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ON SOME CLASSES OF FINITE LOOPS

Dragan M. Acketa and Sne�zana Mati�c-Keki�c

Abstract. Four new equivalence classes of �nite loops are considered: C-, R-, E- classes,
and parastrophic closures. The �rst three classes are natural interclasses between isomorphic
and isotopy classes of loops. Their internal isotopies are characterized and a way for generating
isotopy classes from C-classes and R-classes is pointed to. The exact upper bound for the length
of parastrophic closures is determined.

1. Preliminaries

This paper is concerned with some properties of the four new equivalence
classes of loops: C-, R-, E- classes, and parastrophic closures, which were intro-
duced in [1]. The C-, R- and E-classes are interclasses between isomorphic and
isotopy classes of loops; the isotopies within them are characterized in Section 2.1.
The mutually dual C- and R-classes are used in Section 2.2 for representing isotopy
transformations over L(n) and for a construction of isotopy classes. It turns out
that E-classes have a speci�c behaviour, although their de�nition is analogous to
the de�nitions of C- and R-classes.

It is known [3] that iterative applications of parastrophic operators within

the class of loops (to a �xed initial loop) produce loops belonging to at most six
di�erent isomorphic classes. Parastrophic closures are obtained when the arising
loops themselves are considered, instead of their isomorphic classes. The best
possible upper bound for the cardinality of parastrophic closure is established in
Section 3.

Some necessary de�nitions and denotations are given in the sequel. Let S(n)
denote the set f1; . . . ; ng. A latin square of order n [4] is an n� n matrix A with
the elements in S(n); which satis�es that there are no two coinciding elements in
the same row or in the same column of A. A loop (with unit 1) of order n is a latin
square of order n which satis�es: A[i; 1] = A[1; i] = i; for 1 � i � n. L(n) will
denote the set of loops of order n. De�nitions of six kinds of equivalence classes
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over L(n) follow: Two loops X and Y of order n belong to the same isotopy class if
there exists an isotopy, i.e., a triple T = (p; q; r) of permutations of S(n) satisfying
Y [p(i); q(j)] = r(X [i; j]), for1 � i; j � n. In particular, if T is of the form (p; p; p),
(q; p; p); (p; q; p) or (p; p; q), then the loops X and Y are respectively said to belong
to the same isomorphic class,C-class,R-class or E-class. The relationships existing
among the permutations p and q (in the last three cases) are given in Section 2.1.

Let rA and lA respectively denote the permutations of S(n) which produce
the right and the left inverse elements of the loop A (thus A[i; rA(i)] = 1 and
A[lA(i); i] = 1 for i 2 S(n)).

Each loop A has six loop-parastrophes A, �(A), �(A), �(A), ��(A), ��(A);
associated to it, where � is the transposition operator, while the operators � and
� have the following meaning (denotations � and � are in accordance with the
denotations used in [3]: �(A)[rA(i); A[i; j]] = j; and �(A)[A[i; j]; lA(j)] = i, for
1 � i; j � n.

Two loops X and Y from L(n) are said to belong to the same parastrophic

closure if there exists a sequence X = Z1, Z2, . . . , Zk = Y of loops from L(n), such
that Zi+1 is a loop-parastroph of Zi, for 1 � i � k � 1. The parastrophic closure
associated to loop A will be denoted by PC(A).

The table [2] contains some summary data for n � 6, including cardinality of
L(n), as well as the number of all the considered subclasses of L(n):

n � 3 4 5 6

cardinality of L(n) 1 4 56 9408

number of isomorphic classes in L(n) 1 2 6 109

number of E-classes in L(n) 1 2 5 103

number of C-(also number of R-) classes in L(n) 1 2 3 40

number of isotopy classes in L(n) 1 2 2 22

number of parastrophic closures in L(n) 1 4 14 832

The order O of a permutation p is the smallest natural number such that pO

is the identical permutation.

2. C-, R- and E-classes

2.1. Relationships between permutations p and q in the de�nitions

of C-, R- and E-classes. The three lemmae of this section establish the rela-
tionships between the permutations p and q used in the de�nitions of C-, R- and
E-classes. More precisely, given a permutation p of S(n), we shall characterize the
permutations q of S(n), such that the isotopies (q; p; p), (p; q; p), and (p; p; q) map
L(n) to L(n). It turns out that the permutation p in the third case is not arbitrary.

Lemma 1. An isotopy (q; p; p) maps a loop X from L(n) to another loop in

L(n) if and only if q(i) = p(X [i; p�1(1)]), for 1 � i � n:
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Proof. Let Y denote the image of X under the isotopy (q; p; p). Then Y [i; j] =
p(X [q�1(i); p�1(j)]), for 1 � i; j � n:

only-if part: Since Y 2 L(n), then q(i) = Y [q(i); 1] = p(X [i; p�1(1)]), for
1 � i � n:

if part: Let q(i) = p(X [i; p�1(1)]), for 1 � i � n, where X 2 L(n). We are
going to show that the image Y has the element 1 as both the left and the right
unit.

Y has the left unit 1: Note primarily that q(1) = p(X [1; p�1(1)]) =
p(p�1(1)) = 1: It further follows that for 1 � j � n:

Y [1; j] = p(X [q�1(1); p�1(j)]) = p(X [1; p�1(j)]) = p(p�1(j)) = j:

Y has the right unit 1: Similarly as in the only-if part

Y [q(i); 1] = p(X [i; p�1(1)]) = q(i); for 1 � i � n: �

Lemma 2. An isotopy (p; q; p) maps a loop X from L(n) to another loop in

L(n) if and only if q(i) = p(X [p�1(1); i]); for 1 � i � n:

Proof. Dual to the previous one; the roles of rows and columns are inter-
changed. �

The de�nition of E-classes is analogous to the de�nitions of C- and R-classes
w.r.t. the concept of general isotopy. However, when the consideration is restricted
to the loops in L(n), it turns out that E-classes have a special role.

Lemma 3. An isotopy (p; p; q) maps a loop X from L(n) to another loop in

L(n) if and only if q(X [p�1(1); i]) = q(X [i; p�1(1)]) = p(i); for 1 � i � n:

Proof. Let Y denote the image of X under the isotopy (p; p; q). Then

Y [i; j] = q(X [p�1(i); p�1(j)]); for 1 � i; j � n:

only-if part: Since Y 2 L(n), then p(i) = Y [p(i); 1] = q(X [i; p�1(1)]), and
p(i) = Y [1; p(i)] = q(X [p�1(1); i]), for 1 � i � n:

if part: The element 1 is proved to be both the left and the right unit of
Y : Y [p(i); 1] = q(X [i; p�1(1)]) = p(i), and Y [1; p(i)] = q(X [p�1(1); i]) = p(i), for
1 � i � n: �

Remark. The commutator of a loop X 2 L(n) is the set of those elements
k 2 S(n), satisfying X [k; j] = X [j; k], for each j 2 S(n). The element p�1(1)
in the previous lemma belongs to the commutator of X . It turns out that the
element 1 belongs to the commutator of the image Y of the loop X under the
isotopy (p; p; q); since X [p�1(1); i] = X [i; p�1(1)] implies q(X [p�1(1); p�1p(i)]) =
q(X [p�1p(i); p�1(1)]) and Y [1; p(i)] = Y [p(i); 1].

It can be proved in a similar way that each element k of the commutator of
X is mapped by the isotopy (p; p; q) to the element p(k) of the commutator of Y . It
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follows that those isotopies of the form (p; p; q), which map L(n) to L(n), preserve
the cardinality of the commutator.

Consequently, an abridged search for E-classes can be gained by partitioning
(representatives of) isomorphic classes w.r.t. this cardinality. If the commutator of
a loop is equal to f1g, then its isomorphic class coincides with its E-class (since
p(1) = 1 implies q = p).

2.2. Generating isotopy classes over L(n) from C-classes and R-

classes. A property of isotopies over the class L(n) is described by the following
lemma (which is an easy consequence of Lemmae 1.1 and 1.2 from [3]):

Lemma 4. Each isotopy (p; q; r), which maps a loop X from L(n) to another

loop in L(n), satis�es p(i) = r(X [i;m]) and q(i) = r(X [l; i]), for 1 � i � n, for

some index pair (l;m); which satis�es r(X [l;m]) = 1:

Proof. If m = q�1(1) and l = p�1(1), then for 1 � i � n; p(i) = Y [p(i); 1] =
r(X [i; q�1(1)]) = r(X [i;m]) and q(i) = Y [1; q(i)] = r(X [p�1(1); i]) = r(X [l; i]). �

The following lemma says that the general isotopy transformation over L(n)
can be represented as a product of two special isotopy transformations, one of which
is restricted to an C-class, while the other one is restricted to an R-class:

Lemma 5. If two loops X and Z in L(n) are isotopic, then there exists a

third loop Y in L(n), such that the loops X and Y belong to the same C-class, while

the loops Y and Z belong to the same R-class.

Proof. Let (p; q; r) be an isotopy mapping X to Z. Further, let p1 denote
an arbitrary permutation of S(n) satisfying p1(m) = 1, where m denotes the index
used in Lemma 4. It suÆces to prove that there exist permutations p2, q1 and q2
of S(n) and a loop Y in L(n) so that the isotopy (q1; p1; p1) maps X to Y and that
the isotopy (p2; q2; p2) maps Y to Z. The equations q1 � p2 = p, p1 � q2 = q and
p1 � p2 = r imply that q2 = p�11 � q, p2 = p�11 � r and q1 = p � r�1 � p1.

The following derivation

q1(i) = p1(r
�1(p(i)))

Lemma 4
= p1(r

�1(r(X [i;m]))) = p1(X [i; p�11 (1)]);

for 1 � i � n, combined with Lemma 1, proves that the image Y of the loop X

under the isotopy (q1; p1; p1) is a loop in L(n). �

Remark. Notice that there are (n � 1)! possible choices for the permutation
p1 and the same number of representations of an isotopy over L(n) in the form of
the desired product. Two particular possibilities for p1 are p1 = q and p1 = r � p�1.

Corollary. Each C-class has a nonempty intersection with each R-class

inside the same isotopy class.

Proof. Suppose that there exists a C-class C0 and an R-class R0 within the
same isotopy class so that C0 \ R0 = ;. Let the loops X and Z satisfy X 2 C0

and Z 2 R0. Lemma 5 gives that there exists a loop Y such that the loops X and
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Y are in the same C-class (i.e., in the class C0) and Y and Z are in same R-class
(the class R0). The existence of the loop Y contradicts the assumption. �

C-classes and R-classes can be constructed in a similar way as the isomorphic
classes over L(n), by the procedure described in [1]. The following Theorem 1 may
serve as a basis of an improved algorithm for the construction of isotopy classes
over L(n) by using C- and R-classes:

Theorem 1. The isotopy classes of loops in L(n) can be determined as

the unions of those R-classes which have nonempty intersections with the same

C-class.

Proof. The theorem easily follows from Lemma 5 and its consequence. �

The basic procedure of the construction of isotopy classes over L(n) from C-
classes and R-classes detects whether the intersection of a given C-class and a given
R-class is empty or not. There are two alternative classes of objects which can be
searched for in the course of this procedure: a) common loops, and b) common
isomorphic subclasses. It seems that the approach a) is a more eÆcient, since it
does not require the construction of isomorphic classes.

3. On the cardinality of parastrophic closures

A well-known statement from [3] says:

Statement. Iterative applications of loop-parastrophic operators to an initial

loop A give loops from at most six di�erent isomorphic classes.

The six loop-parastrophes of A are the representatives of these six isomorphic
classes (it was shown in [3] that the loop �(A) is isomorphic to each of the loops
���(A) and ���(A)).

When considering parastrophic closures, we are interested in loops them-
selves, not merely in their isomorphic classes. It turns out that the generation
of the parastrophic closure PC(A), associated to a loop A, often requires longer
alternative applications of the operators � and �, which should in some cases be
accompanied by one application of the operator � .

The following theorem, which is the main result of this section, is an analogue
of the above statement, when nonisomorphic loops are replaced by non-identical
loops:

Theorem 2. jPC(A)j � 6 order(rA) for each loop A.

The proof this theorem is based on a number of lemmas.

The de�nition of loop-parastrophies immediately gives:

Lemma 6. All the loops from PC(A) can be obtained by iterative applications

of loop-parastrophies �, � and � to A.

Lemma 7. [3] lA = r�1A , rA = l�1A , l�(A) = rA, r�(A) = lA, l�(A) = rA,
r�(A) = lA, l�(A) = rA, r�(A) = lA.
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Lemma 8.[3] If a loop A is given, then (a) �2(A) = A and (b) �2(A) = A:

Lemma 9. If a loop A is given then (a) ��(A) = ��(A); (b) ��(A) = ��(A):

Proof. (a) Since A[i; j] = �A[j; i] the loops ��(A) and ��(A) satisfy
��(A)[r�(A)(j); A[i; j]] = i and ��(A)[lA(j); A[i; j]] = i respectively. The equali-
ty r�(A) = lA from Lemma 7 completes the proof. �

Corollary. �(��)k = (��)k� and �(��)k� = (��)k�� for k > 0.

Lemma 10. Given a loop A of order n, the loop (��)3(A) satis�es

(��)3(A)[r2A(i); r
2
A(j)] = r2A(A[i; j]); for 1 � i; j � n:

Proof. Given a loop B, notice that value = B[ row index; column index]
implies

row index = �(B)[value; lB(column index)]

column index = �(B)[rB(row index); value]

Applying this rule six times, as well as the reduction (by Lemma 7)

r������(A) = l�����(A) = r����(A) = l���(A) = r��(A) = l�(A) = rA;

it can be iteratively derived that for 1 � i; j � n

�(A)[rA(i); A[i; j]] = j;

��(A)[j; l�(A)(A[i; j])] = ��(A)[j; rA(A[i; j])] = rA(i);

���(A)[r��(A)(j); rA(i)] = ���(A)[rA(j); rA(i)] = rA(A[i; j]);

����(A)[rA(A[i; j]); l���(A)(rA(i))] = ����(A)[rA(A[i; j]); r
2
A(i)] = rA(j);

�����(A)[r����(A)(rA(A[i; j])); rA(j)] = �����(A)[r2A(A[i; j]); rA(j)] = r2A(i);

������(A)[r2A(i); l�����(A)(rA(j))] = ������(A)[r2A(i); r
2
A(j)] = r2A(A[i; j]): �

Corollary. If O denotes the order of the permutation rA, then the oper-

ator (��)3O is identity. This further implies that (��)i = (��)3O�i and �(��)i =
�(��)3O�i�1 holds for 1 � i � 3O � 1. �

Lemma 11. Given a loop A of order n, the loop (��)3(A) for 1 � i; j � n

satis�es (��)3(A)[l2A(i); l
2
A(j)] = l2A(A[i; j]);.

Proof. Dual to the previous one. �

Lemma 12. Each loop from PC(A) can always be obtained from A by appli-

cation of the transformations of the form

(a) (��)i or �(��)i�1 for some i > 0 when the order of rA is odd

(b) (��)ior�(��)i�1 or (��)i�or�(��)i�1� for some i > 0 when the order of

rA is even.
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Proof. It follows from Lemma 8 that two same operators from the set f�; �; �g
should be never successively applied, while Consequence of Lemma 10 implies that
a product of operators � and � beginning with � can be always replaced by such a
product beginning with �.

Lemma 9 implies that the operator � possesses a kind of commutativity with
respect to the operators � and �. This implies that the calls of � can always be
applied �rst. Thus odd number of appearances of � can always be reduced to one
(which would be applied in the very beginning) and even number can always be
reduced to zero.

It remains to show that the odd order of rA guarantees that the operator �
can be expressed by means of � and �. More precisely: If order(rA) = 2k+1, then
�(A) = (��)3(k+1)(���)(A):

Namely, the loop ���(A) in the proof of Lemma 10 satis�es

���(A)[rA(j); rA(i)] = rA(A[i; j])

i.e. (by Lemma 7)
���(A)[l�1A (j); l�1A (i)] = l�1A (A[i; j]):

If the operator (��)3(k+1) is applied to this loop, then the Lemma 11 gives (since

r2k+1A = l2k+1A = identity) that the new loop B = (��)3(k+1)(���)(A) satis�es:

B[l2k+2A (l�1A (j)); l2k+2A (l�1A (i))] = l2k+2A (l�1A (A[i; j])); i.e. B[j; i] = A[i; j]: �

Proof of Theorem. Let O denote the order of permutation rA. We distinguish
two cases, depending on parity of O:

Case 1. O is odd: Lemma 10 implies that (��)3O(A)[r2OA (i); r2OA (j)] =
r2OA (A[i; j]): The permutation r2OA is identical, so the loop (��)3O(A) coincides
with A. On the other hand, Lemma 12 (a) guarantees that all the loops of PC(A)
can be found among the loops �(A), ��(A), . . . , (��)3O(A). This implies that
jPC(A)j � 2 � 3 � O.

Case 2. O is even: Similarly, Lemma 10 implies that

(��)3O=2(A)[rOA (i); r
O
A(j)] = rOA(A[i; j]):

The loop (��)3O=2(A) coincides with A. This time Lemma 12(b) guarantees that
only half of the loops of PC(A) can be found among the loops �(A); ��(A); :::;
(��)3O(A); a loop from the other half can be obtained by putting �(A) instead of
A in the above sequence. Thus the total number of loops in jPC(A)j cannot be
greater than 2 � 2 � 32 �O. �

Corollary: If A is a loop of order n, then jPC(A)j � 6maxF (p); where
F (p) denotes the least common multiplier of the summands of a partition p, while

the maximum is taken over all the partitions p of the number n� 1.



8 D.M. Acketa and S. Mati�c-Keki�c

Namely, the summands of the partition are associated to the cycle lengths of
a permutation p on S(n), which has the �xed point 1.

Remarks. We have made a number of tests with randomly generated loops on
n � 7. Each test has generated 1000 loops A, such that the permutation rA = p was
�xed and given in advance. It turned out that all the generated loops A satis�ed
jPC(A)j = 6order(p), that is, all of them reached the upper bound of Theorem 2.
We therefore conjecture that the length of the parastrophic closure of A of a larger
order almost always coincides with 6 order(rA).

On the other hand, among all the 9408 loops of order 6 [2], only 5650 reach
this upper bound. More precisely, the upper bound is reached with all those loops
A of order 6, which satisfy jPC(A)j > 12, and only with 150 loops with smaller
jPC(A)j (120 with jPC(A)j = 12 and 30 with jPC(A)j = 6). These data motivate
the second (general) conjecture:

If jPC(A)j > 12 for a loop A; then jPC(A)j = 6 order(rA).

It seems that the loops A of order 6 with jPC(A)j = 10 are particularly
interesting. All of them have order (rA) = 5. In addition, 10 is the largest length
that we know of a alternative product P of operators � and � (beginning with �)
which satis�es: P is a minimal non-empty such product which �xes the initial loop
A and the length of P is less than the theoretical maximum 6 order(rA).

The minimal length of a parastrophic closure is settled by the following:

Statement. For each n there is a loop A of order n so that jPC(A)j = 1.

The multiplication table of the cyclic group on S(n) satis�es the condition
of the statement. If n = 2k; then another interesting representative of the same
isomorphic class of loops can be obtained from the cyclic group on k elements by
supstituting each element v in the table by the 2 � 2 latin square with the elements
2v � 1 on the main diagonal and the elements 2v on the other diagonal.
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