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ESTIMATION OF PARAMETERS OF RCA

WITH EXPONENTIAL MARGINALS

Biljana Popovi�c

Abstract. The estimation of parameters of time series whose marginal distribution is
exponential with parameter �, � > 0 is somewhat more complicated than the estimation of
parameters of Gaussian time series. One possible approach using the method of least squares is
given. Namely, the method of least squares is applied in two steps for estimating the parameters
of generalized �rst order autoregressive time series with exponential marginals. A special case of
estimating parameters of the model FAREX (1) is also given.

1. Introduction. The estimating of parameters of the random coeÆcient
model instead of those �rst order autoregressions that are represented by mixtures
of distributions has been inspired (Popovi�c [1990]) by the fact that many of the
well known �rst order autoregressions whose marginal distribution is exponential
with parameter �; � > 0; fXt; t = 0;�1;�2; . . .g can be well represented by the
random coeÆcient model

Xt = UtXt�1 + VtEt; t is an integer: (1.1)

Necessary and suÆcient conditions for such representation are:

I The sequence of random variables fXtg is semi-independent of the random
sequences fUtg; fVtg and fEtg (Xi and Uj ; or Vj ; or Ej are independent if and
only if i < j).

II fEtg is the sequence of independent identically distributed (i.i.d.) random
variables with exponential distribution with parameter � and Et is independent of
Ui and Vj for every t; i and j.

III fUtg; fVtg and f(Ut; Vt)g are i.i.d. sequences of discrete random variables
and vectors which satisfy the following special conditions:

P (0 � Ut � 1) = 1; P (0 � Vt � 1) = 1

0 < E(U2
t ); E(Ut) < 1
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E(Vt) = 1�E(Ut); E(U2
t ) +E(V 2

t ) = 1�E(UtVt)

and, if

P (Ut = �i) = pui
; i = 1; 2; . . . ; k; 0 � �1 < �2 < . . . < �k � 1;

kX
i=1

pui
= 1

and

P (Vt = �j) = pvj ; j = 1; 2; . . . ; r; 0 � �1 < �2 < . . . < �r � 1;

rX
j=1

pvj = 1

then
kX

i=1

rX
j=1

pui
pvj

�i � �j

�
�i

�+ s�i
� �j
�+ s�j

�
=

1

�+ s

for any real s.

The di�erence equation (1.1) has a unique, stationary (even strong stationary)
and ergodic solution (Popovi�c [1990]):

Xt =

1X
i=1

0
@i�1\

j=0

Ut�j

1
AVt�iEt�i + VtEt:

For convenience, further we shall use the following a = E(Ut), b = E(U2
t ),

c = E(V 2
t ), m = E(Xt) = 1=�.

Nicholls and Quinn [1980] where the �rst who applied the least square es-
timation in two steps for parameters of autoregressive time series with random
coeÆcients. But, their random coeÆcient model has the inovation sequence that
is independent if the vector of random coeÆcients of the autoregression. We shall
substitute the condition of independence by the set of conditions II and III and esti-
mate parameters a, b and c supposing that the main parameter of the distribution,
�, is known. The strong consistency of the estimators and their asymptotic normal
distribution will be proved below. In the Appendix, we shall use the procedure to
estimate paramters of the autoregressive time series FAREX (1).

2. Estimation procedure. Suppose that the sample fX0; X1; . . . ; XNg
is given. As the parameter � is known, we shall translate that sample to the
zero-expectation one, fY0; Y1; . . . ; YNg in the following way

Yt = Xt �m: (2.1)

But, according to (1.1) it is easily veri�ed that instead of the time series fXtg, we
can consider the time series fYt; t = 0;�1;�2; . . .g, where

Yt = aYt�1 +Rt (2.2)

for Rt = BtYt�1 + �t, Bt = Ut � a, �t = m(Ut + Vt � 1) + Vt(Et � m). This
translation does not disturb the existence of the solution of di�erence equation
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(2.1) comparing with di�erence equation (1.1), meaning that the solution exists
and it is also unique, stationary, strong stationary and ergodic.

Let Ft be the �-�eld generated by the set of random vectors f(Us; Vs; Es); s �
tg; then the solution of the equation (1.1) is Ft-measurable.

Let Gt be the �-�eld generated by the set of random vectors f(Bs; �s); s � tg;
then

E(Rt j Gt�1) = Yt�1E(Bt) +E(�t) = 0

E(R2
t j Gt�1) = Y 2

t�1E(B
2
t ) + 2Yt�1E(Bt�t) +E(�2t )

= (b� a2)Y 2
t�1 + 2m(1� a� c)Yt�1 +m2(1� b)

= Zt�1Tt�1b�W 2
t�1(a) + 2mTt�1 � 2mcYt�1

where Zt�1 = Yt�1 �m; Tt�1 = Yt�1 +m and Wt�1(a) = aYt�1 +m.

The representation (2.2) of the process fYtg has also the following important
properties: the remainders Rt are uncorrelated random variables

Cov(Rt; Rt+k) = E(Bt+k)E(BtYt�1Yt+k�1) = 0 (k is an integer)

and, Yt represented by (2.2) is represented as the sum of two uncorrelated processes
aYt�1 and Rt:

Cov(aYt�1; Rt) = aE(Bt)E(Y
2
t�1) + aE(Yt�1)E(�t) = 0:

Now we can set the estimating procedure for parameters a, b and c by means
of least squares.

Step 1. We shall represent remainders Rt as Rt = Yt � aYt�1. Then

NX
t=1

R2
t =

NX
t=1

Y 2
t � 2a

NX
t=1

YtYt�1 + a2
nX
t=1

Y 2
t�1:

This quadratic function attains its minimum with respect to a for

â = YT
1
Y(YTY)�1 (2.3)

where Y = (Y0; Y1; . . . ; YN�1)
T and Y1 = (Y1; Y2; . . . ; YN )

T .

Theorem 2.1 Under the assumptions I - III, â given by (2:3) is strongly

consistent estimator for a and
p
N(â�a) has a distribution which converges to the

normal distribution with expectation zero and covariance 8b� 9a2 � 4a� 4c+ 5.

The proof of the theorem will be given below.

Step 2. We shall use now the estimator â instead of the real value a to �nd
the estimators for the second moments b and c of the random coeÆcients Ut and
Vt . So, we shall use R̂t = Yt � âYt�1 instead of Rt . Now the di�erence

Dt = R2
t �E(R2

t j Gt�1) = R2
t � bZt�1Tt�1 + 2mcYt�1 +W 2

t�1(a)� 2mTt�1
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will give the quadratic function
PN

t=1D
2
t which can be minimized with respect to

b and to c. Hence, when we take â and R̂t instead of a and Rt the minimums will
be

b̂ =
YT [(YR̂TA�AR̂TY) + (YŴTA�AŴTY) � 2m(YTTA�ATTY)]

AT (AYT �YAT )Y
(2.4)

ĉ =
(b̂AT � R̂T + ŴT � 2mTT )Y

2mYTY
(2.5)

where A = (Z0T0; Z1T1; . . . ; ZN�1TN�1)
T ; R = (R2

1; R
2
2; . . . ; R

2
N)

T ,

W = (W 2
0 (a);W

2
1 (a); . . . ;W

2
N�1(a))

T .

Theorem 2.2. Under the conditions I - III, the vectors D = (a; b; c) and

D̂ = (â; b̂; ĉ) are such that the vector (D̂ � D) converges almost surely to zero-

vector, and the vector
p
N(D̂ � D) has the distribution which converges to the

normal distribution with mean value zero and covariance matrix K = [Kij ] where

K11 = E((m�2Yt�1Rt)
2); K12 = K21 = E((8m6)�1Yt�1RtZt�1Tt�1St);

K13 = K31 = E(m�2Yt�1Rt

0
@2mN�1

NX
j=1

Y 2
j�1

1
A
�1

Q�tSt);

K22 = E((64m8)�1Z2
t�1T

2
t�1S

2
t );

K23 = K32 = E((8m4)�1

0
@2mN�1

NX
j=1

Y 2
j�1

1
A
�1

Zt�1Tt�1Q
�

tS
2
t )

(2.6)

and
St = R2

t +W 2
t�1(a)� 2mTt�1 + 2mcYt�1 � bZt�1Tt�1

Q�t = (8m)�1Zt�1Tt�1 � Yt�1:
(2.7)

The proof is given below.

These two steps and two theorems complete the procedure.

Proof of Theorem 2.1. Set the di�erence

â� a =
N�1RTY

N�1YTY:

The sequences fY 2
t g and fYt�1Rtg are strictly stationary and ergodic because of the

properties of fYtg. This implies that the sequences fN�1Y0Yg and fN�1RTYg
converge to m2 and zero respectively. Hence, (â � a) converges almost surely to
zero. It means that â is a strong consistent estimator for a.

According to the central limit theorem for martingales, each element of the
random sequence fN�1=2qRTYg has a distribution which converges to the normal
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distribution with mean value zero and variance:
E(q2Y 2

t�1R
2
t ) = E(E(q2Y 2

t�1R
2
t j Gt�1)) = E(q2Y 2

t�1E(R
2
t j Gt�1))

= q2E(Y 4
t�1(b� a2) + 2Y 3

t�1m(1� a� c) + Y 2
t�1m

2(1� b))

= q2m4(8b� 9a2 � 4a� 4c+ 5);

for any real q . From the other side,

E(j N�1
NX
t=1

Y 2
t�1 �m2 j2)

= 2N�2
NX

t;j=1
j>t

E

0
@Y 2

t�1

 
aj�tYt�1 +

j�t�1X
k=0

akRj�k

!2
1
A�m4

= 16m4

�
N � 1

N2

a2

1� a2
� 1

N2

1� a2N+2

(1� a2)2

�
and the sequence fN�1YTYg converges in probability to m2. So,

p
N(â� a) =

N�1=2RTY

N�1YTY
has a distribution that converges to the normal distribution with mean value zero
and variance 8b� 9a2 � 4a� 4c+ 5.

Proof of Theorem 2.2. We shall prove this theorem in two steps. First of all,
we shall assume that a is a known parameter. Then, we shall set ~b and ~c to be the
estimators of parameters b and c under this assumption. That means that ~b and ~c

will be de�ned by the same fomulae as b̂ and ĉ with a and Rt instead of â and R̂t,
(2.4) and (2.5). It seems reasonable to set ~D = (â;~b; ~c). Then

~b� b̂ = (YT [Y(RT � R̂T )A�A(RT � R̂T )Y +Y(WT � ŴT )A

�A(WT � ŴT )Y])=[AT (AYT �YAT )Y]

~c� ĉ =
[(~b� b̂)AT � (RT � R̂T )� (WT � ŴT )]Y

2mYTY
:

The elements of the vectors (RT � R̂T ) and (WT � ŴT ) are

R2
t � R̂2

t = 2(a� â)Yt�1Rt + (a� â)2Y 2
t�1

W 2
t�1(a)�W 2

t�1(â) = 2(a� â)Yt�1Wt�1(a)� (a� â)2Y 2
t�1

respectively.

We shall now investigate the convergence of (~b � b̂). The elements of the

random sequence fN�2YTY(R̂T �RT )Ag can be written as

N�2YTY(RT � R̂T )A =2(a� â)

 
N�1

NX
t=1

Yt�1Zt�1Tt�1

!0
@N�1

NX
j=1

RjY
2
j�1

1
A

+ (a� â)2

 
N�1

NX
t=1

Yt�1Zt�1Tt�1

!0
@N�1

NX
j=1

Y 3
j�1

1
A :
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According to the ergodic theorem, as Yt has moments of arbitrary �nite order, we
have

N�1
NX
t=1

Yt�1Zt�1Tt�1
a:s:�!m3 ; N !1

N�1
NX
j=1

RjY
2
j�1

a:s:�!0 ; N !1

N�1
NX
j=1

Y 3
j�1

a:s:�!2m3 ; N !1:

According to Theorem 2.1, (a� â) converges almost surely (a.s.) to zero, so that

(a� â)

 
N�1

NX
t=1

Yt�1Zt�1Tt�1

!0@N�1
NX
j=1

RjY
2
j�1

1
A a:s:�!0 ; N !1:

According to the same theorem,

p
N(a� â)

 
N�1

NX
t=1

Yt�1Zt�1Tt�1

!0
@N�1

NX
j=1

RjY
2
j�1

1
A P�!0 ; N !1:

Further we shall use also the fact that if
p
N(a � â) converges in distribution,

then N1=4(a� â) converges in probability (P ) to the mean of the random variablep
N(a� â), i.e. to zero.

The following convergences can be veri�ed

p
N(a� â)2

 
n�1

nX
t=1

Yt�1Zt�1Tt�1

!0
@N�1

NX
j=1

Y 3
j�1

1
A P�!0 ; N !1;

N�2YTY(RT � R̂T )A
a:s:�!0 ; N !1;

N�3=2YTY(RT � R̂T )A
P�!0 ; N !1:

Using the same arguments, we have

N�2YTA(RT � R̂T )Y
a:s:�!0 and N�3=2YTA(RT � R̂T )Y

P�!0 ;

N�2YTY(WT � ŴT )A
a:s:�!0 and N�3=2YTY(WT � ŴT )A

P�!0 ;

N�2YTA(WT � ŴT )Y
a:s:�!0 and N�3=2YTA(WT � ŴT )Y

P�!0

when N !1. Finally N�2AT (AYT �YAT )Y
a:s:�!8m6 ; N !1:

So, (~b� b̂) converges to zero almost surely and
p
N(~b� b̂) converges to zero

in probability.

The same adequate arguments will lead us to the convergence of the di�erence
(~c � ĉ) almost surely to zero and

p
N(~c � ĉ) in probability to zero when N !
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1. Hence, the vector ( ~D � D̂) converges almost surely to the zero-vector, andp
N( ~D� D̂) in probability to the same vector.

Next, we shall consider the di�erences

~b� b = ATS(ATA)�1 and ~c� c = QTS(2mYTY)�1

where S = (S1; S2; . . . ; SN�1)
T and Q = (Q1; Q2; . . . ; QN�1)

T with St de�ned by
(2.7) and

Qt = Zt�1Tt�1

 
N�1

NX
k=1

Z2
k�1T

2
k�1

!�10@N�1
NX
j=1

Yj�1Zj�1Tj�1

1
A� Yt�1:

Let us assign D� = (a�; b�; c�)T , where

a� = m�2N�1YT
1
Y

b� = (8m4)�1N�1ATS+ b

c� = (2mN�1YTY)�1N�1Q�TS+ c:

Now we have a� � â = [m�2 � (N�1YTY)�1]N�1Y1Y and

N�1Y1Y
a:s:�!am2 ; N�1YTY

a:s:�!m2 ; N !1
so

a� � â
a:s:�!0 ;

p
N(a� � â)

P�!0 ; N !1:

Because of the ergodicity of the sequence fZ2
t�1T

2
t�1g and the facts that

(~b� b)N�1ATA� 8m4(b� � b) = N�1ATS�N�1ATS = 0

~b� b� = (~b� b)� (b� � b);

we will have that ~b� b�
a:s:�!0 and

p
N(~b� b�)

P�!0, N !1.

Finally, let us discuss the di�erence (c� � ~c) :

c� � ~c = (c� � c) + (c� ~c) = (2mN�1YTY)�1[N�1(Q� �Q)TS]

where the elements of Q� are

Q�t = Zt�1Tt�1

"
N�1

NX
k=1

E(Z2
k�1T

2
k�1)

#�1 24N�1
NX
j=1

E(Yj�1Zj�1Tj�1)

3
5� Yt�1:

It is obvious that Q�t �Qt
a:s:�!0, N !1. Simple computations will lead us to the

result
c� � ~c

a:s:�!0 and
p
N(c� � ~c)

P�!0 ; N !1:

It is clear now that

D� � ~D
a:s:�!0 and

p
N(D� � ~D)

a:s:�!0 ; N !1:
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For any real vector v = (v1; v2; v3)
T we have

vT (D� �D) = N�1
NX
t=1

Ht(v)

where
Ht(v) = v1(a

�

t � at) + v2(b
�

t � bt) + v3(c
�

t � ct)

a�t � at = m�2Yt�1Rt; b�t � bt = (8m4)�1Zt�1Tt�1St;

c�t � ct =

0
@2mN�1

NX
j=1

Y 2
j�1

1
A
�1

Q�tSt

and consequently

Ht(v) =v1m
�2Yt�1Rt

+

2
64v2(8m4)�1Zt�1Tt�1 + v3

0
@2mN�1

NX
j=1

Y 2
j�1

1
A
�1

Q�t

3
75St:

It is easily veri�ed that E(Rt j Gt�1) = 0 and E(St j Gt�1) = 0. According
to this E(Ht(v) j Gt�1) = 0. On the other hand, ergodicity and strong stationarity

of the sequence fHt(v)g imply the convergence vT (D� � D)
a:s:�!0, N ! 1. Be-

sides, the properties of the sequence fHt(v)g mentioned above, enable us to apply
the central limit theorem for martingales for this sequence. Hence, according to
the central limit theorem, vT

p
N(D� �D) converges in distribution to a random

variable with zero-mean normal distribution whose variance is E(H2
t (v)) = vTKv.

The elements of the matrix K are de�ned by the formulae (2.6). As the conclusion
is valid for any three-dimensional vector v, the assertion of this theorem is proved.

Appendix. The exponential autoregressive model FAREX (1) was intro-
duced by Mali�si�c [1987].

Let fXtg be a stationary sequence of random variables whose marginal dis-
tribution is exponential with parameter �. Then FAREX (1) is de�ned as follows:

Xt =

�
�Xt�1; w.p. p

�Xt�1 + Æt; w.p. 1� p

where fÆtg is a sequence of i.i.d. random variables

Æt =

8><
>:

0; w.p. (�� p)�=[(1� p)�]

Et; w.p. (1� �)=(1� p)

�Et; w.p. p(� � �)=[(1� p)�]:

The necesary and suÆcient condition for the existence of FAREX(1) is

0 < p � � � � < 1:
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For p = � = � we have well known EAR(1). Other special cases are also valuable.
Further, we shall consider only the case 0 < p < � < � < 1, while the other special
cases can be estimated in the same way. The random coeÆcient representation of
this model is

P (Ut = �) = 1� P (Ut = �) = p

P (Vt = 0) = � � p(� � �)=�; P (Vt = �) = p(� � �)=�; P (Vt = 1) = 1� �

P ((Ut; Vt) = (�; 0)) = p; P ((Ut; Vt) = (�; 0)) = (�� p)�=�;

P ((Ut; Vt) = (�; 1)) = 1� �; P ((Ut; Vt) = (�; �)) = p(� � �)=�

and then
a = E(Ut) = � � p(� � �)

b = E(U2
t ) = �2 � p(�2 � �2)

c = E(V 2
t ) = �p(� � �) + 1� �:

So, if we estimate a, b and c in the way that has been proposed above, we can take

the estimator (p̂; �̂; �̂) for parameter vector (p; �; �) as the unique solution of the

system above, by replacing a; b; c; p; � and � with â; b̂; ĉ; p̂; �̂ and �̂, which satis�es
the condition 0 < p < � < � < 1. The solution will be:

(p̂;�̂; �̂) = 
(â+ b̂+ ĉ� 1� â2)2

(â� â2 + b̂+ ĉ� 1)2 + (1� â)2(b̂� â2)
;

b̂� â+ âĉ

â+ b̂+ ĉ� 1� â2
;
1� b̂� ĉ

1� â

!
:

It is clear that the procedure that has been applied for estimating of parameters of
EAR (p) by Billard and Mohamed (1991) will be disturbed in the case of FAREX
(1) by the fact that Xt does not depend on Æt with probablity p > 0.
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