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INFERENCE IN A RELATIONAL KNOWLEDGE-BASE

WITH TWO TYPES OF NULL VALUES

Gordana Pavlovi�c-La�zeti�c

Abstract. The problem of retrieving a knowledge-from-text base, on a text level, is con-
sidered. A solution is given that is based on retrieving a text on a sentence level. It consists of
converting a query whose quali�cation and target attributes are not present in the same sentence,
into an equivalent set of subqueries, each of which having all of its attributes present in the same
sentence. Logical conditions underlying this decomposition are based on functional and multival-
ued dependencies between quali�cation and target attributes of the subqueries. The dependencies
are de�ned in the extended relational model with two types of null values, representing a text.
These conditions are proved to provide for answers to the last subquery to coincide with the
answers to the original query, i.e., to be correct.

1. Introduction

Lexical data type for storing and manipulating textual databases has been
designed and reported elsewhere [12]. It expands the relational database concept
as to provide for managing text as data. The approach to organizing texts enables
simple and precise realization of a set of operations over a text represented as an
array of lexical data. Di�erent level operators have been designed and implemented,
ranging from low level operators on single lexical units (e.g., �nd root, part of
speech, semantic property of a word), rule-based operators on sets of lexical units
(e.g., morphological analysis, resolving ambiguity), up to high level traditional
operators over an entire array of lexical data representing a text, such as automatic
indexing, determining keywords and phrases, abstracting, retrieval, editing. A
speci�c, high-level semantic operator of intelligent retrieval of a lexical database,
has been designed and reported in [12, 13]. Knowledge from a text is treated as a
disconnected knowledge on a sentence level, so that recall and precision of an answer
obtained to a given query depends on ability to map, completely and precisely, a
formal query into a search mechanism through a sentence of a text. Since di�erent
sentences contain, as a rule, information of di�erent kinds, knowledge-from- text
representation scheme is a relational model with two types of null values.
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This paper addresses the problem of retrieving a knowledge-from-text base,
not only on a sentence level, but also on a text level. A mechanism is necessary that
converts a query whose quali�cation is present in a sentence and target attributes
are not, into a set of subqueries, each of them having quali�cations and target
attributes present in the same sentence. An answer to the last subquery has to
coincide with an answer to the original query. The corresponding mechanism has
its formal ground in the extended relational model with null values, and in query
decomposition based on functional and multivalued dependencies in it. The e�ect
is retrieval of a connected text based on retrieving a disconnected one.

2. Intelligent information retrieval {
relational knowledge-base model

Intelligent information retrieval (facts extracting from texts) consists in ask-
ing a question about a fact from a text (for example, \When a person named X
was born?") and �nding an answer (for example, \1879"). This activity may be
represented by an operator [13]

ftextg � fqueriesg ! ffactsg:

As opposed to other approaches where the problem of facts extracting is con-
sidered as a constituent part of a broader problem of connected text understanding,
(e.g., [1], [7], [9], [15]), this approach proceeds from the problem itself. The re-
lational model and a relational schema are chosen as a representation scheme of
limitted (disconnected, sentence-level) knowledge from a text. A relational schema
represents a user's view of a text. For example, from a set of biographies, a user
may be interested in birth dates, birth places, degrees, employments, degree insti-
tutions and employment institutions, and nothing else. Thus, a relational schema
designed as a view to a set of biographies may contain, among the others, the
following relation:

DEGREE (name, institution, degree, degree-date, degree-�eld).

The set of biographies may contain the following sentence:

(a) The University of Belgrade gives Ph.D. degree in chemistry.

The schema �a priori de�nes a set of queries allowed. For example, the follow-
ing query is a legal one:

(q)What �elds the University of Belgrade gives degrees in?

Mapping of a pair (text, query) into answers to the query (for example, (bi-
ographies, (q)) ! (chemistry)), intensively uses syntactic and semantic properties
of words incorporated into lexical data representing those words.

For queries that may be posed over texts the following holds:

A) every query is one variable query, and thus one relation query (many
variable query may be decomposed into a set of one variable queries);

B) queries are expressed in a query language (e.g., QUEL [8]).
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Main components of the sistem for intelligent text retrieval are: a relational

schema de�ned for a speci�c application, text retrieval operator (de�ned by map-
ping a query over a relation into a search mechanism through a text) and a search
algorithm for �nding an answer.

De�nition of a relational schema is a design problem. In order to implement
a text retrieval operator, the relational schema is supplied with some language-
oriented semantics, e.g.:

f1 : frelations-relationshipsg

f1 : frelations-entities g

f2 : fdomains g

f3 : fattributes g

!

!

!

!

8>>>>>>>>><
>>>>>>>>>:

f(lex[position]) jroot(lex[pos]) = const1 and/or

type(lex[pos]) = const2 and/or

prop(lex[pos]) = const3 and/or

type(lex[pos� 1]) = prep and/or

type(lex[pos + 1]) = prep and/or

(. . . )g

f4(= I) : fconstantsg ! f constantsg:

One variable query over a relation R of a relational database is of the form

(q1) range of e is R

retrieve (e:C) where e:A = �

(C = fC1; C2; . . . ; Ckg; A = fA1; A2; . . . ; Amg -sets of attributes of the relation
R; � = (a1; a2; . . . am) �m -tuple of constants, e:C � fe:C1; e:C2; . . . e:Ckg , and
e:A = � denotes e:A1 = a1; e:A2 = a2; . . . ; e:Am = am) .

In the example query (q), C =fdegree-�eldg, A =finstitutiong, � =
fUniversity of Belgradeg.

Since the query (q1) is characterized by sets of attributes A;C and a constant
� , mapping of the query (q1) into a search mechanism through a text is of the
form

f = f1 � f2 � f3 � f4 : (q1)! (qt1);

where (qt1) = (�nd all the sets of lexical units satisfying f3(C); f2(domain(C))
and belonging to sentences that contain f1(R) and a constant f4(�) (or f3(Ai) or
f2(domain(Ai)), for each attribute Ai from A)) .

Let answ(q1) consist of all the answers to the query (q1) contained in the text
(no matter how can they be found). The query (qt1)( � f(q1)) has an e�ectively
computable set of answers, answt(qt1) (implemented by the third component of
the system, a search algorithm). In an idealistic case (the mapping f maps ideally
elements of a relational schema into language elements and all the answers to the
query are contained in the same sentences with the query data), the equality answ
= answt�f would hold. Something weaker, but still an idealistic case would be
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answ' = answt�f , where answ'(q1) is a set of answers to the query (q1) contained
in the same sentences with the query data ( A;� ). It is desirable to provide for,
at least, inclusion answt�f � answ' , since it means that all the answers found
are correct.

The following two measures express levels of satisfaction of the two inclusions,
answt �f � answ', answ' � answt �f :

-precision (pr) of the mapping answt�f : pr(answt�f) = p = P (answt�f �
answ') (a probability that an answer found from a set of lexical units, representing
an image of a query, is correct);

{ recall (rec) of the mapping answt�f : rec(answt�f) = p0 = P (answ' �
answt � f) (a probability that a set of lexical units, containing an answer, as well
as the answer itself, are found).

A probability p is a probability of an intersection of the two independent
events ((1) a set of lexical units which is an image of a query, under the mapping
f , contains an answer, (2) an answer found from the set of lexical units is correct),
(and similarly for the probability p0). Since f = f1 � f2 � f3 � f4, the following
holds:

p = pr(f) � pr(answt) = pr(f1) � pr(f2) � pr(f3) � pr(f4) � pr(answt)

p0 = rec(f) � rec(answt) = rec(f1) � rec(f2) � rec(f3) � rec(f4) � rec(answt);

where

pr(f1) =
number of lexical units in f1(relations); semantically related to relations

number of lexical units in f1(relations)

(and similarly for mappings f2 � f4, answt),

rec(f1) =
number of lexical units in f1(relations); semantically related to relations

number of lexical units semantically related to relations

(and similarly for mappings f2 � f4, answt).

Intuitivelly, a precison of a mapping is a probability of an image of a database
element to be semantically related to that element. A recall of a mapping is a
probability of a phrase which is semantically related to a database element, to be
in an image of that element under the mapping. If a precision of all the mappings
f1 � f4 , answt is 100% , then answt�f � answ'. If a recall of all the mappings
f1 � f4, answt is 100%, then answ' � answt�f .

The above features of the mappings f1 � f4, answt, are purely empirical
and belong both to the �eld of linguistics and to semantics of a model. Maximizing
probabilities p; p0 is a primary goal of a design of an intelligent retrieval.

The third component of the system, search algorithm (answt) for �nding an
answer to a query over candidate sets of lexical units obtained by the mapping
f , may involve di�erent strategies for determining levels of relevant sentences and
phrases [13], which are beyond the scope of this paper.
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An entity or a relationship represented by a relation in a relational schema
corresponds to a sentence from a text. Since a sentence may contain data which are
relevant for some (but not for all) attributes of an entity (relationship), relational
model used for knowledge from text representation includes null values. For exam-
ple, a set of biographies, except for the sentence (a), may also contain the following
two sentences:

(b) XX received her M.S. degree in computer science.

(c) XX received her M.S. degree from the University of Belgrade.

Then a virtual contents of the relation DEGREE may be

DEGREE

||||

���������

name institution degree degree-date degree-�eld

||| |||||||| |||| |||||| ||||||

� Univ. of Belgrade Ph.D � chemistry

XX ! M.S. ! comp. science

XX Univ. of Belgrade M.S. ! !

where ! denotes yet unknown value, and � denotes unde�ned value [11]. Still,
by uni�cation of the attributes institution, degree-�eld (because of the functional
relationship between sets of attributes fname, degreeg and finstitution, degree-
�eldg, another answer, computer science, may be obtained. By applying \factual"
inference, i.e., operators of loseless projection and join (based on functional and
multivalued dependencies), relational model becomes a representation of connected
knowledge from text: it provides for linking attribute values not contained in a
single sentence.

3. Dependencies in the relational data model
with two types of null values

Relational model of data with incomplete information has been considered
from all the aspects { structural, manipulative and integrative (e.g., [3], [5], [6],
[10], [14], [16]).

In [11], a generalizad relational model with unde�ned (�) and unknown (!)-
types of null values was considered, from the point of view of operations of the basic
relational algebra [2] applicable to relations containing these null values. Unde�ned
value has the meaning \property unapplicable", while unknown value stands for any
value (not known yet) from a domain of an attribute, but not for the unde�ned
value. With each operation of the relational algebra (union, intersection, di�er-
ence, Cartesian product, projection, restriction, join, division), two operations in
the relational model with two types of null values were associated: \true" and
\maybe" operations. A result of a \true" operation contained tuples that were
known to satisfy conditions de�ning the corresponding operation of the basic rela-
tional algebra. A result of a \maybe" operation contained tuples for which it was
not known whether they satis�ed conditions or not. Properties of and relationships
between the operations were proved that are signi�cant for query optimization. It
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was necessary to de�ne, �rst, three-valued relations of equality of individual values,
equality of tuples, relation membership and inclusion; the truth value set was fT,
F, ! g - \true", \false" and \unknown" (\maybe"). For example, a three-valued
equality of individual values was de�ned by the following table:

�(x
:
= y)

y 2 D
y = !
y = �

�������

x 2 D x = ! x = �
�(x = y) ! F

! ! F
F F T

(� denotes a truth value, = denotes string equality, �(x = y) denotes the truth
value of the basic two-valued equality, and D is any domain).

Then an extended equality of tuples r; s (\true", \maybe", \false"), over
the same set of attributes X , is de�ned in the following way:

�(r
:
= s) = T (true) i� (8A 2 X) �(r[A]

:
= s[A]) = T (true);

�(r
:
= s) = !(\maybe00); i� (8A 2 X) �(r[A]

:
= s[A]) 2 fT; !g;

and �(r
:
= s) 6= T ;

�(r
:
= s) = F (false) i� (9A 2 X) �(r[A]

:
= s[A]) = F:

There are many possibilities for de�ning integrity constraints, speci�cally
functional and multivalued dependencies (FD, MVD, respectively, [4]), in the above
extended model. An \extended" de�nition of an FD (MVD) has to provide for, at
least, \natural extension", which means that if an FD (MVD) holds in the basic
relational model (without null values), than it has to hold according to the extended
de�nition, too.

One possible criterion in deciding upon an extended de�nition of dependen-
cies, is a \degree of certainty" of an assertion that in a relation R of the extended
model an FD (MVD) holds. Let a \completion" of R consist of replacing each
tuple r that contains ! - values (if there is any) with one or more tuples which are
\maybe" equal to r and do not contain ! - values. Then the following alternative
de�nitions of FD (MVD), in increasing order of certainty and restrictiveness, may
be introduced:

De�nition 1. FD X ! Y ( MVD X !! Y ) holds in a relation R with
three disjoint sets of attributes X;Y; Z i�

A. for at least one completion of R , FD (MVD) holds according to the
de�nition of FD (MVD) for the basic relational model (�-values, if there are any,
are treated like any other value from the domain), or

B. for each replacement of !-values on X , by speci�c domain values, there
exists a completion of R such that FD (MVD) holds in it according to the de�nition
of FD (MVD) for the basic relational model, or

C. for all completions of R , FD (MVD) holds, according to its basic de�ni-
tion.

Although all the three alternatives satisfy \natural extension" principle, the
C-condition seems to be excessively restrictive. It provides for certainty in a sense
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that every FD (MVD) which holds in a relation R according to De�nition 1C,
also holds according to the basic FD (MVD) de�nition in a relation R0 which is
obtained from the relation R by substituting arbitrary domain-values for !-values
in R . Still, since every ! value stands for a single value from a domain (not for all
the values), this de�nition does not \catch" some of the FDs (MVDs) that would
actually hold after completing incomplete information.

An FD (MVD) de�ned by either De�nition 1A or De�nition 1B, may not
imply the corresponding basic FD (MVD) in some of the completions of the relation
R. Still, since De�nition 1B provides for this implication in more cases, and it
also \catches" signi�cant amount of FDs (MVDs) that would actually hold after
completing incomplete information, the rest of this consideration will relate to
De�nition 1B.

De�nition 1B can be split into two de�nitions (one for FD, another for MVD),
both formalizad and expressed in terms of the relation in question alone.

De�nition 2B. Let R be a relation in the extended relational model with
two types of null values, with three disjoint subsets of attributes X;Y; Z. An FD
X ! Y holds in R i�

(8r; s 2 R)(�(r[X ]
:
= s[X ]) 2 fT; !g =) �(r[Y ]

:
= s[Y ]) 2 fT; !g)

For example, in the relation \DEGREE" of the virtual relational schema
described in section 2, a functional integrity constraint X = fname, degreeg !
Y = finstitution, degree-�eldg holds according to De�nition 2B of FD:

r = (XX; mr; !; !; computer science); s = ( XX; mr; UB; !; !);

r[X ] = s[X ] = (XX, mr); r[Y ] = (!; computer science); s[Y ] = (UB; !);

�(r[X ]
:
= s[X ]) = T; �(r[Y ]

:
= s[Y ]) = ! :

It can be noted that De�nition 2B is either equivalent to a \strong" FD or lies be-
tween \weak" and \strong" FD as de�ned in [16], depending on how one interprets
the equality (=) used there.

De�nition 3B. Let R be as in the de�niton 2B. For x; x0 2 R[X ] s.t. �(x
:
=

x0) 2 fT; !g , and for z 2 R[Z] (string-based element), let Yxz; Y(x;x0)z(�R) be
the sets fy j (x; y; z) 2 Rg; fy j y 2 R[Y ]&(x; y; z) =2 R &(9t 2 R)(�(t

:
= (x; y; z)) 2

fT; !g&�(t[X ]
:
= x0) 2 fT; !g)g; respectively.

Then an MVD X !! Y holds in the relation R i� for each pair x; x0 2 R[X ]
such that �(x

:
= x0) 2 fT; !g and for each z; z0 2 R[Z] such that Yxz; Yx0z0 are

nonempty, the following holds:

Yxz � Yx0z0 [ Y(x0;x)z0(�R) and Yx0z0 � Yxz [ Y(x;x0)z(�R):

It can be proved that De�nition 1B is equivalent to De�nitions f2B, 3Bg.

For MVD de�ned by De�nition 3B some properties analogous to the proper-
ties of MVD in the basic relational model [4] may be proved:
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P1. If X and Y are disjoint, and if the FD X ! Y (de�ned by De�nition
2B) holds in a relation R , then MVD X !! Y (de�ned by De�nition 3B) also
holds in R.

P2. (characterization theorem) MVD X !! Y (de�ned by De�nition 3B)
holds in a relation R i� �(R[X;Y ] �T R[X;Z] [ R[X;Y ] �! R[X;Z]

:
= R) 2

fT; !g (�T ; �! are true and maybe join operators).

The fact that some FDs and MVDs hold in a relation of the relational model
with two types of null values provides for decomposition of a query over a relational
knowledge base with null values into a set of queries whose target and quali�cation
attributes do not take null values. This decomposition is named factual inference

and will be elaborated in the next section.

4. Factual inference in a relational knowledge base
with null values

In the section 2, an example of two answers to a query over a text has been
given. The second answer was present in the text, but the way to come to it
was indirect, through other information contained in the text directly. Data we
give (constants), information constituting an answer (target values) and indirect
information leading to the answer (intermediaries), are semantically related in the
text. The semantic relationship has its analogue in a formal scheme, and these
are functional and multivalued dependencies in the model with two types of null
values. A process of computing this indirection is named factual inference.

For a given query over one relation, a sentence containing quali�cation con-
stants but not values of target attributes, corresponds to a virtual tuple with null
values on the query target attributes. An answer to the query cannot be obtained
from such a sentence (tuple), but the original query can be decomposed into a set
of subqueries whose quali�cations and target attributes satisfy an FD or an MVD.
An answer to each of the subqueries is then searched for directly in a single sen-
tence (i.e., a tuple having not-null values on target attributes of the subquery). An
answer to the last query is then an answer to the original query.

In what follows, an inference algorithm for answer �nding will be described,
which includes a query decomposition. Then a set of theorems is formulated (and
proved) leading to the proof that answers, obtained by the algorithm, are as precise
(correct) as a mapping of a formal query into a textual query, and a mapping of
the textual query into answers from the text, are precise, and as complete as these
mappings are complete.

4.1. Inference algorithm. Let a relational schema R� be de�ned by
sets of (1) relations, (2) attributes, (3) domains, and (4) functional and multivalued
dependencies. Let R(A;C;REST ) (A;C;REST - disjoint sets of attributes) be a
relation of the schema. Given a query over the relation R

(q1) range of e is R

retrieve (e:C) where e:A = � ,
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the following algorithm gives answers to the query (q1), contained in texts.

Algorithm A

1. map the query (q1) into lexical categories of texts { into the query (qt1)
(mapping f);

2. �nd answer(s) if it (they) exist(s), to the query (qt1) (mapping answt);

3. if an answer has been found in the step 2, then

3a. if an FD A! C holds in the relation R, then stop;

4. let B1; B2; . . . ; Bk be a set of pairwise disjoint sets of attributes of
the relation R, which do not take ! values, and such that multivalued de-
pendencies B1 !! B2; B2 !! B3; . . . ; Bk !! C hold in the projection
R[A;B1; B2; . . . ; Bk; C] of the relation R. Then for the smallest k > 0 for which
the step 4. has not been done yet, do :

4a. substitute the query

(q2) range of e1 is R

range of e2 is R

...

range of ek+1 is R

retrieve (ek+1:C) where ek+1:Bk = ek:Bk and

ek:Bk�1 = ek�1:Bk�1 and . . . and e1:A = �

for the query (q1);

4b. decompose the query (q2) into k+1 queries (q2i), that are equivalent
to the query (q2):

(q21) range of e1 is R

retrieve (e1:B1)| {z }
c1

where e1:A = �

(q22) range of e2 is R

retrieve (e2:B2)| {z }
c2

where e2:B1 = c1

...

(q2k+1) range of ek+1 is R

retrieve (ek+1:C) where ek+1:Bk = ck;

4c. map every query from 4b. (q2i) into a query over a text (qt2i, mapping
f), and search for answers to each of the queries (qt2i); an answer to the query
(qt2k+1) is an answer to the original query (q2);

4d. repeat the step 4 if possible, else stop.
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Theorem A (on the Algorithm A): Let pr(f), pr(f1) { pr(f4), pr(answt), be
precisions of the mappings f; f1�f4; answt, respectively. Then for every answer

to the query (q1), obtained by the algorithm A, the following holds:

P (answer 2 answ(q1)) = (pr(f1) � pr(f2) � pr(f3) � pr(f4) � pr(answt))
k+1

where k+1 is the number of tuple variables of the query (q2) i.e., answers obtained
by the algorithm A are precise up to the precision of the mapping answt � f ( and
similarly for the recall of answers obtained by the algorithm A).

Remark 1. If all the values pr(f1) { pr(f3) are equal to 1, all the answers
obtained by the algorithm A are correct answers to the query (q1). A necessary
condition for this to hold is that every two distinct attributes of a virtual database
map into distinct sets of lexical categories.

Proof of Theorem A is in the Appendix, and it is based on the following two
theorems:

Theorem 1 (on equivalent decomposition of a query over sets of attributes
of one relation) Let R(A;C;REST ) be a relation in the extended relational model

with two types of null values, with disjoint sets of attributes A;C;REST , D(A) -
a Cartesian product of domains of attributes from A , and � 2 D(A) - a constant

m-tuple from D(A). Let B � REST be a set of not-! attributes (attributes not
allowed to take !-value). For two queries

(q1) range of e is R

retrieve (e:C) where e:A = �

(q2) range of e is R

range of u is R

retrieve (u:C) where u:B = e:B and e:A = �

the following holds:

(1) answer(q1) � answer(q2), where answer(q1) , answer(q2) are results
of the queries (q1), (q2) , respectively;

(2) a suÆcient condition for �(answer(q1)
:

� answer(q2)) 2 fT; !g
(i:e: �(answer(q1)

:
= answer(q2)) 2 fT; !g) to hold is existence of an MVD

B !! C in R[A; B; C] ;

(3) if an FD A! C holds in R, then an answer to the query (q1) is unique.

Proof of the theorem is in the Appendix.

Theorem 2 (on horizontal generalization of Theorem 1 { generalization on
the number of intermediate sets of attributes) Let R(A;B1; B2; . . . ; Bk; C;REST )
be a relation with disjoint sets of attributes A;B1; B2; . . . ; Bk; C;REST , where
B1; . . . ; Bk are not-! attributes. Let � 2 D(A) be a constant as in Theorem 1.
For two queries

(q1) range of e is R

retrieve (e:C) where e:A = �
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(q2) range of e1 is R

range of e2 is R

...

range of ek is R

range of ek+1 is R

retrieve (ek+1:C) where ek+1:Bk = ek:Bk and ek:Bk�1 = ek�1:Bk�1

and . . . and e2:B1 = e1:B1 and e1:A = �

the following holds:

(1), (3) - analogously to the corresponding statement of Theorem 1;

(2) a suÆcient condition for

�(answer(q1)
:

� answer(q2)) 2 fT; !g; i.e.,

�(answer(q1)
:
= answer(q2)) 2 fT; !g

to hold is existence of a set of MVDs :

B1 !! B2; B2 !! B3; . . . ; Bk�1 !! Bk; Bk !! C;

in the projection R[A;B1; B2; . . . ; Bk; C] .

Proof of the theorem is in the Appendix.

5. Conclusion

Retrieving a disconnected text (knowledge on a sentence level) was described
in [12]. The approach is based on de�ning a relational schema reecting a user's
view of a text. Mappings were de�ned that map a relational query into a query
over the text, and the later one into a set of answers. These mappings essentially
use morphological, syntactic and semantic properties of words, incorporated into
the lexical data type [12] used for representing texts.

Since isolated sentences, corresponding to virtual contents of a relation, do
not contain all the informations relevant for attributes of the relation, a model for
knowledge-from-text representation is the relational model with null values.

In this paper, an inference algorithm is designed which provides for a query
over one relation to be decomposed into a set of subqueries such that an answer to
each of the subqueries may be searched for in tuples having not null values on target
attributes (i.e., in sentences containing both quali�cation and target attributes).
The inference algorithm de�ned accomplishes retrieval of a connected text.

Logical conditions providing for equivalence of the original query and decom-
posed queries is having an MVD held between quali�cation and target attributes of
subqueries. De�nitions and properties of functional and multivalued dependencies
in the relational model with two types of null values are given.

Two measures of quality of answers to a given query over a text are de�ned:
precision and recall. A proof is given that precision and recall of a set of text-level
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answers obtained by the inference algorithm directly depends on a precision and
recall of a mapping of a relational query into a sentence-level textual query and a
mapping of the textual query into answers on a sentence level.

Appendix

Proof of Theorem 1. Using the QUEL semantics [8], queries (q1) and (q2)
can be interpreted, in the model with two types of null values, as follows:

(q1) (a) restrict the relationR using the condition �(e:A
:
= �) = T ;

(b) project on C;

(c) eliminate duplicates.

(q2) (a0) make a Cartesian productR�R ;

(b0) restrict the result of (a0)

using the condition (u:B = e:B & �(e:A
:
= �) = T ) ;

(c0) project on C ;

(d0) eliminate duplicates.

In the extended relational algebra [11], queries (q1) and (q2) may be expressed
as the following expressions:

(q1) R[A =T �][C] ;

(q2) (R[A =T �][B] �T R)[C] .

Since attributes from B do not take ! value,

(1) R[A;B;C] � R[A;B] �T R[B;C] implies:

R[A;B;C][A =T �] � (R[A;B]�T R[B;C])[A =T �] = R[A =T �][A;B]�T R[B;C]

(exchanging the order of operations, [11]). Thus,

R[A;B;C][A =T �][C] �(R[A =T �][A;B] �T R[B;C])[C] =

(R[A =T �][B] �T R)[C](� (q2)):

Since R[A;B;C][A =T �][C] = R[A =T �][C](� (q1)), the inclusion
answer(q1) � answer(q2) holds.

(2) If an MVD B !! C holds in the relation R[A;B;C] , then �(R[A;B]�T
R[B;C] [ R[A;B] �! R[B;C]

:
= R[A;B;C]) 2 fT; !g holds, too (characterization

theorem). Since attributes from B do not take ! value, R[A;B] �! R[B;C] = ;;
and the equality �(R[A;B]�T R[B;C]

:
= R[A;B;C]) 2 fT; !g implies the extended

equality �(answer(q1)
:
= answer(q20)) 2 fT; !g; instead of the corresponding

inclusion in (1);

(3) trivially follows from the de�nition of FD.
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Proof of Theorem 2. (1), (3) Analogously to the proof of the sections (1),
(3) of Theorem 1, except for the step (a0) of the query's (q2) QUEL semantics,
which now consists of Cartesian product of k + 1 relations R, and the step (b0)
representing now the whole truth formula from the query (q2);

(2) The proof based on mathematical induction will be applied:

- case k = 1 is identical to the section (2) of Theorem 1;

- let an inductive hypothesis holds for k , i.e., the statement (2) of Theorem
2 holds for k;

- case k + 1 will be proved, i.e., for the query

(q20) range of e1 is R

range of e2 is R

...

range of ek+2 is R

retrieve (ek+2:C) where

ek+2:Bk+1 = ek+1:Bk+1 and ek+1:Bk = ek:Bk and . . . and e1:A = �,

a suÆcient condition for the extended equality �(answer(q1)
:
= answer(q20)) 2

fT; !g to hold is to have the set of MVDs B1 !! B2; B2 !! B3; . . . ; Bk !!
Bk+1; Bk+1 !! C, held in the relation R[A;B1; B2; . . . ; Bk; Bk+1; C].

Semantisc of the query (q20) is the following:

(q20) (a) make a Cartesian product R�R� � � � �R of k + 2

relations R;

(b) restrict according to the truth formula ek+2:Bk+1 = ek+1:Bk+1

and ek+1:Bk = ek:Bk and . . . and �(e1:A
:
= �) = T ;

(c) project onto ek+2:C;

(d) eliminate duplicates,

which is equivalent to the semantics:

(a0) make a Cartesian product R� R� � � � �R of k + 1 relations R;

(b0) restrict according to the truth formula ek+1:Bk = ek:Bk and

ek:Bk�1 = ek�1:Bk�1 and . . . and �(e1:A
:
= �) = T ;

(c0) project onto ek+1:Bk+1;

(d0) make a Cartesian product with R;

(e0) restrict according to the formula ek+2:Bk+1 = ek+1:Bk+1;

(f 0) project onto ek+2:C;

(g0) eliminate duplicates.

The semantics also corresponds to the following queries:

(q201) (steps (a
0){(c0)) range of e1 is R

range of e2 is R
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...

range of ek+1 is R

retrieve (ek+1:Bk+1) where ek+1:Bk = ek:Bk and

ek:Bk�1 = ek�1:Bk�1and . . . and e1:A = �,

(whose answer is answer(q201) = fc1; c2; . . . ; crg),

(q202i) (steps (d
0){(g0)) range of u is R

(i = 1; 2; . . . ; r) retrieve (u:C) where u:Bk+1 = ci.

The query (q201) is equivalent to the query

(q2001) range of e is R

retrieve (e:Bk+1) where e:A = �

(because of the inductive hypothesis, and because MVDs B1 !! B2; . . . ; Bk !!
Bk+1 hold in R[A;B1; B2; . . . ; Bk+1; C]). Since all the Bs are not-! attributes,
for the query

(q200) = (q2001 ) [ fq2
0

2igi=1;2;...;r , the equality answer(q20) = answer(q200)
holds.

The query (q200) semantics transformation gives:

(q200) � (a00) restrictR according to the truth formula �(e:A
:
= �) = T ;

(b00) project onto e:Bk+1;

(c00) make a Cartesian product with R;

(d00) restrict according to the truth formula e:Bk+1 = u:Bk+1;

(e00) project onto u:C;

(f 00) eliminate duplicates;

� (a000) make a Cartesian product R�R;

(b000) restrict according to the formula e:Bk+1 = u:Bk+1 and

�(e:A
:
= �) = T ;

(c000) project onto u:C;

(d000) eliminate duplicates

�

(q2000) range of e is R

range of u is R

retrieve (u:C) where u:Bk+1 = e:Bk+1 and e:A = � .

Thus the equality answer(q2000) = answer(q200) holds.

Since the MVD Bk+1 !! C holds in R[A;B1; B2; . . . ; Bk+1; C] , and thus
holds in R[A;Bk+1; C]; the extended equality �(answer(q1)

:
= answer(q2000)) 2

fT; !g holds (according to the case k = 1). Transitivity of equality implies that
�(answer(q20)

:
= answer(q1)) 2 fT; !g, which was to be proved.
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Proof of Theorem A. The algorithm A contains two steps through which it is
possible to �nd an answer: steps 2 and 4c.

In the case of the step 2, an answer to the query is obtained as answt (f(q1)).
A realistic assumption is that a probability to �nd directly an answer which is
indirectly present in a text, is 0. Thus,

P (answt(f(q1)) � answ(q1)) = P (answt(f(q1)) � answ'(q1)) =

p (= pr(f1) � pr(f2) � pr(f3) � pr(f4) � pr(answt));

and so the theorem is proved for k = 0.

In the case of the step 4c, an answer is obtained as an answer to the query
(q2)

(q2) range of e1 is R

range of e2 is R

...

range of ek+1 is R

retrieve (ek+1:C) where ek+1:Bk = ek:Bk and

ek:Bk�1 = ek�1:Bk�1 and . . . and e1:A = � ,

which is equivalent (because of the semantics of QUEL, as in the proof of Theorem
2) to the set of k + 1 queries

(q21) range of e1 is R

retrieve (e1:B1)| {z }
c1

where e1:A = �

(q22) range of e2 is R

retrieve (e2:B2)| {z }
c2

where e2:B1 = c1

...

(q2k+1) range of ek+1 is R

retrieve (ek+1:C) where ek+1:Bk = ck .

The extended equality �(answer(q1)
:
= answer(q2)) 2 fT; !g follows from

the steps (1), (2) of Theorems 1,2, which means that queries (q1) and (q2) are
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equivalent. Thus,

P (answer 2 answ(q1)) = P (answt(f(q2)) � answ(q1)) =

P (answt(f(q2)) � answ (q2)) =
Y

i=1;k+1

P (answt(f(q2i)) � answ(q2i))

(since events whose probabilities are to be calculated are independent)

=
Y

i=1;k+1

P (answt(f(q2i)) � answ0(q2i)) (as in the case of the step 2)

pk+1(= (pr(f1) � pr(f2) � pr(f3) � pr(f4) � pr(answt))
k+1);

which was to be proved.
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