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Abstract. We obtain some characterizations for the spaces which have a dense completely
metrizable subspace and some results related with these spaces.

1. Introduction. In 1991, Michael [7] gave some characterizations for the
spaces called almost Cech-complete which are simply called almost complete.

We know that for a metrizable space X, the following statements are equiv-
alent [7, Proposition 4.4]:

(1) X is a almost complete space,
(2) X has a dense completely metrizable subspace.

The first purpose of this paper is to obtain some characterizations for the
spaces which have a dense completely metrizable subspace and some results related
with these spaces.

Arhangel’skﬁ and Kocinac asked several questions on weakly perfect spaces
and spaces with dense G-diagonal [1]. The second purpose of this paper is to give
answers to their Questions 8 and 9.

2. Definitions and notations. All considered spaces are completely
regular. A sequence {U,| n € N} of subsets of a space X is said to be complete
if every filter base F on X which is controlled* by {U,| n € N} clusters at some
rzeX.

A sequence {U,| n € N} of collections of subsets of X is said to be complete
if {U,| n € N} is a complete sequence whenever U,, € U,, for all n € N.

A collection U of subsets of a space X is said to be an almost cover if U is
dense in X. Let & and V be collections of subsets of X. We say that V is a strong

AMS Subject Classification (1991): Primary 54 C 10,54 E 99.
*F is controlled by {Uy} if each U, contains some F € F.
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refinement of U if V is a refinement of U/ and for each element V' € V there exists
an element U € U with CI(V) C U.

The following lemma is proved in [7, Lemma 4.6].

LEMMA 2.1. If X has a complete sequence {U,| n € N} of open almost
covers, then there exists a complete sequence {V,| n € N} of disjoint open almost
covers of X such that V11 is a strong refinement of V,, for each n € N.

Let U be a collection of subsets of X. U is said to separate points of X if z
and y are distinct points of X, then there exists different elements U, and U, in U
such that z € U, and y € U,,. U is said to have a finite intersection property (fi.p.)
if every finite subcollection of &/ have a nonempty intersection.

3. Characterizations. The main purpose in this section is to prove Theo-
rem 3.4.

LEMMA 3.1. Let X has a complete sequence {Un|ln € N} of open almost
covers such that for each sequence {U,| U, € U,, n € N} with fip., the set
M{CL(U,)| n € N} is a singleton. Then there ezists a complete sequence {V,| n €
N} of disjoint open almost covers of X such that

(i) Vas1 is a strong refinement of V,, for each n € N, and

(ii) for each decreasing sequence {V,| Vi, € Vp, n € N}, the set {Cl(V,,)| n € N}
s a singleton.

Proof. From Lemma 2.1, there exists a complete sequence {V,| n € N} of
disjoint open almost covers of X such that V,,;1 is a strong refinement of V,, and
U, for each n € N.

Let {V,| n € N} is a decreasing sequence where V;, € V,, for each n € N. By
the construction of V,,, for each n € N, there exists U,, € U, such that Cl(V;,11) C
Vi N Uy,. Since {V,,| n € N} is decreasing, {Uy| n € N} has f.i.p.

For each n € N, we put F,, = Cl(V,,4+1). By completeness of {V,,| n € N}, we

have:
0# [V Fa= () Va=[) Cl(Va) = [ CUU»).

neN neN neEN neN

Since M,,en CU(Un) is a singleton, (,,cn C1(Vy) is also a singleton. O

THEOREM 3.2. Let X have a complete sequence {U,| n € N} of disjoint
open almost covers such that

(i) Un1 is a strong refinement of Uy, for each n € N, and
(ii) the set (,en Cl(Un) is a singleton for each decreasing sequence {U,| U, €
U, ne N}
Then X has a dense G5 completely metrizable subspace.
Proof. By [7, Proposition 4.5], X is a Baire space. Since G,, = [JU, is an

open dense subset in X for each n € N, then M = [, . Gn is a dense G5 set in
X.
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By the condition (ii), if # and y are two distinct points of M, then there exists
n € N such that U,, separates z and y.

Let us define the metric p on M by
0, Tr = y

p(z,y) = {

min{n| U, separates z and y})~!,  otherwise.

It is easy to check that p is a complete metric on M, by the condition (i) and
(if). Moreover, U, N M is a 1/n-open ball at « for each U,, € U,, and z € U, N M.
Hence the original topology on M is stronger than p-topology.

Now we show the next claim.

CLAIM. Let F be a closed subset of M and x € M\F. Then there existn € N
and U, € U, such that x € U, and U, N F = ©.

Proof of the claim. Suppose that U, N F' # @ whenever z € U, for each
n € N. Pick a point z, in U, N F, and put F,, = Cl{z,,| m > n + 1} for each
n € N. Then by the condition (i), {U,| n € N} is a decreasing sequence, and
{z} = N,,en Un, by the condition (ii). It follows that

©# [ FocC () Un={z}.

neN neN

Hence x € F. This is a contradiction, and the claim is proved.

By the claim, p-topology is stronger than the original topology. It follows
that M is a dense G5 completely metrizable subspace. The proof is complete. O

THEOREM 3.3. Let X be a space with a dense completely metrizable subspace.
Then there exists a complete sequence {U,| n € N} of open almost covers of X such
that for each sequence {Uy| U, € U,, n € N} with the f.i.p., the set [, o CL(Un)
s a singleton.

Proof. Let M be a dense completely metrizable subspace of X and p a com-
patible metric on M. Let U(z,n) be an open subset of X such that B(z,1/n) =
U(z,n)NM for each x € M and n € N, where B(z,1/n) = {y € M| p(z,y) < 1/n}
be a 1/n-open ball in M. Then for each n € N, U,, = {U(z,n)| x € M} is an open
almost cover of X.

Now we show that {U,| n € N} is a complete sequence. Let {U,| U, €
Uyn, n € N} be a sequence and F a filter base on X which is controlled by {U,| n €
N}. Then for each n € N, there exists F,, € F such that F,, C U,. By the
construction of U, there exists x, such that z, € M, U, = U(z,,n) for each
n € N. Since {U,| n € N} has the f.i.p., it follows that {z,| n € N} is a p-Cauchy
sequence. Then there exists o € M such that {z,| n € N} converges to .
Therefore we have that zo € (J{Cl(F)| F € F}. Hence {U,| n € N} is a complete
sequence.

In the same way, it is easy to see that [
complete. [

nen Cl(Un) = {zo}. The proof is
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These results lead to the following theorem.

THEOREM 3.4. For the space X, the following conditions are equivalent.

(1) X has a complete sequence {Uyn| n € N} of open almost covers such that for
each sequence {Uy| Uyp € Uy, n € N} with fi.p., the set [),cn Cl(Uy) is a
singleton.

(2) X has a complete sequence {Uy,| n € N} of disjoint open almost covers such
that

(i) Unt1 is a strong refinement of Uy, for each n € N, and

(ii) for each decreasing sequence {Uy| Un € Upn, n € N}, the set [, Cl(Up) is
a singleton.

(3) X has a dense G5 completely metrizable subspace.
(4) X has a dense completely metrizable subspace.
A space X is said to be a Namioka space if the following condition is satisfied:

() for any compact space Y and any separately continuous function f: X xY —
R, there exists a dense G5 subset A C X such that f is jointly continuous at
each point of A x Y.

Next we consider the following game. Let a and 8 be two players with 3
the first to move. (3 starts by choosing a nonempty open subset U; C X. Then «
chooses an open subset V; C Uy and a point z; € V5. § then chooses a nonempty
open subset Us C V; (he may choose as he wishes but is expected to escape from
x1). Next a chooses an open subset Vo C U and a point 25 € V2, and so on. «
wins if any subsequence {z,,| p € N} of the sequence {z,| n € N} accumulates
to at least one point of the set ();—; Vi = ;= Ui- Then X is said to be o-well
a-favorable if  has a winning strategy in the game above.

It is well known that o-well a-favorable spaces are Namioka [9, Theorem 6.3].

THEOREM 3.5. Let X be a space with a dense completely metrizable subspace
M. Then X is a o-well a-favorable space. Hence X is a Namioka space.

Proof. Let Uy be a nonempty open subset of X. Since M is a dense subspace,
we can pick a point 1 in M NU;. Then there exists a nonempty open subset V;
of X such that z; € V; C Cl(V}) C Uy and dp — diam(Vy N M) < 1/2, where dy
is a compatible metric on M. By induction, there exists a sequence {z,| n € N}
in X and sequences {V,| n € N}, {U,| n € N} of subsets of X such that

z, €VonNM, Uypyr CV,, CCUV,) CU,, and dyy — diam(V, N M) <1/n+1

for each n € N. Since {z,| n € N} is a djy/-Cauchy sequence in M, there exists x
in M such that {z,| n € N} converges to zg. By the construction of {V;,| n € N},
we have 75 € [,en Vo = Npen Cl(Va). The proof is complete. O

THEOREM 3.6. Let X be a space with a dense completely metrizable subspace,
Y a space and f: X — Y an irreducible, closed, continuous and onto map. Then
Y has a dense completely metrizable subspace.
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Proof. By Theorem 3.4, there exists a complete sequence {U,| n € N} of
disjoint open almost covers of X, which satisfies the conditions (i) and (ii) of (2).
For each U € U,,, put W(U) = Y\ f(X\U). Then each W(U) is a nonempty open
subset of Y. Now put V,, = {W(U)| U € Uy} for each n € N. It is easy to see that
{Vn| n € N} is a complete sequence of open almost covers of Y, which satisfies the
condition (1) of Theorem 3.4. The proof is complete. O

4. countable dense A-base. Here Ax = {(z,z)| z € X} is the diagonal
in X x X. Arhangel’skii and Ko¢inac [1] asked the following questions:

Question 1. When there exist a countable family U of open sets in X x X
such that U N Ax is dense in Ax and for each open neighborhood V of Ax in
X x X one can find U € U such that U C V7 Such U will be called a dense A-base
of X.

Question 2. Let X be a compact space with a countable dense A-base. Does
there exist a dense open metrizable subspace Y C X7 A dense separable subspace
Z CX?

It is clear that if X has a dense discrete subspace, then X has a countable
dense A-base. Now we prove the following theorem.

THEOREM 4.1. Let X be a compact space. If X has a dense completely
metrizable subspace, then X has a countable dense A-base.

Proof. Let M be a completely metrizable subspace of X and p a compatible
metric on M. For each n € N, put V,, = {(z,y) € M x M| p(z,y) < 1/n}. Since
each V, is open set in M x M, there exists an open set U, in X x X such that
Vo =Up N (M x M). We show that & = {U,| n € N} is a countable dense A-base
of X.

Let V' be an open neighborhood of Ax in X x X. Then we prove that there
exists n € N such that U,, C V. By normality of X x X, it is enough to show that
U, C CI(V).

Indeed, suppose that U, ¢ CL(V) for each n € N. Then there exists
(Tn,yn) € VR\CI(V) for each n € N. By the definition of V,,, p(xn,yn) < 1/n
and {(zn,yn)| N € N} C (X x X)\ Cl(V) C (X x X)\V. Since (X x X)\V
is compact, there exists a cluster point (zo,y0) of {(zn,yn)| n € N} such that
(%o, y0) € (X x X)\V. Hence zo # yo. Then there exist open subsets V,, and V,
such that zo € Vg, yo € V3, and Cl(V,,) N CL(V,,) = @. By the completeness, it
follows that dist (Cl(Vy,) N M,CL(V,,) N M) > 0. But p(zn,yn) < 1/n for each
n € N, a contradiction.

Finally, since Ay C (NU) N Ax, the set (U) N Ax is dense in Ax. The
proof is complete. [

Next we consider Question 2. We remark the following proposition.

ProPrOSITION 4.2. Let X be a space and M a dense completely metrizable
subspace of X. Then the following conditions are equivalent.

(1) X is separable.
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M is separable.

X satisfies the countable chain condition.

We have the negative answer of the second part of Question 2.

Ezample 4.3. Let X be the closed ordinal space [0, (2], where € is the first

uncountable ordinal. Since X is a compact scattered space, it has a dense uncoun-
table discrete subspace. Therefore X has a countable dense A-base. But it is clear
that X does not have any dense separable metrizable subspaces.

Let us note that if M is a dense open metrizable subspace of a compact space

X, then M is a completely metrizable.

1]

2]
3]
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