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ON THE LIMIT PROPERTIES

OF THE PICARD SINGULAR INTEGRAL

M. G�orze�nska and L. Rempulska

Abstract. We present some direct and inverse approximation theorems for the Picard
singular integral in the spaces Lp(1 � p � 1) and the generalized Holder spaces. Those theorems
extend and improve the results for the Picard integral given in [1]{[3].

1. Notations 1.1. Let Lp � Lp(R), 1 � p <1 be the space of realvalued
functions Lebesgue-integrable with p-th power over R : = (�1;+1) and let L1 �
L1(R) be the space of real-valued functions uniformly continuous and bounded on
R. The norm in Lp we de�ne as usual

kfkLp � kf(�)kLp : =

8>><
>>:

�R
R

jf(x)jpdx

�1=p

if 1 � p <1,

sup
x2R

jf(x)j if p =1.
(1)

Let X be one of the spaces Lp, 1 � p � 1, with the norm (1). For a given
f 2 X denote by !2(�; f;X) the modulus of smoothness of order 2, i.e.

!2(t; f;X): = sup
jhj�t



�2
hf



X

(2)

for t � 0, where
�2
hf(x): = f(x+ h) + f(x� h)� 2f(x): (3)

Denote as in [4] by 
2 the set of functions of the type of modulus of smooth-
ness of order 2 [5, p. 116], i.e. 
2 is the set of all functions ! satisfying the following
conditions:

(a) ! is de�ned and continuos on < 0;+1).

(b) ! is monotonically increasing and !(0) = 0.

(c) !(h)h�2 is monotonically decreasing for h > 0.
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It is easy to verify that for every ! 2 
2, there exist positive constants M1

and M2 (Mi =Mi(!); i = 1; 2) such that

M1t
2 � !(t) �M2t

2

1Z
t

!(z)z�3dz (4)

for all 0 � t � 1=2.

Similary as in [4], for a given ! 2 
2, denote by X! the class of all functions
f 2 X for which

kfk�X! : = sup
h>0

k�2
hfkX=!(x) < +1: (5)

In X! we de�ne the norm

kfkX! : = kfkX + kfk�X! : (6)

Denote as in [4] by ~X!, ! 2 
2, the class of all functions f 2 X such that

limh!0+ k�
2
hfkX=!(h) = 0. The norm in ~X! we de�ne by (6). X! and ~X! with

the norm (6) are called the generalized H�older spaces. If !, � 2 
2 and the function

q(h): = !(h)=�(h); h > 0; (7)

is monotonically increasing, then

X! � X� and ~X! � ~X�: (8)

If f 2 X!, then
!2(t; f;X) � !(t)kfk�X! ; t > 0: (9)

If f 2 ~X!, then
!2(t; f;X) = o(!(t)) as t! 0 + : (10)

1.2. In the papers [1]{[3] are examined the limit properties of the Picard
singular integral

P (x; r; f): = (2r)�1
Z
R

f(x+ t) exp(�jtj=r)dt; (11)

x 2 R, r 2 I : = (0; 1 > and r ! 0+, for the functions f belonging to Lp (1 � p �
1) or the classical H�older spaces H�(0 < � � 1) of continuous functions.

The purpose of this note is to generalize the resulte given in [1]{[3].

By Mk(�), k = 1; 2; . . . , we shall denote suitable positive constants depending
only on the indicated parameters.
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2. Auxillary results. In this section we shall give some auxiliary inequal-
ities.

Lemma 1. If f 2 X, then kP (�; r; f)kX � kfkX , r 2 I.

Proof. By (1) and (11) we have

kP (�; r; f)kX � kfkX(2r)
�1

Z
R

exp(�jtj=r)dt

for all r 2 I . We also have

1

2r

Z
R

exp(�jtj=r)dt =
1

r

+1Z
0

exp(�t=r)dt = 1; (12)

for all r 2 I . Hence the proof is completed.

Lemma 2. If f 2 X!, then kP (�; r; f)k�X! � kfk�X! for r 2 I, which proves

that, for every �xed r 2 I, the function P (�; r; f) also belongs to X!.

Proof. By (5) we have

kP (�; r; f)k�X! = sup
h>0

k�2
hP (�; r; f)kX=!(h); r 2 I:

From (11) and (3) we get

�2
hP (x; r; f) = P (x; r; �2

hf) (x 2 R; h 2 R; r 2 I); (13)

which by Lemma 1 gives

k�2
hP (�; r; f)kX � k�2

hfkX ;

r 2 I , h 2 R. From this and by (5) we obtain our assertion.

Lemma 1 and Lemma 2 imply the following

Corollary 1. If f 2 X!, then kP (�; r; f)kX! � kfkX! for all r 2 I.

Lemma 3. If f 2 ~X!, then P (�; r; f) 2 ~X!, for every �xed r 2 I.

Proof. By (13) and Lemma 1,

0 �
k�2

hP (�; r; f)kX
!(h)

=
P (�; r; �2

hf)kX
!(h)

�
k�2

hfkX
!(h)

(h > 0; r 2 I). Hence, by the assumption f 2 ~X!, we obtain

lim
h!0+

k�2
h(�; r; f)kX=!(h) = 0;

which proves that P (�; r; f) 2 ~X!.

It is easy to verify that
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Lemma 4. For k = 0; 1; 2; . . . and r > 0 we have

+1Z
0

tk exp(�t=r)dt = k!rk+1:

Lemma 5. If f 2 X, then k@2P (�; r; f)=@x2kX � kfkXr
�2 for every r 2 I.

Proof. From (11) we get

@2

@x2
P (x; r; f) =

1

2r

Z
R

f(t)

�
@2

@x2
exp(�jx� tj=r

�
dt

=
�
2r3
��1 Z

R

f(x+ t) exp(�jtj=r)dt = r�2P (x; r; f)

for x 2 R and r 2 I . From this and by Lemma 1 we obtain the desired inequality.

3. Approximation theorems Let

U(r; x; f): = P (x; r; f) � f(x) (14)

for x 2 R and r 2 I .

3.1. First we shall consider direct approximation problem in the norm of
the space X.

Theorem 1. If f 2 X, then kU(�; r; f)kX � 5
2!2(r; f;X) for all r 2 I.

Proof. By (11), (12), (14) and (3), we have

U(x; r; f) = (2r)�1
+1Z
0

�
�2
tf(x)

�
exp(�t=r)dt

for all x 2 R and r 2 I . From this and by (1), (2) and the properties of !2(�; f; x)
[5, p. 116] we get

kU(�; r; f)kX � (2r)�1
+1Z
0

!2(t; f;X) exp(�t=r)dt

� (2r)�1!2(r; f;X)

+1Z
0

(
t

r
+ 1)2 exp(�t=r)dt

for all r 2 I . Now using Lemma 4, we obtain our thesis.

From Theorem 1 and by (9) we obtain the following



On the limit properties of the Picard singular intergral 43

Corollary 2. If f 2 X!, then kU(�; r; f)kX � 5
2kfk

�
X!!(r) for all r 2 I.

In the case !(t) = t�, 0 < � � 2, we have kU(�; r; f)kX � 5
2kfk

�
X!r� for all r 2 I.

3.2. In this part we shall give an inverse approximation theorem in the norm
X . We shall use the notation (14).

Theorem 2. Suppose that f 2 X and

kU(�; r; f)kX � !(r) (15)

for all r 2 I, where ! is given function belonging to 
2. Then

!2(t; f;X) �M�
1 t

2

1Z
t

!(z)z�3dz (16)

for all t 2 (0; 1=2), where M�
1 =M1(kfkX ; !).

Proof. We shall apply the Bernstein method [5, p.345]. For every �xed integer
m � 2 we can write

f(x) = P (x; 2�1; f) +

m�1X
k=1

�
P (x; 2�k�1; f)� P (x; 2�k; f)

	

+ f(x)� P (x; 2�m; f); x 2 R:

(17)

Let

vn(x; f): = P (x; 2�n�1; f)� P (x; 2�n; f) (n = 1; 2; . . . ): (18)

From (17) and by (3), (14) and (18) we get

�2
hf(x) = �2

hP (x; 2
�1; f) +

m�1X
k=1

�2
hvk(x; f) + �2

hU(x; 2
�m; f)

=:A1(x; h) +A2(x; h) +A3(x; h):

for x 2 R and h 2 R. We notice that

�2
hP (x; r; f) =

h=2Z
�h=2

h=2Z
�h=2

@2

@x2
P (x+ t1 + t2; r; f)dt1dt2:

Hence, by H�older-Minkowski inequality and by Lemma 5, we get

kA1(�; h)kX =









h=2Z

�h=2

h=2Z
�h=2

@2

@x2
P (x+ t1 + t2; 1=2; f)dt1dt2









X

� h2k
@2

@x2
P (x; 1=2; f)kX � 4kfkXh

2:

(20)
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From the assumption (15) we have

kA3(�; h)kX � 4!(2�m): (21)

From the Fubini theorem if follows that

P
�
x; 2�n�1;P (�; 2�n; f)

�
= P

�
x; 2�n;P (�; 2�n�1; f)

�
for n = 1; 2; . . . and x 2 R. Hence and by (18) we get

vn(x; f) = P
�
x; 2�n�1; f(�)� P (�; 2�n; f)

�
� P

�
x; 2�n; f(�)� P (�; 2�n�1; f)

�
:

Further, we �nd

�2
hvn(x; f) =

h=2Z
�h=2

h=2Z
�h=2

@2

@x2
vn(x+ t1 + t2; f)dt1dt2;

Hence, by (14) and Lemma 5, we get

kA2(�; h)kX �

m�1X
k=1

k�2
hvk(�; f)kX

� h2
m�1X
k=1

�

P ��; 2�k�1;U(�; 2�k; f)�


X
+


P ��; 2�k;U(�; 2�k�1; f)�



X

	

� h2
m�1X
k=1

�

U(�; 2�k; f)


X
� 22k+2 +



U(�; 2�k�1; f)


X
� 22k

	
:

Now applying the assumptions (14) and (15), and by properties of the function
! 2 
2, we obtain

kA2(�; h)kX � h2
m�1X
k=1

�
22k+2!(2�k) + 22k!

�
2�k�1

�	

� 5h2
m�1X
k=1

22k!
�
2�k

�
� 10h2

1=2Z
2�m

!(z)z�3dz:

(22)

Using (20){(22) and (19), we get



�2
hf



X
� 4kfkXh

2 + 4!
�
2�m

�
+ 10h2

1=2Z
2�m

!(z)z�3dz (23)

for every integer m � 2 and r 2 I . Now let 0 < t < 1=2, jhj � t and let m be an
integer such that 2�m � t < 2�m+1. Then, by properties of ! 2 
, from (23) and
(2) it follows that

!2(t; f;X) � 4kfkXt
2 + 4!(t) +

5

2
t2

1Z
t

!(z)z�3dz:
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Now using (4), we obtain (16).

In the case !(h) =M5(�)h
�, 0 < � � 2, from Theorem 2 we get

Corollary 3. If f 2 X and kU(�; r; f)kX �M5r
�, r 2 I, where 0 < � � 2,

then

!(t; f;X) �M6(�)

�
t� if 0 < � < 2

t2j log tj if � = 2,

for all 0 < t < 1=2.

3.3. Now we shall examine the limit properties of P (�; r; f) in the H�older
norms.

Theorem 3. Suppose that !; � 2 
2 and the function q(�) de�ned by (7) is

monotonically increasing for h > 0. If f 2 X!, then

kU(�; r; f)kX� �M6(�)kfk
�
X!q(r) (24)

for all r 2 I, where M6(�) =
5
2�(1) + 12.

Proof. By our assumptions and (8) we have P (�; r; f) 2 X� for every r 2 I .
Hence the function U(�; r; f) (r 2 I) de�ned by (14), belongs to X� and by (6) we
have

kU(�; r; f)kX� = kU(�; r; f)kX + kU(�; r; f)k�X�

for every r 2 I . Using Corollary 2, we get

kU(�; r; f)kX �
5

2
kfk�X!�(1)q(r); r 2 I:

By (5), for every r 2 I , we have

kU(�; r; f)k�X� � sup
h>r



�2
hU(�; r; f)




X

�(h)
+ sup

0<h�r



�2
hU(�; r; f)




X

�(h)
=:S1(r) + S2(r):

Since


�2

hU(�; r; f)



X
� 4 kU(�; r; f)kX and by Corollary 2, we get

S1(r) � 4(�(r))�1kU(�; r; f)kX � 10kfk�X! � q(r); r 2 I:

From (3), (14) and (13) it follows that �2
hU(x; r; f) = P (x; r; �2

hf) ��2
hf(x) for

x 2 R, h 2 R and r 2 I . Hence, by Lemma 1, we get

�2
hU(�; r; f)




X
�


P (�; r; �2

hf)



X
+


�2

hf



X
� 2



�2
hf



X
; r 2 I:

Consequently,

S2(r) � 2 sup
0<h�r



�2
hf



X

�(h)
= 2 sup

0<h�r
q(h)



�2
hf



X

!(h)

� 2kfk�X!q(r) for r 2 I:

Summing up, we obtain (24).
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Similarly, we obtain the following

Theorem 4. Suppose that the functions !; �; q satisfy the assumptions of

Theorem 3. If f 2 ~X!, then

kU(�; r; f)k ~X� = o(q(r)) as r ! 0 + :

Theorem 3 and Theorem 4 imply

Corollary 4. Let the assumptions of Theorem 3 be satis�ed and let q(h) �
M7(
)h


, h > 0, 0 < 
 < 2. If f 2 X!, then

kU(�; r; f)kX� �M8(�; 
)kfk
�
X!r


for all r 2 I, where M8(�; 
) =
�
5
2�(1) + 12

�
M7(
). If f 2 ~X!, then

kU(�; r; f)k ~X� = o (r
) as r ! 0 + :

In the case !(h) = h�, �(h) = h�, 0 < � < � � 2 and f 2 X! we have

kU(�; r; f)kX� �
29

2
r���

for all r 2 I. If moreover f 2 ~X!, then

kU(�; r; f)k ~X� = o
�
r���

�
as r ! 0 + :
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