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ON SUBHARMONIC BEHAVIOUR AND OSCILATION

OF FUNCTIONS ON BALLS IN Rn

Miroslav Pavlovi�c

Abstract. We give suÆcient conditions for a nonnegative function to behave like a sub-
harmonic function. If f is a C1-function on a domain D � Rn such that j5f(a)j � Kr�1 !f (a; r)
(K = const.), where !f (a; r) is the oscillation of f on the ball Br(a) � D, then both jf jp and
j 5 f jp (p > 0) have a weakened sub-mean-value property.

Let D be a domain in the Euclidean space Rn. If f is a function harmonic in
D, then the function jf jp (p > 0), although need not be subharmonic when p < 1,
yet behaves like a subharmonic function. This fact was established by Hardy and
Littlewood [2] for n = 2 and generalized by Fe�erman and Stein [1, Section 9,
Lemma 2] to several variables.

Theorem (HLFS). Let p > 0. If f is harmonic in D, then

jf(a)jp � Kr�n
Z

Br(a)

jf jpdm

whenever Br(a): = fx: jx� aj < rg � D, where K is a constant depending only on

p and n.

Here dm denotes the Lebesgue measure normalized so that m(B) = 1, B =
fx: jxj < 1g.

The theorem romains true if jf j is replaced by jgrad f j (f harmonic) or, more
generally, by a nonnegative subharmonic function.

In this paper we prove two results which, via the simplest properties of har-
monic functions, imply Theorem HLFS and can be applied to wider classes of
functions. We start with two observations. If f is harmonic in D, then (for K = 1)

(shK) F (a) � Kr�n
Z

Br(a)

Fdm whenever Br(a) � D;
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where F = jf j; and (for K = n)

(hK) L(a; f) � Kr�1 sup
Br(a)

jf j whenever Br(a) � D;

where L(�; f) = jgrad f j. (The letter is veri�ed, for example, by di�erentiation of
Poisson's integral.)

In the general case L(�; f) is de�ned by

L(a; f) = lim sup
x!a

jf(x)� f(a)j

jx� aj
:

If f is di�erentiable at a, then L(a; f) = jgrad f(a)j. If f is continuous, then the
function a ! L(a; f) is Borel measurable. (See [5] for further information on the
operator L.)

Theorem 1. If a nonnegative, locally integrable function F on D satis�es

condition (shK) for some K, then the function F p (p > 0) satis�es condition (shC)
for some C depending only on K, p and n.

Observe that the hypotheses of the theorem imply that F is locally bounded
and consequently F p is locally integrable.

Theorem 2. If a locally bounded function f on D satis�es condition (hK)
for some K, then the function jf jp (p > 0) satis�es condition (shC) for some C
depending only on K, p and n.

Although the general case of Theorem 2 can be deduced from the case p = 1
by using Theorem 1, we will give an independent proof, and this will be a new
proof of Theorem HLFS.

Note that the hypothesis of Theorem 2 implies that f is continuous.

We will apply Theorems 1 and 2 to a class of \regularly oscillating" functions.
The oscillation of f on the ball Br(a) is de�ned by

!f (a; r) = supfjf(x)� f(a)j:x 2 Br(a)g:

We have
L(a; f) = lim sup

r!0
!f (a; r)=r:

If f is convex or concave on D, then the function r ! !f (a; r), where a is �xed, is
convex, and since !f (a; 0

+) = 0, this implies that

(h+K) L(a; f) � Kr�1!f (a; r) whenever Br(a) � D;

with K = 1. As noted above, a harmonic function satis�es (hn), and applying this
to f � f(a)we see that it satis�es (h+n ) as well. There are many other examples of
functions satisfying (h+K), for some K � 1. In a separate paper we shall discuss

certain relations, suÆcient for the validity of (hK) or (h
+
K), between the Lapplacian

and the gradient of a C2-funcition.
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Theorem 3. Let p > 0. If a continuous function f on D satis�es condition

(h+K) for some K, then L(�; f)p satis�es (shC) for some C = C(K;n; p).

Proofs. Proof of Theorem 1. Let F satisfy (shK) for some K � 1, and let
p < 1. (If p > 1, we apply Jensen's inequality.) By considering the functions x! F
(a + rx), de�ned on the unit ball if Br(a) � D, we see that the proof reduces to
proving that

F (0)p � C

Z

B

F pdm (1)

provided that B � D, where C depends only on K, p and n. In proving this we
can also assume that the closed unit ball is in D and

(i)

Z

B

F pdm = 1:

Since F is locally bounded, then we can choose a 2 B so that

(ii) F (x)p(1� jxj)n � 2F (a)p(1� jaj)n for all x 2 B:

Let r = (1� jaj)=2. It follows from (shK) that

(iii) F (a)(1� jaj)n � 2nK

Z

Br(a)

F pF 1�pdm:

On the other hand, it follows from (ii) that F (x)p � 2n+1F (a)p for x 2 Br(a) and
therefore, by (i) and (iii),

F (a)(1� jaj)n � C1F (a)
1�p;

where C1 depends only on K, p and n. Hence, by (ii) (x = 0),

f(0) � 2F (a)p(1� jaj)n � 2C1;

which was to be proved. �

Remark. This proof is similar, but simpler, to the proof of Lemma 2.4 of [4],
where the complex hyperbolic space was considered.

Proof of Theorem 2. Let F = jf j, where f satis�es (hK) for some K > 0, and
let p > 0. As in the case of Theorem 1, it suÆces to prove (1) under the assumption
that the closed unit ball is contained in D. Assuming (i) we choose a 2 B so that
there holds (ii). Then we use the inequality

jf(a+ h)� f(a)j � jhj sup
r<1

L(a+ rh; f); (2)

which is proved by the standard compactness argument, to �nd that

F (a) � F (x) + t sup
Bt(a)

L(�; f) for x 2 Bt(a) � B:
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From this and (hK) it follows that

F (a) � F (x) +K(t=r) sup
Bs(a)

F (s = t+ r):

Now choose t and r so that s = t + r = (1 � jaj)=2 and K(t=r) = 2�1�(n+1)=p.
Since, by (ii), F (x)p � 2n+1F (a) for x 2 Bs(a), we get that

F (a) � F (x) + (1=2)F (a) for x 2 Bt(a) � Bs(a);

whence

F (a)p � 2pF (x)p for x 2 Bt(a):

Integrating this inequality over Bt(a) we obtain

tnF (a)p � 2p
Z

Bt(a)

F pdm � 2p:

Since t = c(1� jaj) (c = const.), we �nally get

F (0)p � 2(1� jaj)nF (a)p � 2p+1c�n;

and this completes the proof. �

Proof of Theorem 3. Let f satisfy (h+K). By theorem 1, it suÆces to prove
that, for some q and C, the function L(�; f)q satis�es (shC), which is reduced to
proving that

L(0; f)q � C

Z

B

L(x; f)qdm(x)

provided that B � D. Since the function f � f(0) satis�es (h2K), we have, by
Theorem 2,

L(0; f) � C1

Z

B

jf(x)� f(0)jdm(x):

On the other hand, it follows from (2) and the hypotheses of the theorem that f
satis�es a Lipschitz condition on balls and therefore the functions r ! f(a + rh)
are absolutely continuous. Hence

jf(x)� f(0)j � jxj

1Z

0

L(rx; f) dr:

Combiming these estimates we get

Z

B

jf(x)� f(0)jdm(x) �

1Z

0

dr

Z

B

L(rx; f)jxj dm(x):
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Hence, by the change x = y=r and Fubini's theorem,

L(0; f) � C1

Z

B

L(y; f) dm(y)

1Z

jyj

r�n�1jyj dr

� C1n
�1

Z

B

L(y; f)jyj1�ndm(y):

Now the requred inequality is proved by H�older's inequality with the indices q =
2n�1 and q0 = (2n�2)=2(n�1), and by using the fact that the function y ! jyj1�n

belongs to the space Lq
0

(B; dm). �
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