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ON CERTAIN DIVISOR FUNCTION IN SHORT INTERVALS

Aleksandar Ivi�c

Abstract. An asymptotic formula for the integral of the summatory function of f(n) in
short intervals is obtained, where f(n) represents a certain divisor function. In particular f(n)
can be the characteristic function of the set of k-free or k-full numbers.

1. Introduction. Let f(n) be the divisor function de�ned by

f(n) =
X
dkjn

g
� n

dk

�
; (1.1)

where k � 1 is a �xed integer andX
n�x

jg(n)j � xb (0 � b < 1=k): (1.2)

Here u(x)� v(x) (same as u(x) = O(v(x))) means that ju(x)j � Cv(x) for C > 0,
v(x) > 0 and x � x0 > 0. Divisor functions of this type often occur in multiplicative
number theory (see Section 3 for some examples). Let L denote the class of slowly
varying functions L(x) which are increasing for x � x0 > 0 and satisfy

lim
x!1

L(x) = +1: (1.3)

By a slowly varying function we mean a function L(x) which is positive and con-
tinuous for x � x0, and satis�es

lim
x!1

L(cx)

L(x)
= 1 (1.4)

for any c > 0 (see Bingham et al. [1] and Seneta [9] for an extensive account on
slowly varying functions). It is known that

L(x)� x" (1.5)
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for any given " > 0, and functions from L (such as logx; e
p
log x etc.) often occur

in analytic number theory. Note that we can choose our L(x) to tend to in�nity
arbitrarily slowly, since logL(x) is slowly varying if L(x) is and (1.3) holds. In
particular, we can take L(x) = logr x, the r-fold natural logarithm of x.

The aim of this paper is to study f(n) in short intervals (x; x + h], where

h = h(x) = x(k�1)=ku(x); 0 < u(x)� x� (0 � � < 1=k); (1.6)

and u(x) is increasing for x � x0. The interval (x; x+ h] is short in the sense that
h = o(x) as x!1 and the form of h given by (1.6) will become transparent later
from the proof (see (2.2)). Naturally it is desirable to have u(x) in (1.6) as small
as possible. From (1.1) and (1.2) it follows by an elementary argument that

X
n�x

f(n) =

 1X
m=1

g(m)m�1=k
!
x1=k +R(x); R(x)� xb: (1.7)

Hence for h given by (1.6) it follows that, as x!1,

X
x<n�x+h

f(n) =

�
C

k
+ o(1)

�
u(x)+R(x+h)�R(x); C =

1X
m=1

g(m)m�1=k: (1.8)

The problem is to determine for which u(x) one has in (1.8)

R(x+ h)� R(x) = o(u(x)) (x!1); (1.9)

so that the sum in (1.8) is asymptotic to Ck�1u(x), which is the quantity that one
expects to obtain from (1.7). In general this is a diÆcult problem, and even in
the classical cases when f(n) represents the characteristic function of squarefree or
squarefull numbers, it has not yet been solved satisfactorily (for latest results see
Liu [8] and Shiu [10], respectively). Thus we shall consider here the less diÆcult
problem of the integral of R(x + h) � R(x). In that case we can obtain a very
satisfactory solution, in the sense that we get the \expected" quantity when we
take in (1.6) u(x) = L(x), L(x) 2 L. This is in a certain sense optimal, since L(x)
may tend to in�nity arbitrarily slowly. The result is the following

Theorem. If f(n) satis�es (1.1) and (1.2), h = x(k�1)=kL(x) with L(x) 2 L,
then as X !1 we haveZ 2X

X

0
@ X
x<n�x+h

f(n)

1
A dx =

�
C

k
+ o(1)

�
XL(X); (1.10)

where C is given by (1.8).

The proof (1.10) will be given in Section 2, while some applications are to be
found in Section 3. It is possible to generalize the above Theorem in several ways.
For example, instead of (1.1) one may consider

f(n) =
X

(d1...dr)km=n

g(m);
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where k; r � 1 are given integers and g satis�es (1.2). This would entail the
appearance of �r(x), the error term in the general Dirichlet divisor problem (see
Ch. 13 of [5]). In particular �r would appear instead of 	 in (2.5), which would
make the ensuing estimation much more complicated. Also k in (1.1) does not have
to be an integer, but only k > 0 may be required, as long as (1.2) holds, and instead
of (1.1) we may suppose that

f(n) =
X
dkjn

h(d)g
� n

dk

�
;

where the summatory function of h(n) has a \nice" shape. However, for the sake
of simplicity, I found it expedient to prove the result in the form given by (1.10).

2. Proof of the Theorem. Let �rst X � x � 2X , H = H(x) =
x(k�1)=kL(X) so that L does not depend on x. Then

X
x<n�x+H

f(n) =
X

x<dkm�x+H; m�L(X)

g(m) +O

0
@ X
x<dkm�x+H; m>L(X)

jg(m)j

1
A

= S1 +O(S2);

say. By using (1.2) we have

S1 =
X

m�L(X)

g(m)
X

(x=m)1=k<d�((x+H)=m)1=k

1

=
�
(x+H)1=k � x1=k

� X
m�L(X)

g(m)m�1=k +O

0
@ X
m�L(X)

jg(m)j

1
A

= (1=k + o(1))L(X)

0
@ 1X
m=1

g(m)m�1=k +
X

m>L(X)

g(m)m�1=k

1
A+O(Lb(X))

= C=k + o(1))L(X);
(2.1)

where C is given by (1.8), since 0 � b < 1=k and

(x+H)1=k � x1=k = x1=k
�
H=kx+O((H=x)2)

�
= L(X)(1=k +O(L(X)X�1=k)):

(2.2)

Also

S2 =
X

L(X)<m�x+H
jg(m)j

X
(x=m)1=k<d�((x+H)=m)1=k

1

=
�
(x+H)1=k � x1=k

� X
L(X)<m�x+H

jg(m)jm�1=k

+
X

L(X)<m�x+H
jg(m)j

(
	

�� x
m

�1=k�
�	

 �
x+H

m

�1=k!)
(2.3)
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= o(L(X)) +
X

L(X)<M�x+H
jg(m)j

(
	

�� x
m

�1=k�
�	

 �
x+H

m

�1=k!)
;

where 	(t) = t� [t]� 1=2. Hence from (2.1) and (2.3) it follows that
2XZ
X

0
@ X
x<n�x+H

f(n)

1
A dx =

�
C

k
+ o(1)

�
XL(X) +O

�X�
; (2.4)

where

X
: =

2XZ
X

X
L(X)<m�x+H

jg(m)j

(
	

�� x
m

�1=k�
�	

 �
x+H

m

�1=k!)
dx: (2.5)

Now if t is not an integer one has the Fourier expansion

	(t) = �

1X
n=1

sin (2�nt)

�n
;

where the series is boundedly convergent and thus can be integrated termwise.
Therefore (2.5) givesX

=
1

�

X
L(X)<m�2X+H

jg(m)j

�

1X
n=1

1

n

2XZ
X1

(
sin

 
2�n

�
x+H

m

�1=k!
� sin

�
2�n

� x
m

�1=k�)
dx

with X1 = max(X;m�H). For those n which satisfy n > X we write the sines as
exponentials and estimate the integrals by the �rst derivative test (Lemma 2.1 of
[5]) to obtain that the total contribution of such n is

� X(k�1)=k X
m�2X+H

jg(m)jm1=k
X
n>X

n�2 � Xb:

For n � X write
2XZ
X1

(
sin

 
2�n

�
x+H

m

�1=k!
� sin

�
2�n

� x
m

�1=k�)
dx = 2I1 + 2I2;

say, where

I1 =

2XZ
X1

(sinA�A)cosBdx; I2 =

2XZ
X1

AcosBdx;

A = A(x) = �n

 �
x+H

m

�1=k
�
� x
m

�1=k!
� nm�1=kL(X);

B = B(x) = �n

 �
x+H

m

�1=k
+
� x
m

�1=k!
:
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For X � x � 2X we have

A0(x) =
�

k
nm�1=kx(1�k)=k

(�
1 +

H

x

�(1�k)=k
(1 +H 0)� 1

)

= �nm�1=kx�(k+1)=kL2(X)

�
k � 1

2k3
+O(X�1=kL(X))

�
> 0

if k > 1, and if k = 1 then A does not depend on x so (2.6) will follow more simply.
Consequently (sinA�A)0 = A0(cosA�1) � 0. Hence we can apply the second mean
value theorem for integrals to I1 and I2. For some C1 satisfying X1 � C1 � 2X we
have

I1 = (sinA(2X)�A(2X))

2XZ
C1

cosB(x)dx � nm�1=kL(X)n�1m1=kX(k�1)=k

= L(X)X(k�1)=k;

and for some C2 satisfying X1 � C2 � 2X

I2 = A(2X)

2XZ
C2

cosB(x)dx � L(X)X(k�1)=k:

Here we used jsinxj � jxj and the �rst derivative test for the cosine integrals. This
gives X

� Xb +
X

m�2X+H

jg(m)j
X
n�X

n�1L(X)X(k�1)=k

� Xb +X(k�1)=kXbL(X) logX = o(XL(X))

(2.6)

since b < 1=k. To complete the proof of the Theorem let

� = �(x) = x(k�1)=kL(2X); h = h(x) = x(k�1)=kL(x);

H = H(x) = x(k�1)=kL(X):

Recalling that L(x) is increasing for x � x0 it follows that

IH � Ih � I�; (2.7)

where

IF : =

2XZ
X

0
@ X
x<n�x+F

f(n)

1
A dx (F = H; h or �):

But from (2.4) and (2.6) we have

IH = (C=k + o(1))XL(X) (X !1);

and similarly it folows that

I� = (C=k + o(1))XL(2X) (X !1):
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Since L(x) is slowly varying (1.4) gives

L(2X) = (1 + o(1))L(X) (X !1);

and we obtain (1.10) from (2.7). It is the weak asymptotic formula (2.8) that
accounts for o(1) in (1.10), and hypotheses on L(x) that would give a sharpening
of (2.8) would lead to a sharpening of (1.10).

3. Applications. Some applications of the Theorem will be given now,
although many more can be found. Let k � 2 be a �xed integer. A natural
number n is k-free (resp. k-full) if n = 1 or if all the exponents in the canonical
decomposition of n are � k � 1 (resp. � k). Let Q(k) denote the set of k-free and
G(k) the set of k-full numbers. Then

f(n) =
X
dkjn

�(d) =

�
1 n 2 Q(k)

0 n 62 Q(k)
(3.1)

is the characteristic function of Q(k). One has (see (14.24) of [5])

Fk(x): =
X
n�x

f(n) =
X

n�x;n2Q(k)
1 =

x

�(k)
+Rk(x) (3.2)

with

Rk(x)� x exp
�
�C(k) log3=5 x(log logx)�1=5

�
(C(k) > 0): (3.3)

Rewriting (3.1) as

f(n) =
X
djn

g
�n
d

�
; g(m) =

�
�(m) m = lk;

0 m 6= lk;

it is seen that (1.1) and (1.2) hold with k = 1 and b = 1=k, where in the latter case
k refers to Q(k). Hence applying the Theorem we obtain

Corollary 1. If Fk(x) is given by (3.2) and L(x) 2 L, then as X !1

2XZ
X

(Fk(x+ L(x)) � Fk(x))dx =

�
1

�(k)
+ o(1)

�
XL(X): (3.4)

If n 2 G(k), then n can be written uniquely as

n = ak1a
k+1
2 . . .a2k�1k ; �2(a2 . . .ak) = 1:

In this case f(n) represents the characteristic function of G(k), and it has the form

f(n) =
X
dkjn

g
� n

dk

�
; g(n) =

X
ak+1
2

...a2k�1k =n

�2(a2 . . . ak): (3.5)
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If Ak(x) denotes the number of k-full integers not exceeding x,then we may write

Ak(x) =
X

n�x;n2G(k)
1 = 0;kx

1=k+1;kx
1=(k+1)+. . .+k�1;kx1=(2k�1)+Æk(x) (3.6)

where Æk(x) may be considered as the error term in the asymptotic formula for
Ak(x). For estimates of Æk(x) the reader is referred to Ch. 14 of [5]. One has
0;2 = �(3=2)=�(3), and in general

0;k =

1X
m=1

g(m)m�1=k =
1X

a2=1

. . .

1X
ak=1

�2 (a2 . . . ak)
�
ak+12 . . .a2k�1k

��1=k
: (3.7)

From (3.5) it follows thatX
n�x

jg(n)j �
X

ak+1
2

...a2k�1k �x
1� x1=(k+1):

Thus we have b = 1=(k + 1) in (1.2) and (1.10) gives

Corollary 2. If Ak(x) is given by (3.6), 0;k by (3.7) and h = x(k�1)=kL(x)
with L(x) 2 L, then as X !1

2XZ
X

(Ak(x+ h)�Ak(x))dx =

�
1

k
0;k + o(1)

�
XL(X): (3.8)

As our third example consider a(n), the multiplicative function which denotes
the number of nonisomorphic abelian groups with n elements. For Re s > 1 one
has (see Ch. 1 and Ch. 14 of [5])

1X
n=1

a(n)n�s = �(s)�(2s)�(3s) . . . ; (3.9)

while

A(x): =
X
n�x

a(n) = C1x+ C2x
1=2 + C3x

1=3 + Æ(x); Æ(x) � x�+"; (3.10)

where the currently best value � = 40=159 = 0:25172 . . . is due to Liu [7], and

Cj =

1Y
r=1;r 6=j

�

�
r

j

�
: (3.11)

From (3.9) one has

a(n) =
X
djn

g
�n
d

�
;

X
m�x

jg(m)j =
X
m�x

g(m)� x1=2;
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hence (1.1) and (1.2) hold with f(n) = a(n) and k = 1, b = 1=2. Thus (1.10) gives

Corollary 3. If A(x) is given by (3.10), C1 by (3.11) and L(x) 2 L, then

as X !1
2XZ
X

(A(x+ L(x)) �A(x))dx = (C1 + o(1))XL(X): (3.12)

Known pointwise estimates for the functions Fk(x), Ak(x) and A(x) are not
nearly as good as (3.4), (3.8) and (3.12), respectively. For k-free numbers in short
intervals the reader should see Filaseta's papers [2], [3], for squarefull and cubefull
numbers the already mentioned papers [8] and [10], and for a(n) the author's paper
[6].

In concluding it may be mentioned that the Theorem makes it possible to
obtain useful arithmetic information in certain cases. As an example consider k-
free integers, and let A = A(x;X) denote the set of x from [X; 2X ] such that
(x; x+L(x)] contains a k-free number, where L(x) 2 L. If Fk(x) is given by (3.2),
then x 2 A is equivalent to Fk(x + L(x)) � Fk(x) > 0. If m(A) is the measure of
A, then from (3.4) and its proof it follows that

�
1

�(k)
+ o(1)

�
XL(X) =

Z
A

(Fk(x+ L(x)) � Fk(x)) dx

� m(A) sup
x2[X;2X]

(Fk(x+ L(x))� Fk(x))

� m(A)

�
L(X) + sup

x2[X;2X]

���� X
L(x)<n�(x+L(x))1=k

�
	

�
x+ L(x)

nk

�
�	

� x

nk

������
�
:

Trivial estimation gives at once m(A) � X(k�1)=kL(X). Use of Lemma 3 of Hal-
berstam and Roth [4] leads to the better bound m(A)� X(2k�2)=(2k�1)�" for any
given " > 0, and the recent methods of Filaseta [2] would lead to some further
improvement.
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