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ENLARGEMENT OF THE CLASS OF GEOMETRICALLY INFINITELY

DIVISIBLE RANDOM VARIABLES

Slobodanka Jankovi�c

Abstract. The class of negative binomial in�nitely divisible random variables is introduced
in the following way: Random variable Y is called negative binomial in�nitely divisible if there

exist i.i.d. random variables X
(1)
p ;X

(2)
p ; . . . , p 2 (0; 1), independent of Y and �

(r)
p and such that

Y
d
= lim

p!0

�
(r)
pX

j=1

X
(j)
p ;

where �
(r)
p has negative binomial law.

The representation of characteristic functions from the class of negative binomial in�nitely
divisible random variables is given and also some related properties discussed. When r = 1 the
above class reduces to the well known class of geometrically in�nitely divisible random variables.

Klebanov et al. [4] introduced the notion of geometric in�nite divisibility in

the following way: Let X
(1)
p ; X

(2)
p ; . . . be i.i.d. random variables and suppose �p

has a geometric distribution

pn = P (�p = n) = pqn�1; n = 1; 2; . . . (p+ q = 1; p > 0) (1)

Put:

Y
d
=

�pX
j=1

X(j)
p (2)

De�nition 1. Random variable Y is called geometrically in�nitely divisible

if, for every p 2 (0; 1), there exist random variables X
(1)
p ; X

(2)
p ; . . . such that Y

could be presented as the random sum (2), where Y , �p and X
(j)
p , j = 1; 2; . . . are

independent.
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It was proved by Klebanov et al. [4] that f is the characteristic function of
geometrically in�nitely divisible distribution if and only if it is of the form

f(t) =
1

1� ln (t)
; (3)

where  is some in�nitely divisible characteristic function,

ln (t) = ita+

+1Z
�1

�
eitx � 1�

itx

1 + x2

�
1 + x2

x2
d�(x)

where a 2 R1, � - nondecreasing bounded function, �(�1) = 0: At origin the
integrand is de�ned by continuity and equals �t2=2.

Kruglov and Korolev presented results concerning geometric random sums
in chapter 8 of [5]. We propose here some natural enlargements of the class of
geometrically in�nitely divisible random variables.

Suppose random variable �p is distributed according to the Pascal distribution

pn = P (�p = n) =

�
�r

n� r

�
pr(�q)n�r =

�
n� 1

r � 1

�
prqn�r; n � r; p > 0; p+q = 1;

(4)
and put

Y
d
=

�pX
n=r

X(n)
p (5)

De�nition 2. Random variable Y is called Pascal in�nitely divisible if, for

every p 2 (0; 1), there exist random variables X
(1)
p ; X

(2)
p ; . . . such that Y could be

presented as the random sum (5), where �p has Pascal distribution (4) and Y , �p

and X
(j)
p , j = 1; 2; . . . are independent.

Theorem 1. The characteristic function f is Pascal in�nitely divisible if

and only if it is of the form

f(t) = (1� ln (t))�r (6)

for some r 2 N , where  is an in�nitely divisible characteristic function.

We see that, when r = 1; the class of Pascal in�nitely divisible characteris-
tic functions reduces to the class of geometrically in�nitely divisible characteristic
functions.

Proof. Put F (x) = P (Y < x) and Fp(x) = P (Xp < x) and denote by f and
fp characteristic functions of F and Fp, respectively. Then from (5) we have

F (x) =

1X
n=r

�
�r

n� r

�
pr(�q)n�rF �np (x)

and

f(t) =

�
pfp(t)

1� (1� p)fp(t)

�r
: (7)
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Let us prove that f is never zero. There exists an interval (�"; "), " > 0, where
both f and fp are di�erent from zero. For t 2 (�"; "), (7) could be written in the
form

f(t) =

�
1 +

1

p

�
1

fp(t)
� 1

��
�r

; t 2 (�"; "):

When p ! 0, there must be fp(t) ! 1, for t 2 (�"; "). Using the well known
inequality for characteristic functions

1� j f(2t) j2� 4(1� j f(t) j2);

we get that fp(t) ! 1 for t 2 (�2"; 2"). Proceeding with the same procedure we
conclude that fp(t)! 1, when p! 0, for every t 2 R and therefore f is never zero.
Since f(t) 6= 0 for all t 2 R, roots and logarithms of f are uniquely de�ned in the
usual way using the principal branch of lnf(t).

If we divide by p both nominator and denominator of the right-hand side of
(7) and let p! 0, then we get

lim
p!0

exp

�
1

p
[fp(t)� 1]

�
= exp

�
1�

1

f(t)1=r

�
: (8)

We have that the right-hand side of (8) is continuous at zero and, since fp is a
characteristic function, the left-hand side of (8) is the limit of the characteristic
functions of compound Poisson distributions. Therefore that limit is an in�nitely
divisible characteristic function (which we shall denote by  ). It follows that (6) is
valid.

Let us now prove the converse - that the characteristic function of the form
(6)

f(t) =

�
1

1� ln (t)

�r
; r 2 N;

where  is characteristic function of an in�nitely divisible distribution, could be
represented as (7), for every p 2 (0; 1). Put fp(t) = [1� ln p(t)]�1 and (7) follows
immediately.

Theorem 2. Pascal in�nitely divisible characteristic functions are in�nitely

divisible.

Proof. Suppose X is in�nitely divisible random variable with the characteris-
tic function  , and A is probability distribution of some positive random variable.
It is well known (Feller [1]) that power mixtures

�(t) =

+1Z
0

( (t))udA(u);

with in�nitely divisible mixing distribution A, are in�nitely divisible. Indeed if we
denote by � the characteristic function of A, �(t) = (�n(t))

n for each n, then

�(t) = �(�iln (t)) = (�n(�iln (t)))
n = (�n(t))

n:
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If we take A to be Gamma distribution

A(x) =

xZ
0

u��1e�u

�(�)
du; � > 0; x > 0;

which has the following in�nitely divisible characteristic function

�(t) = (1� it)��; � > 0;

then
�(t) = �(�iln (t)) = (1� ln (t))��; � > 0 (9)

and we have that all the functions of the form (9) are in�nitely divisible character-
istic functions.

We proved in fact more than we stated, namely that for all � > 0, the function
� is in�nitely divisible, not only for � 2 N .

Let X1; X2; . . . be i.i.d. with probability distribution F , independent of the
variable �p with Pascal distribution

pn = P (�p = n) =

�
�r

n� r

�
pr(�q)n�r =

�
n� 1

r � 1

�
prqn�r; n � r; p > 0; p+q = 1:

If for some choice of constants A(p) > 0 and B(p) the distribution of Pascal random
sums

S�(p) =
1

A(p)

�(p)X
k=r

(Xk �B(p))

converges weakly as p ! 0 to probability distribution G, we say that F is in the

domain of Pascal attraction of G.

Theorem 3. In order that probability distribution G has a nonempty domain

of Pascal attraction, it is necessary and suÆcient that its characteristic function g
could be represented in the following way:

g(t) =

�
1

1� ln (t)

�r
; (10)

where r is positive integer and  is a stable characteristic function

ln (t) = i
t� c j t j�
�
1 + i�

j t j

t
!(t; �)

�
; (11)

where 
 2 R, �1 � � � 1, 0 < � � 2, c � 0 and

!(t; �) =

�
tg(��=2); for � 6= 1

2��1ln:jtj; for � = 1

The random variable whose characteristic function is de�ned by (10) and (11)
we call Pascal stable. Analogous notions and statements for geometric sums were
studied by Freyer [2] and Kruglov and Korolev [5].
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Proof. We exclude the degenerate case when  from (11) equals eit
 . The
characteristic function of S�(p) is:�

pf(t=A(p)) exp(�itB(p)=A(p))

1� (1� p)f(t=A(p)) exp(�itB(p)=A(p))

�r
:

From Theorem 1 it follows that the limiting distribution G is Pascal in�nitely
divisible, and from (8) we have:

lim
p!0

�
p�1 [f(t=A(p)) exp(�itB(p)=A(p)) � 1]

�
= ln (t);

where  is an in�nitely divisible characteristic function. That limit also holds for
p = 1=n. Put Bn = B(1=n), An = A(1=n), and Cn = Bn=An. We have

lim
n!1

n [f(t=An) exp(�itCn)� 1] = ln (t);

which is equivalent to

[f(t=An) exp(�itCn)]
n !
n!1

 (t)

(Feller [1, ch.XVII, Th.1]). Above we have the sequence of characteristic functions
of linearly normed sums of i.i.d. random variables which tend to a limit and (see
Zolotarev [8, p.13]), the only characteristic function which can appear as a weak
limit is the characteristic function of the stable distribution function. So we have
that  has the form (11).

Conversely, in order to show that each function g of the form (10) (with (11))
has a nonempty domain of Pascal attraction, it is enough to take F with the charac-
teristic function  (11), A(p) = p�1=� and, when � 6= 1, B(p) = 
p�1=�(p1=��1�1),
when � = 1, then take B(p) = 2=��1c�p�1lnp. Using the fact that for such  , A
and B we have:

 (t=A(p)) exp(�itB(p)=A(p)) =  p(t)

it follows easily that the characteristic function of S�(p) tends, as p ! 0, to the
characteristic function g.

Suppose now that random variable �p is distributed according to negative
binomial distribution

pn = P (�p = n) =

�
�r

n

�
pr(�q)n; n = 0; 1; 2; . . . ; p > 0; p+ q = 1; r 2 R+:

(12)

De�nition 3. Random variable Y (with characteristic function f) is called
negative binomial in�nitely divisible if, for every p 2 (0; 1), there exist random
variables Xp (with characteristic functions fp) such that f could be represented as

f(t) = (fp(t))
r
+1X
n=0

pn(fp(t))
n; r > 0: (13)

When r 2 N , then (13) reduces to (5).
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The following theorem can be proved in the same way as Theorem 1 concern-
ing Pascal in�nitely divisible characteristic functions.

Theorem 4. The characteristic function f is negative binomial in�nitely

divisible if and only if it is of the form

f(t) = (1� ln (t))�r ; r 2 R+;

where  is an in�nitely divisible characteristic function.

Although in the de�nition of negative binomial in�nitely divisible characteris-
tic function f , the functional equation by which f is de�ned seems slightly arti�cial
because of the factor (fp(t))

r, it can be shown that functions of that class appear,
as limiting, in the Transfer theorem for random sums. We quote Gnedenko and
Fahim [3]:

Transfer theorem. Let �n1; �n2; . . . be i.i.d. for every n 2 N , Fn(x) =
P (�nk < x), fn { characteristic function of Fn. Let fkng be a sequence of positive

integers and let f�ng be a sequence of positive integer valued random variables,

independent of �nk. If

(A) P

(
knX
k=1

�nk < x

)
! F (x) and (B) P

�
�n
kn

< x

�
! A(x)

as n!1, where F and A are distribution functions, then

(C) P

(
�nX
k=1

�nk < x

)
! G(x):

The distribution G is determined by its characteristic function g

g(t) =

+1Z
0

[f(t)]zdA(z)

where f is the characteristic function of F .

From the classical theory of summation it follows that f is in�nitely divisible
characteristic function. We shall take �n to be negative binomial with parameter
1=n:

pk = P (�n = k) =

�
�r

k

�
(1=n)r(�1 + 1=n)k; k = 0; 1; 2; . . . ; r > 0:

Let us show that the condition (B) is ful�lled with kn = n. If we denote by an(t)
the Laplace transform of the variable �n, we have

an(t) =

�
1=n

1� (1� 1=n)e�t

�r
:
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The Laplace transform of �n=n is

an(t=n) =

�
1=n

1� (1� 1=n)e�t=n

�r
=

�
1

n� ne�t=n + e�t=n

�r
=

=

�
1

e�t=n + n(1� e�t=n)

�r
!

n!1

�
1

1 + t

�r
; r > 0:

So when we apply the Transfer theorem with the sequence of random indexes de�ned
as above, we obtain as limiting the random variable with negative binomial in�nitely
divisible characteristic function.

We see that the relationship existing between geometric, negative binomi-
al and their continuous analogues exponential and Gamma distributions are also
present in the simple enlargements of the class of geometrically in�nitely divisible
distributions which are introduced here. There also exists independent interest in
studying power mixtures with negative binomial mixing distribution. For instance,
Willmot [6],[7] investigated the tail behavior of such mixtures in connection with
some problems of risk and insurance. Hence we are interested to investigate the
relationship between mixtures with negative binomial mixing distribution and the
class of negative binomial in�nitely divisible distributions introduced in the formal
way by De�nition 3.

It should be pointed out that De�nitions 1 and 2 allow the random index �p
only to have Pascal distribution shifted by the value of the parameter r 2 N (r = 1
for geometric distribution). The representation theorem (see [4]) for characteristic
functions of geometrically in�nitely divisible distributions will not be true if instead
of (1), we take

pn = P (�p = n) = pqn; n = 0; 1; 2; . . . (p+ q = 1; p > 0)

in the De�nition 1, because in the \only if" part of that theorem it should be proved
that, for every p 2 (0; 1); a characteristic function fp(t) exists, such that for every
p 2 (0; 1),

p

1� (1� p)fp(t)
=

1

1� ln (t)
(14)

holds. But this is impossible because from (14) it follows that, for every p 2 (0; 1),

fp(t) = 1 + p=(1� p)ln (t):

Obviously the above fp(t) is not a characteristic function because it does not satisfy
the condition j fp(t) j� 1, for every p 2 (0; 1).

Now we shall give another de�nition of negative binomial in�nitely divisible
random variables, without the previously mentioned disadvantages.

Let �
(r)
p be a random variable having negative binomial law (12).

De�nition 4. Random variable Y is called negative binomial in�nitely divis-

ible if there exist i.i.d. random variables X
(1)
p ; X

(2)
p ; . . . ; p 2 (0; 1), independent of
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Y and �
(r)
p and such that

Y
d
= lim

p!0

�(r)
pX
j=1

X(j)
p :

In terms of probability distributions and characteristic functions the preceding
equation becomes (F , f are probability distribution and characteristic function
of Y , and Fp, fp are probability distribution and characteristic function of Xp,
respectively):

F (x) = lim
p!0

1X
n=0

�
�r

n

�
pr(�q)nF �np (x)

and

f(t) = lim
p!0

�
p

1� (1� p)fp(t)

�r
:

We shall see from the following theorem that De�nitions 3 and 4 determine
the same class of characteristic functions. When r 2 N this class reduces to (6),
and when r = 1 to (3).

Theorem 5. The characteristic function f is negative binomial in�nitely

divisible if and only if it is of the form

f(t) = (1� ln (t))�r ; r 2 R+

where  is an in�nitely divisible characteristic function.

Proof. The \if" part is identical as in the Theorem 1, and in order to prove
the \only if" part we have to prove that, for every in�nitely divisible characteristic
function  , there exist characteristic functions fp, p 2 (0; 1), such that�

1

1� ln (t)

�r
= lim

p!0

�
p

1� (1� p)fp(t)

�r
:

Put fp(t) =  p(t), then we have

lim
p!0

�
p

1� (1� p) p(t)

�r
= lim

p!0

�
1

 p(t)� 1=p( p(t)� 1)

�r
:

When p! 0 we have  p(t)! 1 and also j1�  p(t)j < 1. Then for p small enough
and from Taylor expansion of the function log(1� z) we conclude that

log (t) = p�1 log p(t) = p�1 log[1� (1�  p(t))] =

= �p�1[1�  p(t)]� p�1[1�  p(t)]2 � . . .

When p! 0, log (t) = limp!0 p
�1[ p(t)� 1]. The proof is completed.
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