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A PROOF OF B�AR�ANY'S THEOREM

�Zana Kovijani�c

Abstract. We give a new proof of the following theorem of I. B�ar�any and L. Lowasz:
Let S1;S2; . . . ;Sd+1 be �nite nonempty families of convex sets from Rd and suppose that for any
choice C1 2 S1; . . . ; Cd+1 2 Sd+1 the intersection \Ci is not empty. Then for some i = 1; . . . ; d+1
all the sets in family Si have a common point.

1. Introduction. The well-known Helly's theorem (�nite form) says that
given a �nite family F = fK1; . . . ;Krg of convex sets in Rd, with r � d + 1,
such that every (d + 1) members of the families have nonempty intersection, thenTr

i=1Ki 6= ;. In this paper we prove a generalization of Helly's theorem due to
B�ar�any [2].

Let [m] = f1; . . . ;mg. C � P([m]) is abstract simplicial complex if s0 � s)
s0 2 C, for every s 2 C. Element s 2 C is called n-dimenzional simplex if ksk = n.

To each �nite family F of sets we associate a �nite abstract simplicial complex
N (F) = fs � [m] j

T
i2sKi 6= ;g, the nerv of F . It contains full information about

all intersections in the family F . The complexes which are nervs of �nite families
of convex sets in Rd are called d-representable complexes.

Let C denote an arbitrary �nite simplicial complex. For any simplex s, by
cost (s; C) we denote the subcomplex of C containing all members of C which do
not contain s. Simplex s is free (in C) if there is only one maximal simplex s0

such that s � s0. Let s be free simplex of dimension less then d. The operation of
transforming complex C to the complex D = cost (s; C), denoted by Cd&D, will
be called elementary d-collapsing. A �nite chain Cd&C1d& . . . d&D of elementary
d-collapsings is called a d-collapsing and also denoted by Cd&D. Finally, C is
d-collapsible if C d-collapses to the empty complex ;.

Wegner, [1], proved an important result which shows that d-collapsibility is
a fundamental property of nerves of �nite families of convex setys:

Theorem 1.1. [1, p. 319] If C(6= ;) is d-representable, then C contains a

free simplex s of dimension less then d such that cost (s; C) is again d-representable.
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Theorem 1.2. [1, p. 319] Every d-representable complex is d-collapsible.

We will use that in the next section, in the proof of our main theorem 1.1.
Importance of Wegner's theorem is nicely demonstrated by G. Kalai who success-
fully used d-collapsibility as well as specially de�ned new type of homology groups
to establish the Eckho�'s conjecture and other results about nerves of convex sets
(see [4], [5]).

Though the idea of using Wegner's theorem in the context of B�ar�any's theo-
rem was noticed by him and others who applied this result in other context, yet we
could not �nd such a proof published anywhere. Also, there is a growing interest in
various generalizations of B�ar�any's theorem (see [3] and the conjecture at the end
of this paper), so it is certainly important to analize and list all avilable proving
techniques.

2. The main result. This section contains the proof of multiplied Helly's
theorem, the main result of this paper:

Theorem 2.1. Let S1; . . . ;Sd+1 be �nite nonempty families of convex sets

from Rd and for any choice C1 2 S1; . . . ; Cd+1 2 Sd+1 the intersection
Td+1

i=1 Ci is

not empty. Then for some i = 1; . . . ; d+1 all the sets in family Si have a point in

common.

Proof. Let C denote the nerv of union S1 [ S2 [ . . . [ Sd+1 and let s =
(A;B;C) denote the simplex s generated by nonempty intersection of the sets

A;B;C 2
Sd+1

i=1 Si is d-representable simplicial complex. According to Theorem
1.1 there exists a free simplex s 2 C such that dim(s) < d and cost (s; C) is d-
representable. Depending on whether all the sets that de�ne simplex s 2 C belong
to di�erent families S1; . . . ;Sd+1 or not, there are two options:

(1) Let s = (A1; . . . ; Ak), k � d and sets A1; . . . ; Ak belong to di�erent fami-
lies Si. Suppose that (A1; . . . ; Ak) 2 S1�S2�. . .�Sk, k � d. By assumption of the
theorem, for each B 2 Sd+1 (k+1)-tuple (A1; . . . ; Ak; B) is an element of C. Since
s = (A1; . . . ; Ak) is a free simplex, (k + m)-tuple (A1; . . . ; Ak; B1; B2; . . . ; Bm),
where m = kSd+1k and Sd+1 = fB1; . . . ; Bmg, is also an element of C. Therefore,
Sd+1 has nonvoid intersection.

(2) Let s = (A1; . . . ; Ak), k � d, and i; j � k be such that the sets Ai and
Aj are members of the same family Sm, m = 1; . . . ; d+ 1. Then any (d+ 1)-tuple
(B1; B2; . . . ; Bd+1) 2 S1 � S2 � . . .Sd+1 is an element of the simplicial complex
cost (s; C). Hence, cost (s; C) is the nerv of the union of (d+ 1) families of convex
sets which satisfy the assumption of the theorem.

According to (2), necessary condition for given complex C to be converted to
the void complex ; by �nite sequence of elementary d-collapsings is appearance of
a simplex of type (1) in some step of d-collapsing process. In that case, we have
already proved in (1) that there exist family S1, 1 � i � d + 1, with nonempty
intersection.

By Theorem 1.2 and above conclusions the assertion of our theorem follows.
�
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As remarked by B�ar�any, Helly's theorem follows from Theorem 2.1 by putting
S1 = S2 = . . . = Sd+1.

3. A Generalisation of Carath�eodory's theorem. A Carath�eodory's
theorem says that, given a set V � Rd and a point a 2 conv (V ), there exist a
subset A � V such that kAk � n + 1 and a 2 conv (V ). It is well known that
Carath�eodory's and Helly's theorem imply each other, so it is not surprising that
generalised Helly's theorem yields appropriate multiplied version of Carath�eodory's
theorem. This is exactly the approach of B�ar�any who deduced the generalization of
Carath�eodory's theorem. For completness and for the readers convenience, we in-
clude a simple duality statement which alows us to prove multiplied Carath�eodory's
from multiplied Helly's theorem.

Lemma 3.1. Let S = f(ai;��i) j i = 1; . . . ; s, ai 2 Rd�1, �i 2 Rg � Rd be

an arbitrary sistem of vectors in Rd and hi = fx 2 Rd�1 j hai; xi � �ig i = 1; . . . ; s,
be an appropriate family of closed halfspaces in Rd�1. Then

(0;�1) 2 pos (S) i�

s\

i=1

hi = ;; 0 = (0; . . . ; 0) 2 Rd�1

Proof. Suppose that (0;�1) 2 pos (S) and
Ts

i=1 hi is nonempty. Then there

exists �1; . . . ; �s � 0 and x 2 Rd�1 such that:

(0;�1) = �1(a1;��1) + . . . + �s(as;��s) (1)

hai; xi � �i; i.e. h(ai;��i); (x; 1)i � 0; i = 1; . . . ; s (2)

The inequality �1 � 0 can be deduced directly from (1) and (2).

Now we show that
Ts

i=i hi 6= ; imply (0;�1) 2 pos (S). Suppose, to the
contrary, that (0;�1) 62 pos (S). The set pos (S) is closed and convex, so there
exists a hyperplane fx 2 Rd j h(c; �); xi = 0g, c 2 Rd�1, � 2 R, which separates
the cone pos (S) and the point (0;�1), i.e.

h(c; �); (0;�1)i < 0 (3)

h(c; �); (ai;��i)i � 0; i = 1; . . . ; s (4)

(3) implies that � > 0 and we may suppose that � = 1. Using inequalities
(4) we get: hai; ci � �i, i = 1; . . . ; s. Thus, c 2

Ts

i=1 hi and this intersection is
nonempty. �

Theorem 3.2. (Multiplied cone version) Suppose V1; . . . ; Vd � Rd and

a 2 pos (Vi) for i = 1; . . . ; d. Then for each i there exist elements vi 2 Vi, such

that a 2 pos fv1; . . . ; vdg.

Proof. Suppose, and we may do so without loss of generality, that a =
(0; 0; . . . ; 0;�1) 2 Rd. To abbreviate notation we will write a = (0;�1). To
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each vector (c;��) = (c1; . . . ; cd�1;��) 2 Rd, let us associate closed halfspace
Hc;� = fx 2 Rd�1 j hc; xi � �g = fx 2 Rd�1 j h(c;��); (x; 1)i � 0g. Thus,
to given sistems of vectors V1; . . . ; Vd we associate families S1; . . . ; Sd of closed
halfspaces in Rd�1. Let (0;�1) 2 pos (Vi), i = 1; . . . ; d. By the previous Lemma,

each of Si, i = 1; d, has nonempty intersection. By Theorem 2.1 there exist H1 2
S1; . . . ; Hd 2 Sd such that H1 \H2 \ . . . \Hd = ;. Each of the spaces H1; . . . ; Hd

has form Hsi;�i for some vector vi = (si;��i) 2 Vi, i = 1; . . . ; d. Lemma 3.1
implies that a = (0;�1) 2 pos (v1; . . . ; vd). �

Theorem 3.3. (Multiplied Carath�eodory's theorem) If V1; . . . ; Vd+1 � Rd

and a 2 \d+1i=1 conv (Vi), then there exist vi 2 Vi, i = 1; d+ 1 such that a 2
conv fv1; . . . ; vd+1g.

Proof. By Caratheodory's theorem we can suppose that each Vi is �nite.
Let us de�ne map �:Rd ! Rd+1 by ~x = (x; 1). Assume that V1; . . . ; Vd+1 � Rd

and a 2 conv (Vi), i = 1; . . . ; d+ 1. It is easy to check that ~a 2 pos ( ~Vi). Theorem

3.2. implies that there exist vectors ~vi 2 ~Vi such that ~a 2 pos (~v1; . . . ~vd+1), i.e.
(0;�1) = �1(v1; 1)+ . . . +�d+1(vd+1; 1) = (�1v1+ . . . +�d+1vd+1; �1+ . . . +�d+1),

�i � 0, i = 1; . . . ; d + 1. Therefore, a = �1v1 + . . . + �d+1vd+1 and
Pd+1

i=1 �i = 1,

�i � 0, i = 1; d+ 1, i.e. a 2 conv (v1; . . . vd+1). �

4. A conjecture. There are several conjectures in [3] about �nite families of
vectors in Rd, which are similar in spirit with Theorem 3.3. Here is one conjecture
and one of the theorems proved there.

Theorem. If simplexes S1;S2; . . . ;S5 in 2-dimensional space R2 have a

point in common and all vertices in Si, i = 1; . . . ; 5, are coloured by one of three

di�erent colours, then there exists a simplex conv fx1; x2; x3g containing this point,

such that x1; x2; x3 are vertices of di�erent simplexes S1;S2; . . . ;S5 and xi, i =
1; 2; 3, are coloured by di�erent colours.

Conjecture: Let fKi;j j 1 � i � 2d+ 1; 1 � j � d+ 1g be a family of convex

sets in Rd so that fKi;jg
d+1
j=1 has an empty intersection for all j = 1; . . . ; 2d + 1.

Then there exist di�erent numbers i1; i2; . . . ; id+1 so that the family fKik;Kg
d+1
k+1

has an empty intersection.
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