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ON THE LIMIT PROPERTIES
OF THE PICARD SINGULAR INTEGRAL

M. Gorzenska and L. Rempulska

Abstract. We present some direct and inverse approximation theorems for the Picard
singular integral in the spaces LP(1 < p < o0) and the generalized Holder spaces. Those theorems
extend and improve the results for the Picard integral given in [1]-[3].

1. Notations 1.1. Let LP = LP(R), 1 < p < oo be the space of realvalued
functions Lebesgue-integrable with p-th power over R: = (—o00, +00) and let L>® =
L*(R) be the space of real-valued functions uniformly continuous and bounded on
R. The norm in LP we define as usual

1/p
(Jir@lar)  it1<p<oc,
R

sup | f(z)] if p = oo0.
TER

Ille = 1fOllze:= (1)

Let X be one of the spaces LP, 1 < p < oo, with the norm (1). For a given
f € X denote by wa(+; f, X) the modulus of smoothness of order 2, i.e.

wa(t; £,X): = sup [[ALf]| (2)
|R|<t

for t > 0, where

Ajf(z):= f(z +h) + f(z = h) = 2f(2). (3)

Denote as in [4] by Q2 the set of functions of the type of modulus of smooth-
ness of order 2 [5, p. 116], i.e. Q2 is the set of all functions w satisfying the following
conditions:

(a) w is defined and continuos on < 0, +00).
(b) w is monotonically increasing and w(0) = 0.
(c) w(h)h~2 is monotonically decreasing for h > 0.
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It is easy to verify that for every w € 2, there exist positive constants M;
and My (M; = M;(w),i = 1,2) such that

1
Mit? < w(t) < Myt? /w(z)z*?’dz (4)
t

forall 0 <t <1/2.

Similary as in [4], for a given w € 02, denote by X“ the class of all functions
f € X for which

IVH}wﬁ=ﬁ£HAifoﬂdf)<-Hm- (5)
In X¥ we define the norm
| fllxe:=lIfllx + [[flI%e- (6)

Denote as in [4] by X¥, w € 02, the class of all functions f € X such that
limp 0+ [|A? fl|x /w(h) = 0. The norm in X we define by (6). X and X* with
the norm (6) are called the generalized Holder spaces. If w, u € Q2 and the function

q(h):=w(h)/u(h),  h>0, (7)

is monotonically increasing, then

X“ C X* and X¥ C X~ (8)

If f € X¥, then
wa(t; f, X) <w®)[[fllxe, t>0. (9)

If f € X, then
wa(t; f, X) = o(w(t)) as t > 0+. (10)

1.2. In the papers [1]-[3] are examined the limit properties of the Picard
singular integral

P(a,r; f):= (2r) ! / £z + 1) exp(—[t]/r)dt, (1)
R

x€R, rel:=(0,1>and r — 0+, for the functions f belonging to L? (1 < p <
00) or the classical Holder spaces H*(0 < a < 1) of continuous functions.

The purpose of this note is to generalize the resulte given in [1]-[3].

By Mg(-), k=1,2,..., we shall denote suitable positive constants depending
only on the indicated parameters.
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2. Auxillary results. In this section we shall give some auxiliary inequal-
ities.
LemMA 1. If f € X, then |P(,7m; Dllx < ||fllx, r € I.
Proof. By (1) and (11) we have

1P Dllx < 1 lx (@) / exp(—|t|/r)dt
R
for all r € I. We also have
+00
/ exp(—t/r)dt =1, (12)

0

1 1
o [ vl /ride =
R

for all » € I. Hence the proof is completed.

LEMMA 2. If f € X¥, then ||P(-,r; )|l%e < ||fllkxe for v € I, which proves
that, for every fized r € I, the function P(-,r; f) also belongs to X“.

Proof. By (5) we have
1P Hlixe = ilipollﬁip(-,r;f)llx/w(h), rel.

From (11) and (3) we get
A?P(z,r; f) = P(z,m;A%f) (x € R,h € R,r € 1), (13)
which by Lemma 1 gives
AR PG H)llx < 1A% fllx,

r € I, h € R. From this and by (5) we obtain our assertion.
Lemma 1 and Lemma 2 imply the following

CoOROLLARY 1. If f € X%, then ||P(-,7; f)llxe <||fllx~ for allr € 1.
LEMMA 3. If f € X¥, then P(-,r; f) € X¥, for every fized r € I.
Proof. By (13) and Lemma 1,

IALPCr Dllx _ PG AR Ix o 1ARfllx
w(h) - w(h) — w(h)

0<
(h > 0,7 € I). Hence, by the assumption f € X, we obtain
. 20, ... _
Jm {|AGC, 75 Hllx fw(h) =0,

which proves that P(-,r; f) € X¥.
It is easy to verify that
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LEMMA 4. Fork=0,1,2,... and r > 0 we have

+oo
/ th exp(—t/r)dt = klrh T

0

LEMMA 5. If f € X, then ||0>P(-,r; f)/02?||x < ||fllxr™?2 for everyr € I.
Proof. From (11) we get

2

0 9?
sesP@rif) = 5 [ 10 (5 exolle ) d
R

= (27‘3)71 /f(:n + t) exp(—|t|/r)dt = r~2P(z,7; f)

R

for x € R and r € I. From this and by Lemma 1 we obtain the desired inequality.

3. Approximation theorems Let

U(r,z; f):= P(z,r; f) — f(2) (14)
forx € Rand r € I.

3.1. First we shall consider direct approximation problem in the norm of
the space X.

THEOREM 1. If f € X, then ||[U(-,r; fllx < %wg(r;f,X) forallr € 1.

Proof. By (11), (12), (14) and (3), we have

400

Ue,r; f) = (2r)" / (A2f(2)) exp(—t/r)dt

0

for all x € R and r € I. From this and by (1), (2) and the properties of ws(-; f, )
[5, p. 116] we get

400

UG Hlix < @r)" / walt; £, X) exp(—t/r)dt

0

+

o0

< 2) wa(r £, X) [ (5 4+ 1) exp(~t/r)dt

S e

o

for all » € I. Now using Lemma 4, we obtain our thesis.

From Theorem 1 and by (9) we obtain the following
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COROLLARY 2. If f € X¥, then |[U(-,r; fllx < 3| fllkew(r) for all v € I.
In the case w(t) =1*, 0 < a < 2, we have |[U(-,7; f)|lx < 3||f||xer® for allr € 1.

3.2. In this part we shall give an inverse approximation theorem in the norm
X. We shall use the notation (14).

THEOREM 2. Suppose that f € X and
NUCrs Hllx <w(r) (15)

for all r € I, where w is given function belonging to Q>. Then

1
wa(t; f,X) < M / )z dz (16)
t
for all t € (0,1/2), where M} = My(||f|lx,w)-

Proof. We shall apply the Bernstein method [5, p.345]. For every fixed integer
m > 2 we can write

f(x) = P(z,27"; f +Z{Pa:2 YL ) = P27 )}

(17)
+f() P(z,27™; f), x € R.
Let
on(2; f):=P(2,27" 5 f) = P(x,27%f)  (n=1,2,...). (18)
From (17) and by (3), (14) and (18) we get
m—1
AGf(w) = ARP(2, 275 ) + Y Ajog(a; f) + AU (2,27 f)
k=1
=: Ay (z,h) + Az(z,h) + As(x, h).
for z € R and h € R. We notice that
h/2 h/2
82
A2P(z,r; f) = / / o P(x+ b+ b7 dtadts,
—h/2 —h/2
Hence, by Holder-Minkowski inequality and by Lemma 5, we get
h/2 h/2
62
||A1(,h)||X = / / oz ) (1‘+t1 +t2,1/2 f)dtldtz
_h/2 —h/2 . (20)

82
< h2||ﬁ

—P(2,1/2 H)llx < 4l fllxh”.
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From the assumption (15) we have
1430 h)llx < 4w(27™). (21)
From the Fubini theorem if follows that
P(z,27" "5 P(527% f)) = P (2,27 P( 275 )
forn=1,2,... and x € R. Hence and by (18) we get
vn(; f) = P (2,275 f() = P(,27" f)) = P (2,27 f() = P(,27"75 f)) -
Further, we find
h/2 h/2

2
h'Un(oT f) / / 68 S U (ZE + b1 + 1o f)dt1dt2,

—h/2 —h/2

Hence, by (14) and Lemma 5, we get

1420, B)llx < Z 1AZ 0k (5 H)llx
Sh22 P (277506275 ) [ + 1P (27506275 D))

<h22{||U 275 Dl -2 UG 27 D] 2%

Now applying the assumptions (14) and (15), and by properties of the function
w € 02, we obtain

||A2( ||X < h2 Z {22k+2 22k (2714771)}
1/2 (22)
< 5h? Z 22k, (27%) < 10R2 / w(z)z 3dz.
2 m

Using (20)—(22) and (19), we get
1/2
|ALF|| ¢ < 4llflIxh® + 4w (27) + 10K / w(z)z73dz (23)
2 m
for every integer m > 2 and r € I. Now let 0 < ¢t < 1/2, |h| < t and let m be an

integer such that 2™ < t < 2=™*!. Then, by properties of w € 2, from (23) and
(2) it follows that

1
a(t5 £,5) < A Flxt? + dlt) + 52 [ wlz)e e,
t
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Now using (4), we obtain (16).
In the case w(h) = M5(a)h®, 0 < o < 2, from Theorem 2 we get

COROLLARY 3. Iff € X and [U(,7; f)|lx < Msr®, r € I, where0 < a < 2,

then
te fo<a<?2

t; f, X) < M,

forall0 <t <1/2.

3.3. Now we shall examine the limit properties of P(-,r; f) in the Hdolder
norms.

THEOREM 3. Suppose that w,p € Q2 and the function q(-) defined by (7) is
monotonically increasing for h > 0. If f € X¥, then

NUCyrs Allxe < Ms(w)l| fllxwa(r) (24)
for all r € I, where Mg(p) = 2p(1) + 12.

Proof. By our assumptions and (8) we have P(-,r; f) € X* for every r € I.
Hence the function U(-,r; f) (r € I) defined by (14), belongs to X* and by (6) we
have

NUCrs Ollxe = 1UC7; Hllx + U Hllxn
for every r € I. Using Corollary 2, we get

S0 e
W m Hlx < 5lIfllxenalr), rel.
By (5), for every r € I, we have

U(-,r; u < —_— —_—
107 Dl < e =y T2,

Since ||AiU(-,r; f)||X < 4||U(,r; f)llx and by Corollary 2, we get
Si(r) <4(u() UG Hllx < 1O00f[xe -a(r), r€L

From (3), (14) and (13) it follows that A2U (z,r; f) = P(z,r; A% f) — A} f(z) for
z € R, he Randr € I. Hence, by Lemma 1, we get

[ARUCr Dl < IPCr LDk + 1855 < 2[|23 7]l » re 1.

=: Sl (T) + 52 (T)

Consequently,

122 f]l 122 f]|
S <2 4 A —9 h)———=
2 <2 s Ty e (TG

<2|fll5-qlr) for re L.

Summing up, we obtain (24).
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Similarly, we obtain the following

THEOREM 4. Suppose that the functions w,p,q satisfy the assumptions of
Theorem 3. If f € X, then

NWUC,r Pllg. =olg(r) as r —0+.

Theorem 3 and Theorem 4 imply

COROLLARY 4. Let the assumptions of Theorem 3 be satisfied and let q(h) <
Mz(y)h", h>0,0<vy<2. If f € X¥, then

NUCyrs Ollxs < Ms(p, M f I xer”
for all r € I, where Mg(p,v) = (3u(1) +12) Mz (7). If f € X¥, then
NUC,r f)llge =0(r7) as r—0+.
In the case w(h) = h®, u(h) =h?,0< B < a <2 and f € X* we have

29
UG, 73 f)llxs < S

for all v € 1. If moreover f € X¥, then

||U(')7‘;f)||)~(u :O(Taiﬁ) as r —0+.
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