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AN ANALYSIS AND IMPROVEMENT

OF THE EL MISTIKAWY AND WERLE SCHEME

Katarina Surla, Zorica Uzelac

Abstract. The El Mistikawy and Werle scheme (the EMW scheme) is derived as a member
of the family of exponential spline di�erence schemes. Another member of the family (the IEMW
scheme), giving a better accuracy then the EMW scheme is analysed. The truncation error of the
IEMW scheme for the polynomials of up to the second degree approaches zero as " approaches
zero, which is not the case with the EMW scheme. Some numerical results are also presented.

1. Introduction. Let us consider the following singularly perturbed prob-
lem

�
Ly = "y00 + p(x)y0 = f(x); x 2 I = [0; 1];

y(0) = �0; y(1) = �1;
(1)

where " is a small positive parameter, �0 and �1 are given numbers, p(x) and f(x)
are suÆciently smooth functions and p(x) � p > 0, p 2 R. By using the exponential
spline e(x) from [4], e(x) 2 C1(I), as a collocation function, a family of di�erence
schemes is derived in ([6]). When h ! 0, this family reduces to the one derived
in [7] via cubic splines. Some relations between those families are given in [8]. In
Section 2 we shall briefely present the derivation of schemes [6]. The well{known
Allan-Southwel- Il'in and El Mistikawy-Werle ( EMW) schemes are members of that
family. In this paper two schemes from that family, which have the second order
accuracy (the one called the IEMW scheme) are analysed and compared. Although
the second order is the maximal order of the uniform accuracy for this kind of
schemes [1], the numerical results presented in Tables 2, 4, 6 and 8 corresponding
to the new scheme are much better then the ones presented in Tables 1, 3, 5 and
7 which correspond to the EMW scheme. Some explanations of that are given in
Section 3. Finaly, in Section 4 we shall present numerical examples which support
the theoretical results presented in Section 3.
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In [9] it was shown that the spline used in the construction of the EMW
scheme has the form given in [4]. Thus, we know the piecewise form of that spline
and some of its properties given in [4]. The spline is between the usual cubic spline
and the linear splines when the tension parameter respectively approaches " and
1. Its B-spline form is not known. The exponential spline given in [5] has a B-
spline form and approaches a cubic or quadratic spline when the tension parameter
approaches zero or�1, respectively. Although the B-spline form is more convinient
for the calculations then the piecewise form , the di�erence scheme derived in [5]
( SU scheme) is somewhat more complicated than the IEMW or EMW scheme.
When p(x) = p = const., the truncation error of the SU scheme is zero for functions
1; x; x2, while the truncation error for the EMW scheme is zero only for 1 and x.
The truncation error of the IEMW scheme iz zero for 1 and x, while the truncation
error for x2 has the form M"h (M a is constant independent of " and h). Thus, the
latter approaches zero when " approaches zero. The convergence of the SU scheme
is not uniform and the scheme has the second order convergence only for " � h.
In that case the truncation error of the IEMW scheme for x2 becomes negligent.
Thus, the scheme SU can not be regarded advantageous in that respect. Moreover,
the numerical results indicate the advantage of the IEMW scheme. Namely, the
results presented in [4], show approximetly the same accuracy for SU and EMW
schemes while our numerical results and theoretical analysis show the superiority
of the IEMW scheme in comparison to the EMW scheme. The example 1 is treated
both in this paper and in [5]. Comparing the results in Table 9 for the same h
and " in the corresponding Tables, one can see that the errors in the IEMW are
about twice smaller than those in the SU scheme. In [5], the convergence is proven
only for p(x) = const. Hence, there is some vagueness in the choice of tension
parameters. For the IEMW scheme the uniform convergence for p(x) 6= 0 is proven
and the tension parameters are determined. The extensive problem with the term
containing y is considered in [5].

2. The derivation of schemes. We are looking for an approximate
solution to the Problem (1) in terms of the exponential spline given in [4]. The
spline e(x) has the form

e(x) = ej(x) = uj + hmjt+ gj(ch�jt� 1)=�j + qj(sh�jt� �j)=�j ;

x 2 [xj ; xj+1];

where t = (x � xj)=h, xj = jh, h = 1=(n + 1), �j = h�j , j = 0(1)n, �j are
tension parameters and mj = e0(xj). The values gj and qj are determined from the
requirement that e(x) 2 C1(I).

From the collocation conditions

"e00(x) + p�e0(x) = f�; x = xj ; x = xj�1; (2)

"e00(x) + p+e0(x) = f+; x = xj ; x = xj+1; (3)

where p� and f� are constant approximations to p(x) and f(x), for x 2 [xj�1; xj ]
and similarly p+ and f+ are constant aproximations to p(x) and f(x) on the interval
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[xj ; xj+1] for �xed j, we obtain the following family of the di�erence schemes (see
[6]):

r�uj�1 + rcuj + r+uj+1 = q�f� + q+f+; j = 1(1)n� 1; (4)

u0 = �0; u1 = �1; (5)

where

R+ = �+=(1� exp(��+)); R� = �� exp(���)=(1� exp(���));

r+ = "R+=h2; r� = "R�=h2; rc = �r� � r+

q� = (1�R�)=��; q+ = (R+ � 1)=�+:

Since ej(x) = spanf1; x; exp(�jx); exp(��jx)g, in order to give to function e(x)
some properties of the exact solution of the problem (1) [1], we choose �+ = �+h,
�� = ��h, �+ = p+=", �� = p�=".

Determining p� = (p(xj�1)+p(xj))=2; f� = (f(xj�1)+f(xj))=2, we obtain
the EMW scheme. Taking

p� = p(xj � h=2); f� = f(xj � h=2); (6)

we obtain the IEMW scheme which we shall analyse in detail.

3. The truncation error. Theorem 1. Let y(x) 2 C4(I). Let uj be an

approximation to y(xj), obtained by using the scheme given by (4), (5) and (6) (the
IEMW scheme). Then, jy(xj) � uj j � Mh2, where M is a constant, independent

of " and h.

Proof. The proof follows from the proof for the EMW scheme given in [1]
and the fact that

(p(xj) + p(xj�1))=2 = p(xj � h=2) +O(h2)

and

(f(xj) + f(xj�1))=2 = f(xj � h=2) +O(h2):

In the following, wherever it is clear from the context, the j subscripts will
be omitted. Here M denotes di�erent constants independent of h and ".

Although the IEMW and EMW schemes have the same order of uniform
accuracy, the IEMW scheme yields better results (see the numerical results). In
order to explain this behaviour we consider the truncation errors of those schemes.

Let h � ". The truncation error �j(y) = Ryj �Q(Lyj) can be written in the
form

�j(y) = Tj0yj + Tj1y
0

j + Tj2y
00

j + Tj3y
000

j +Rj4(y);
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where Tj0 = Tj1 = 0 for both schemes, IEMW and EMW. Further, for the IEMW
scheme,

Tj2 =
h2

2
(r� + r+)� "(q� + q+) +

h

2
(p�q� � p+q+)

Tj3 =
h3

6
(r+ � r�) +

h

2
"(q� � q+)�

h2

8
(p+q+ + p�q�);

Rj4(y) = Trj + Tqj

Trj =
R�"

h2
R3(xj ; xj�1; y) +

R+"

h2
R3(xj ; xj+1; y)

Tqj = �q�"R1(xj ; xj�1=2; y
00)� q+"R1(xj ; xj+1=2; y

00)

� q�p�R2(xj ; xj�1=2; y
0)� q+p+R2(xj ; xj+1=2; y

0)

where,

Rn(a; b; g) =
1

n!

Z b

a

(b� s)ng(n+1)(s)ds = g(n+1)(�)
(b� a)n+1

(n+ 1)!
; a � � � b:

The corresponding expressions for the EMW scheme can be found in [1].

In the case of h � ", following some Taylor's expansions, we obtain

Tj2 =
�h2

6
(p0(�1) + p0(�2)) +O(

h3

"
) (7)

for the scheme EMW and

Tj2 =
�h2

24
(p0(�3) + p0(�4)) +O(

h3

"
) (8)

for the IEMW scheme, where

xj�1 < �1 < xj < �2 < xj+1; xj�1=2 < �3 < xj < �4 < xj+1=2:

When p(x) = p = const., we have

Tj3 =
�h2

6
p+O(

h3

"
) (9)

for the scheme EMW and

Tj3 =
�h2

24
p+O(

h3

"
) (10)

for the IEMW scheme. Those facts indicate that the IEMW scheme is four times
better then the EMW scheme for h � ", which agrees with our numerical results.

Since r�; q� ! 0 when "! 0 the in
uence of the corresponding expressions
for the truncation errors is insigni�cant. The remainding terms due to the coeÆ-
cients r+ and q+ are dominant. The constants in these expressions are smaller in
the case of the IEMW scheme.
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The fact that the values denoted by � are in intervals [xj�1=2; xj ] for the
IEMW scheme is very important and allows better estimates for some exponential
expresions. For example,

hk

"k
exp(��p=") � exp(�Æh=");

when xj�1=2 < � < xj , where Æ is a positive constant independent of " and h: We
cannot say the same for xj�1 < � < xj .

De�nition 1. The di�erence scheme has the accuracy of the order s if �j(y) = 0
when y 2 Ps, where Ps is a set of polynomials of degree less than or equal to s.

De�niton 2. The di�erence scheme has "-accuracy of the order s if:
lim"!0 �j(y) = 0 when y 2 Ps, where Ps is a set of polynomials of the degree
less than or equal to s.

The EMW and IEMW schemes have the �rst order accuracy, while the SU
scheme has the second order accuracy. Besides that, the IEMW scheme has an " {
accuracy of the second order.

Theorem 2. The IEMW scheme has the second order "-accuracy.

Proof. One can verify that Tj0 = Tj1 = 0. Tj2 can be writen in the form

Tj2 = "(R�=��j �R+=�+j + 1=��j � 1=�+j ):

Denote by D�R
�(��j )� the value of the �rst derivative at the point � and Tj2 =

Tj2(p
+; p�), R� = R�(��j ), R

+ = R+(�+j ). Since Tj2(p
+; p+) = 0 and R�(��) =

R�(�+) + (�� � �+)D�R
�(�)� and jD�R

�(��)j �M we have,

Tj2 = Tj2 � Tj2(p
+; p+);

Tj2 = "(��j � �+j )D�R
�

� =�
+
j + "(1=�+j � 1=��j )� "(1=�+j � 1=��j )R

�(��j )

and
jTj2j �Mh": (11)

Thus, the theorem holds. For the EMW scheme the corresponding result is

jTj2j �Mh2; (12)

which shows the advantage of the IEMW scheme. The numerical results con�rm
that. Of interest the behaviour of the values Tj3 for both schemes. Namely, for
p(x) = p = const. we obtain

lim
"!0

Tj3 = �h2=12 (13)

for EMW scheme and
lim
"!0

Tj3 = h2=24 (14)

for the IEMW scheme. From (10) and (14) one can see that Tj3 for the IEMW
scheme changes the sign when " approaches zero, for a �xed h. Since Tj3 is a



An analysis and improvement of the El Mistikawy and Werle scheme 149

continuous function of ", it becomes zero at a certain point, which may contribute
to the error decrease or to the acquirement of convergence with respect to ": The
order of convergence is calculated with respect to h. Because of that, we obtain a
negative sign or wrong results in the numerical treatment of the order of convergence
when the scheme attains convergence with respect to ". But, when "! 0 we can say
in general that the contribution to the error of Tj3 is twice smaller for the IEMW
scheme then for the EMW scheme. Numerical results support that statement. For
the SU scheme we have Tj2 = 0 , but the scheme attains the second order of
convergence only for "� h. In that case, Tj2 for the IEMW scheme becomes much
smaller than the rest of the truncation error, which is O(h2) for both schemes.
Thus, the SU scheme is not bene�cial in that sense.

Remark 1: The functions f(x) and p(x) in (1) may depend on " but they
have to be uniformly bounded on ".

Table 1 (Example 1)
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Table 2 (Example 1)

4. Numerical results. In this section we shall present the results of
some numerical examples using EMW, IEMW and SU schemes. We denote by
En the maximum of jy(xj) � uj j; j = 0(1)n + 1. Here [u0; u1; . . . ; un+1]

> is the
corresponding numerical solution to the system (4) and (5). Also, we de�ne, in
the usual way, the order of convergence (Ord) for two succesive values of n with
respective errors En and E2n

Ord =
logEn � logEn2

logn2 � logn
;

where n2 = 2n. Di�erent values of " = 2�k and n are considered. Tables 1, 3, 5
and 7 present the numerical solution obtained by using the EMW scheme. Tables
2, 4, 6 and 8 present the corresponding results obtained from the IEMW scheme.

The �rst example was taken from [1].
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Table 3 (Example 2)

Example 1.

�
Ly = "y00 + (x+ 1)3y0 = f(x; "); x 2 I = (0; 1);

y(0) = �0; y(1) = �1;
(15)

The exact solution has the form

y(x) =
1

p(x)
exp(�"�1

Z x

0

p(�)d�) + exp(�
x

2
); p(x) = (x + 1)3:

The solution determines f(x; "); �0 and �1 . The derivatives of f(x; ") and �1 are
bounded functions of ". The same problem was treated in [5]. Comparing Table
1 with Table 2, we can see that the new scheme has much better results then the
EMW scheme, especially when " is much smaller then h. The exact solution has only
exponential terms and constants in the remainder terms are smaller since the length
of the interval for the Taylor's expansions is h=2. The existence of the unknown
values �; �i etc., does not permit a complete comparison of those expressions. A
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better behaviour of the scheme, presented in Table 2, for small values of " results
in the fast decrease of Ord. The results from IEMW and SU schemes are compared
in Table 9.

Table 4 (Example 2)

Example 2. The problem (15) has the exact solution

y(x) =
1

p(x)
exp(�"�1

Z x

0

p(�)d�) + exp(�
x

2
) + x2; p(x) = (x + 1)3:

Comparing Table 1 with Table 3 and then Table 2 with Table 3 one can see
that the polynomial term of the second order in the exact solution ruins, to a large
extent, the results obtained from the EMW scheme, but from the IEMW scheme
the results are slightly worse when h � ", while the results are the same when
"� h. This is the consequence of the "-accuracy of the IEMW scheme. Also, the
results in Table 3 and Table 4 show the important advantage superiority of the
IEMW scheme.
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Table 5 (Example 3)

Table 6 (Example 3)

Example 3. The problem (15) has the exact solution

[y(x) =
1

p(x)
exp(�"�1

Z x

0

p(�)d�) + exp(�
x

2
) + x3; p(x) = (x + 1)3:]

The errors in Table 6, when h � ", are about four times smaller than the
corresponding errors in Table 5. This is in agreement with relations (7), (8), (9)
and (10). The corresponding errors for " < h are about ten times smaller in Table
6 than in Table 5. This can be explained by (11), (12), (13), (14) and (10), i.e.
by the "-accuracy and the change of the sign of Tj3 when " ! 0. In the above
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examples the exact solutions have only polynomial and exponential terms. The
following example has a more general form.

Table 7 (Example 4)

Table 8 (Example 4)

Example 4. [10] Problem (1) with [p(x) = (2 + 2"(1 + x))=(1 + x)2] and

[y(x) = cos(�x=(1 + x)) + (exp(�1=")� exp(�2x=("(1 + x))))=(1� exp(�1="))]

The results in Table 8 are about four times better than those shown in Table
7 for h � ", which agrees with relations (7), (8) and (9), (10). In the case when
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" < h, the results in Table 8 are about two times better than those in Table 7 which
agrees with (13) and (14).

Table 9 (Example 1)

Table 9 contains the results from [5] for the SU scheme and ours obtained
from the IEMW scheme.
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