We need

LeEmMA 3. (Olszak [2]) Let 01,... ,0n and wy,... ,wn are two sets of num-
bers which are linearly independent as elements of RY. Let Tag and Sip are
numbers such that Tap = Ta and Sap = Sgpa and let the condition

Tapoc +Tecoa +Toaop + SapwcSpowa + Scawp =0
be satisfied. Then there exists a set of numbers ¥1,... ,9n such that
Tap =walp —wpla; Sap =o0a¥p+opda. O

Lemma 3 is a generalization of Lemma 2. Now we can prove the following
theorem:

THEOREM 5. Let HK,, be a hyperbolic Kaehlerian space of dimension greater
or equal to 4 and let Uy (respectively Us) be a subset of HK , consisting of the points
where Ricci tensor (respectively HB-tensor) does not vanish. Supposse that

Kijrg — Kijir = a Ky on Uy
for a skew-symmetric tensor a, and
HB ijki,m,s — HB ijkt,e,m = HB jjribms on Us

for another skew-symmetric tensor b. Then a;; = 0 everywhere on Uy and b;; =0
everywhere on Us. O

Proof. We shall first consider the set U;\Us. On this set, HB;jr; = 0 and
HB ijki,m,s — HB ijki,s,m = 0. Then Kijrim,s — Kijki,s,m = Kijriams. Usig Lemma
1 we obtain

(21) Kijkla'ms + Kklmsaij + Kmsijafkl =0.
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If we arrange pairs of indices in this way: (ij) — «, (kl) = 8, (ms) — v and use
Lemma 2, then from (2.1) we obtain that either the space is flat (what is impossible
as the point belongs to Uy) or a;,s = 0.

In the next step, we consider the set U,\U;. On this set K;; = 0 and,
consequently, Kij,k,l _Kz’j,l,k = (0. Then Kijkl = HB ijkl and Kijkl,m,s _Kijkl,s,m =
HB jjkibms- Using Lemma 1 and Lemma 2 again, we obtain that either HB ;5 = 0
(what is impossible as the point belongs to Us), or b,,s = 0. Now we shall consider
the set Uy NUs, if it is not empty. We have

Kijkim,s — Kijit,s,m = (Kijrt — HB jjri)ams + HB g b
and, according to Lemma 1

(Kijkl —HB ijkl)afms + (Kklms —HB klms)aij + (Kmsij —HB msij)akl

(2.2)
+ HB jjkibms + HB pimsbij + HB 55010 = 0.

We shall prove that tensors a;; and b;; are linearly dependent (proportional).
Supposse that they are linearly independent. Then, using Lemma 3, we obtain

(2.3) HB ik — Kijri = bijerr + bricsj
where ¢;; is another skew-symmetric tensor field. Then we get
91l — griKyj + gri Kii — g1 Kri + F13Skj — FriSij + FrjSii — Fij Sk

K
(24) +2SjiFp +2SkuFj — m(gligkj — griglj + FijFri — FiiFyj — 2F; Fp)

= (n + 4)(bij6kl + bklcij)-

Supposse, now, that K. X*X" = 0 for any isotropic vector field X. As there
exists a basis consisting of isotropis vector fields only, then K;; = K/n ¢;; and (2.4)
gives

K

m(gligkj — grigj + Fij Fri — F1iFj — 2FFp) = bijer + bricij.

Transvecting this by ¢'’g*/, we obtain K = 2bijcij. On the other hand, transvecting
(2.3) by g'"g", we obtain K = —2b;;c” and this means that K = 0. As the space
is an Einstein space, then it is Ricci-flat, what is impossible. Then we know that
there exists at least one isotropic vector field X such that K. X*X" # 0. Now we
transvect (2.4) by X7X* and obtain

. K K
K XAXT =X, [ Ky XF——— X X, [ Ky X — —X;
griflg; z< ki 2 +2) z) + X ( ki 2(n+2) i

2(n +
+2(n + 4)bljckinXk

- - K - ~ ~ K ~
2. X | Ko X — —X| X | Kjfp X — —X;
25) 3 < ! ) ’)*3 ( T2 )
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One can easily prove that b;jci X7 X* + byci; X9 X* = 2b5¢,; X7 X*. Components
of the vector X, which is the image of the vector X by the structure, are denoted
by X% The vector X is also isotropic. Now we transvect (2.5) by ¢'* and obtain
Kij X" X7 = 2by;¢, X XF.
On the other hand, if we transvect (2.3) by g X* X7, then we get
—K;p, XIX"* = 2b;cf, XIX*
and then Kijij = 0, a contradiction. So, tensors a and b are mutually propor-

tional.
As a;j = Abij, (2.2) gets the form

AKijkr + (1 = MHB jjki]bms + [MKkims + (1 — N)HB gims]bij

(2.6)
+ P\Kmsij + (1 — A)HB msij] =0.

We can see that (2.6) satisfies the conditions of Lemma 2. If A + (1 — A)
HB jju = 0, then Kjji = oHB ;5 and the space is Ricci-flat. But the considered
point belonges to U,. Then b,,; = 0 and a,,s = 0 as they are proportional. B

The following theorem is a corollary of Theorem 5:

THEOREM 6. If a hyperbolic Kaehlerian space of dimension greater then 4
is nontrivially HB-recurrent and Ricci-recurrent, then both recurrence vectors are
gradients. O

Proof. As the space is HB-recurrent and Ricci-recurrent, then
* *
Kijo = Kijuw = (Fip = 676) Kijy BB ijkm,s — HBijkts,m = (Km,s — Ks,m)HB ijri.
According to Theorem 5, we have s}, = k], and Ky s = Ks,m What proves the
statement. l
Now we are able to give a classification of HB-recurrent Ricci-recurrent hy-

perbolic Kaehlerian spaces. Using (0.3) and the Ricci identity, we obtain
HB}, HB!, —HB}, HB}, —HB', HB}, —HB},, HB

tim D 45 — ilm jlm itj
+ D}, ,HBY; — DI, HB},, — D%, HB, — D}, HB =0.
Differentiating this covariantly, we obtain
2k5(HB 4y HB jj1, — HB ;1 HB jx, — HB j1,, HB ;43 — HB 3, HB i)
+ (ks + &) (D}, HB tix — Dy, HB ?jk - D, HB wr — Diym HB ?jt) =0,
wherefrom

(2.7) (kg — ’is)(DflmHB gjk - Dj;,,,HB ?jk - D;’lmHB ?tk - D};,,HB ?jt) =0.

The last relation gives ki = k5 and then the space is recurrent, or

DflmHB Ejk - Dj;,,HB ?jk - D;’lmHB Zk - D};,,HB ?jt =0.
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Tensors IL;;, T;; and Fj; are related to HB-tensor by relations proved in [4]. From
above we obtain

(2.8) (n + 4)IHB;; + ITHB 55 = 0.
As the tensor 1I;; is also recurrent, we have
n+1 . K
I, = —— /1T n=I;¢g% = — ).
S ( 79 2(n+2)>
Transvecting (2.8) by */, we obtain either
(2.9) (@) M=0(& K =0), or (b) K;HB; =0.

Supposse that (2.9) (b) holds. Then we have DI 7 x*™ = 0. After transvec-
tion by HB;; and using formula (2.8), we get
(n + 2)I<LZI<L*U'HHB lijk = 0.

If (2.9) (a) is satisfied, then (2.8) becomes II;;HB{;, = 0. Transvecting (2.7) by
I},s, we obtain D! HB!?

tim

iji1ns = 0. This gives
HB ik (psI12,) — HB s (s I1}) = 0.
Then, transvecting by ¢*™ we obtain that either the space is HB-flat or II;,I1°* = 0.
We have proved

THEOREM 7. If a hyperbolic Kaehlerian space is HB-recurrent and Ricci-
recurrent, then one of the following cases occurs:
(1) I=0+=K=0 and K,;,K"=0; (3) HB — flat;
(2) ke =0 (Ricci-parallel); 4) k™ =0. O

3. Effective expression for covariant derivative of the Ricci tensor.
Using relations which connect the curvature tensor of the hyperbolic Kaehlerian
space with the structure, we obtain: S;; = KbijaFab and, using this,

(3.2) Sij = —1/2F""K psij-
Using the Ricci identity and the relation (0.1), we obtain
(3.1) Kipo = FLF (Kijy — Kijg).

Differentiating covariantly HB ; w by £™ and contracting indices ¢ and m, we obtain

Kiri —Kjr = [4(Kkj,l — Kijk)

n+4

n o
+ W(K,lgkj - Kgij + K F Fj — K JF'Frj — 2K,aF]qul)] + &'HB %y,
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and finally

Kyji — Kijk (Kagkj — Kagij + K oF Fij — K F'Frj — 2K F}' Fyp)

_ 1
" 2(n+2)
n+4
+ - K,ZHB]M
Then, by (3.1)
1
Kijy =———
Mo+ 2)
n+4

(Kkgjt + K jgu + K o F Fij + K o F}' Fip + 2K 19x;)
(3.2)
+

K'HB iy F{F}

4. Existence of essentially HB-recurrent Ricci-recurrent hyperbolic
Kaehlerian space. We want to find out does there exist a nontrivially HB-
recurrent Ricci-recurrent hyperbolic Kaehlerian space (essential case). For this
purpose, supposse II # 0 and according to 2, we have (2.9) (b). Using this, we
obtain:

K" Kijhi =4 +4[/€z Ky — 65Ky + k™ Ky — g1k Ky + 8] Skj — K515
(4.1) + ijSliK,*i — FljSkm*i + QSjiﬁ,*iFkl + 2/%;5191
K * * Ak Ak Ak
- n—+2('ﬁ kj — kpg1j + FijRy, — Frjk) — QIiijl)]

where &} = kqF}’. Using the formula
(4.2) KKy = Kk} /2

we obtain Sj;k*! = —%Kn;f. We can express (4.1) in the following form:

(4.3) Ii*iKijkl (Iil My; — IiZMlj + I%;Nkj — /%Z;Nlj + QR;NM)

n+4

where Mkj = Kkj 2(n+2) ngJ and NkJ = SkJ - 2(n+2)KFkJ Mkj and Nkj are
related by Ny; = MyoF;'. The tensor My; is symmetric and the tensor Ny; is
skew-symmetric. Let us transvect (4.3) by g’*. Then

. 1
K"Ky = ——[k[ M — nZMlk]

n+4
where N
” n°+2n+4 wark  NMH1
M:Mjkg] :Km and I‘Ele = +2Klil.
In such a way, we obtain
n? +2

(44) K/*iKil = m
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In comparison of (4.4) and (4.2) there yields either K = 0 or k] = 0 The last
relation, in fact, means that the space is not Ricci-recurrent, but Ricci-parallel.
This is a simpler case.

By this investigation we in fact loose the case (4) from Theorem 7 as one of
possible cases which even may be an essential case. There remains only case (1)
as a possible origin of essential cases. Such a situation was geometrically expected.
Roter [6] constructed an essentially conformally recurrent Ricci-recurrent (pseudo)
Riemannian space (i.e. he constructed its metric tensor) whose curvature scalar
vanished and the recurrence vector was not isotropic.

Now we are going to look for nontrivial (essential) HB-recurrent Ricci-
recurrent hyperbolic Kaehlerian space with vanishing curvature scalar. First, from
(3.2) we have

n+4
(4.5) Ky =

K'HB jor Fi F} .

Further, if K = 0, then K,,K® = 0 (case (1)) and «'HB mkaj“Flb = 0. As the
Ricci tensor is symmetric, then

K'HB oy F{ F} = £'HB jojs Ff FY
After transvection by F! FF we obtain
K'HB jakm F Ff = 6'HB jtjm  and  £'HB jqpm i F, = —k"HB it

By (4.5), the last relation means that K,,;: = —x'HB itjm- As the Ricci tensor is
symmetric and HB-tensor is skew-symmetric with respect to indices 7, m we get
either kK7 = 0 (the space is Ricci-parallel and recurrent) or K,,; = 0 (the space is
Ricci-flat and recurrent). Now we have

COROLLARY 1. There does not ezist nontrivially HB-recurrent hyperbolic
Kaehlerian space which is nontrivially Ricci-recurrent. [

Instead of Theorem 7, we can state

THEOREM 8. If a hyperbolic Kaehlerian space is HB-recurrent and Ricci-
recurrent, then one of the following cases occurs:

(1) the recurrence vectors of HB-tensor and Ricci tensor are equal and the space
18 recurrent

(2) the space is HB-symmetric and Ricci-recurrent

(3) the space is HB-flat and Ricci-recurrent

(4) the space is Ricci-flat

(5) the curvature scalar of the space vanishes and there one of the following cases
0CCUTS:
(a) the space is Ricci-parallel
(b) the space is Ricci-flat
(c) the space is recurrent and it is not a flat extension of HK,. O
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