ON TOPOLOGICAL SPACES WITH DENSE COMPLETELY METRIZABLE SUBSPACES

T. Nagamizu

Dedicated to Professor Akihiro Okuyama on his 60th birthday

Abstract. We obtain some characterizations for the spaces which have a dense completely metrizable subspace and some results related with these spaces.

1. Introduction. In 1991, Michael [7] gave some characterizations for the spaces called *almost Čech-complete* which are simply called *almost complete*.

We know that for a metrizable space X, the following statements are equivalent [7, Proposition 4.4]:

- (1) X is a almost complete space,
- (2) X has a dense completely metrizable subspace.

The first purpose of this paper is to obtain some characterizations for the spaces which have a dense completely metrizable subspace and some results related with these spaces.

Arhangel'skii and Kočinac asked several questions on weakly perfect spaces and spaces with dense G_{δ} -diagonal [1]. The second purpose of this paper is to give answers to their Questions 8 and 9.

2. Definitions and notations. All considered spaces are completely regular. A sequence $\{U_n | n \in \mathbb{N}\}$ of subsets of a space X is said to be *complete* if every filter base \mathcal{F} on X which is controlled* by $\{U_n | n \in \mathbb{N}\}$ clusters at some $x \in X$.

A sequence $\{U_n | n \in \mathbb{N}\}$ of collections of subsets of X is said to be *complete* if $\{U_n | n \in \mathbb{N}\}$ is a complete sequence whenever $U_n \in \mathcal{U}_n$ for all $n \in \mathbb{N}$.

A collection \mathcal{U} of subsets of a space X is said to be an almost cover if $\bigcup \mathcal{U}$ is dense in X. Let \mathcal{U} and \mathcal{V} be collections of subsets of X. We say that \mathcal{V} is a strong

 $AMS\ Subject\ Classification\ (1991):$ Primary $54 \times 10, 54 \times 99.$

^{*} \mathcal{F} is controlled by $\{U_n\}$ if each U_n contains some $F \in \mathcal{F}$.

refinement of \mathcal{U} if \mathcal{V} is a refinement of \mathcal{U} and for each element $V \in \mathcal{V}$ there exists an element $U \in \mathcal{U}$ with $\mathrm{Cl}(V) \subset U$.

The following lemma is proved in [7, Lemma 4.6].

LEMMA 2.1. If X has a complete sequence $\{U_n | n \in \mathbf{N}\}$ of open almost covers, then there exists a complete sequence $\{V_n | n \in \mathbf{N}\}$ of disjoint open almost covers of X such that V_{n+1} is a strong refinement of V_n for each $n \in \mathbf{N}$.

Let \mathcal{U} be a collection of subsets of X. \mathcal{U} is said to separate points of X if x and y are distinct points of X, then there exists different elements U_x and U_y in \mathcal{U} such that $x \in U_x$ and $y \in U_y$. \mathcal{U} is said to have a finite intersection property (f.i.p.) if every finite subcollection of \mathcal{U} have a nonempty intersection.

3. Characterizations. The main purpose in this section is to prove Theorem 3.4.

Lemma 3.1. Let X has a complete sequence $\{U_n|n \in \mathbb{N}\}$ of open almost covers such that for each sequence $\{U_n|U_n \in \mathcal{U}_n, n \in \mathbb{N}\}$ with f.i.p., the set $\bigcap \{\operatorname{Cl}(U_n)|n \in \mathbb{N}\}$ is a singleton. Then there exists a complete sequence $\{\mathcal{V}_n|n \in \mathbb{N}\}$ of disjoint open almost covers of X such that

- (i) V_{n+1} is a strong refinement of V_n for each $n \in \mathbb{N}$, and
- (ii) for each decreasing sequence $\{V_n|V_n \in \mathcal{V}_n, n \in \mathbf{N}\}$, the set $\bigcap \{\operatorname{Cl}(V_n)|n \in \mathbf{N}\}$ is a singleton.

Proof. From Lemma 2.1, there exists a complete sequence $\{\mathcal{V}_n | n \in \mathbf{N}\}$ of disjoint open almost covers of X such that \mathcal{V}_{n+1} is a strong refinement of \mathcal{V}_n and \mathcal{U}_n for each $n \in \mathbf{N}$.

Let $\{V_n | n \in \mathbf{N}\}$ is a decreasing sequence where $V_n \in \mathcal{V}_n$ for each $n \in \mathbf{N}$. By the construction of \mathcal{V}_n , for each $n \in \mathbf{N}$, there exists $U_n \in \mathcal{U}_n$ such that $\mathrm{Cl}(V_{n+1}) \subset V_n \cap U_n$. Since $\{V_n | n \in \mathbf{N}\}$ is decreasing, $\{U_n | n \in \mathbf{N}\}$ has f.i.p.

For each $n \in \mathbb{N}$, we put $F_n = \text{Cl}(V_{n+1})$. By completeness of $\{\mathcal{V}_n | n \in \mathbb{N}\}$, we have:

$$\emptyset \neq \bigcap_{n \in \mathbf{N}} F_n = \bigcap_{n \in \mathbf{N}} V_n = \bigcap_{n \in \mathbf{N}} \mathrm{Cl}(V_n) = \bigcap_{n \in \mathbf{N}} \mathrm{Cl}(U_n).$$

Since $\bigcap_{n\in\mathbb{N}}\operatorname{Cl}(U_n)$ is a singleton, $\bigcap_{n\in\mathbb{N}}\operatorname{Cl}(V_n)$ is also a singleton. \square

THEOREM 3.2. Let X have a complete sequence $\{U_n | n \in \mathbf{N}\}$ of disjoint open almost covers such that

- (i) \mathcal{U}_{n+1} is a strong refinement of \mathcal{U}_n for each $n \in \mathbb{N}$, and
- (ii) the set $\bigcap_{n\in\mathbb{N}} \operatorname{Cl}(U_n)$ is a singleton for each decreasing sequence $\{U_n|\ U_n\in\mathcal{U},\ n\in\mathbb{N}\}.$

Then X has a dense G_{δ} completely metrizable subspace.

Proof. By [7, Proposition 4.5], X is a Baire space. Since $G_n = \bigcup \mathcal{U}_n$ is an open dense subset in X for each $n \in \mathbb{N}$, then $M = \bigcap_{n \in \mathbb{N}} G_n$ is a dense G_δ set in X

By the condition (ii), if x and y are two distinct points of M, then there exists $n \in \mathbb{N}$ such that \mathcal{U}_n separates x and y.

Let us define the metric ρ on M by

$$\rho(x,y) = \begin{cases} 0, & x = y \\ \min\{n | \mathcal{U}_n \text{ separates } x \text{ and } y\})^{-1}, & \text{otherwise.} \end{cases}$$

It is easy to check that ρ is a complete metric on M, by the condition (i) and (ii). Moreover, $U_n \cap M$ is a 1/n-open ball at x for each $U_n \in \mathcal{U}_n$ and $x \in U_n \cap M$. Hence the original topology on M is stronger than ρ -topology.

Now we show the next claim.

CLAIM. Let F be a closed subset of M and $x \in M \setminus F$. Then there exist $n \in \mathbb{N}$ and $U_n \in \mathcal{U}_n$ such that $x \in U_n$ and $U_n \cap F = \emptyset$.

Proof of the claim. Suppose that $U_n \cap F \neq \emptyset$ whenever $x \in U_n$ for each $n \in \mathbb{N}$. Pick a point x_n in $U_n \cap F$, and put $F_n = \operatorname{Cl}\{x_m | m \geq n+1\}$ for each $n \in \mathbb{N}$. Then by the condition (i), $\{U_n | n \in \mathbb{N}\}$ is a decreasing sequence, and $\{x\} = \bigcap_{n \in \mathbb{N}} U_n$, by the condition (ii). It follows that

$$\emptyset \neq \bigcap_{n \in \mathbb{N}} F_n \subset \bigcap_{n \in \mathbb{N}} U_n = \{x\}.$$

Hence $x \in F$. This is a contradiction, and the claim is proved.

By the claim, ρ -topology is stronger than the original topology. It follows that M is a dense G_{δ} completely metrizable subspace. The proof is complete. \square

THEOREM 3.3. Let X be a space with a dense completely metrizable subspace. Then there exists a complete sequence $\{U_n | n \in \mathbb{N}\}$ of open almost covers of X such that for each sequence $\{U_n | U_n \in \mathcal{U}_n, n \in \mathbb{N}\}$ with the f.i.p., the set $\bigcap_{n \in \mathbb{N}} \mathrm{Cl}(U_n)$ is a singleton.

Proof. Let M be a dense completely metrizable subspace of X and ρ a compatible metric on M. Let U(x,n) be an open subset of X such that $B(x,1/n) = U(x,n) \cap M$ for each $x \in M$ and $n \in \mathbb{N}$, where $B(x,1/n) = \{y \in M \mid \rho(x,y) < 1/n\}$ be a 1/n-open ball in M. Then for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U(x,n) \mid x \in M\}$ is an open almost cover of X.

Now we show that $\{U_n | n \in \mathbf{N}\}$ is a complete sequence. Let $\{U_n | U_n \in \mathcal{U}_n, n \in \mathbf{N}\}$ be a sequence and \mathcal{F} a filter base on X which is controlled by $\{U_n | n \in \mathbf{N}\}$. Then for each $n \in \mathbf{N}$, there exists $F_n \in \mathcal{F}$ such that $F_n \subset U_n$. By the construction of \mathcal{U}_n , there exists x_n such that $x_n \in M$, $U_n = U(x_n, n)$ for each $n \in \mathbf{N}$. Since $\{U_n | n \in \mathbf{N}\}$ has the f.i.p., it follows that $\{x_n | n \in \mathbf{N}\}$ is a ρ -Cauchy sequence. Then there exists $x_0 \in M$ such that $\{x_n | n \in \mathbf{N}\}$ converges to x_0 . Therefore we have that $x_0 \in \bigcap \{\operatorname{Cl}(F) | F \in \mathcal{F}\}$. Hence $\{U_n | n \in \mathbf{N}\}$ is a complete sequence.

In the same way, it is easy to see that $\bigcap_{n\in\mathbb{N}} \mathrm{Cl}(U_n)=\{x_0\}$. The proof is complete. \square

These results lead to the following theorem.

Theorem 3.4. For the space X, the following conditions are equivalent.

- (1) X has a complete sequence $\{U_n | n \in \mathbb{N}\}$ of open almost covers such that for each sequence $\{U_n | U_n \in \mathcal{U}_n, n \in \mathbb{N}\}$ with f.i.p., the set $\bigcap_{n \in \mathbb{N}} \operatorname{Cl}(U_n)$ is a singleton.
- (2) X has a complete sequence $\{U_n | n \in \mathbb{N}\}$ of disjoint open almost covers such that
- (i) \mathcal{U}_{n+1} is a strong refinement of \mathcal{U}_n for each $n \in \mathbb{N}$, and
- (ii) for each decreasing sequence $\{U_n | U_n \in \mathcal{U}_n, n \in \mathbf{N}\}$, the set $\bigcap_{n \in \mathbf{N}} \operatorname{Cl}(U_n)$ is a singleton.
- (3) X has a dense G_{δ} completely metrizable subspace.
- (4) X has a dense completely metrizable subspace.

A space X is said to be a $Namioka\ space$ if the following condition is satisfied:

(*) for any compact space Y and any separately continuous function $f: X \times Y \to \mathbf{R}$, there exists a dense G_{δ} subset $A \subset X$ such that f is jointly continuous at each point of $A \times Y$.

Next we consider the following game. Let α and β be two players with β the first to move. β starts by choosing a nonempty open subset $U_1 \subset X$. Then α chooses an open subset $V_1 \subset U_1$ and a point $x_1 \in V_1$. β then chooses a nonempty open subset $U_2 \subset V_1$ (he may choose as he wishes but is expected to escape from x_1). Next α chooses an open subset $V_2 \subset U_2$ and a point $x_2 \in V_2$, and so on. α wins if any subsequence $\{x_{n_p} | p \in \mathbb{N}\}$ of the sequence $\{x_n | n \in \mathbb{N}\}$ accumulates to at least one point of the set $\bigcap_{i=1}^{\infty} V_i = \bigcap_{i=1}^{\infty} U_i$. Then X is said to be σ -well α -favorable if α has a winning strategy in the game above.

It is well known that σ -well α -favorable spaces are Namioka [9, Theorem 6.3].

Theorem 3.5. Let X be a space with a dense completely metrizable subspace M. Then X is a σ -well α -favorable space. Hence X is a Namioka space.

Proof. Let U_1 be a nonempty open subset of X. Since M is a dense subspace, we can pick a point x_1 in $M \cap U_1$. Then there exists a nonempty open subset V_1 of X such that $x_1 \in V_1 \subset \operatorname{Cl}(V_1) \subset U_1$ and $\operatorname{d}_M - \operatorname{diam}(V_1 \cap M) \leq 1/2$, where d_M is a compatible metric on M. By induction, there exists a sequence $\{x_n \mid n \in \mathbf{N}\}$ in X and sequences $\{V_n \mid n \in \mathbf{N}\}$, $\{U_n \mid n \in \mathbf{N}\}$ of subsets of X such that

$$x_n \in V_n \cap M$$
, $U_{n+1} \subset V_n \subset \operatorname{Cl}(V_n) \subset U_n$, and $\operatorname{d}_M - \operatorname{diam}(V_n \cap M) \leq 1/n + 1$

for each $n \in \mathbb{N}$. Since $\{x_n | n \in \mathbb{N}\}$ is a d_M -Cauchy sequence in M, there exists x_0 in M such that $\{x_n | n \in \mathbb{N}\}$ converges to x_0 . By the construction of $\{V_n | n \in \mathbb{N}\}$, we have $x_0 \in \bigcap_{n \in \mathbb{N}} V_n = \bigcap_{n \in \mathbb{N}} \operatorname{Cl}(V_n)$. The proof is complete. \square

Theorem 3.6. Let X be a space with a dense completely metrizable subspace, Y a space and $f: X \to Y$ an irreducible, closed, continuous and onto map. Then Y has a dense completely metrizable subspace.

Proof. By Theorem 3.4, there exists a complete sequence $\{\mathcal{U}_n | n \in \mathbb{N}\}$ of disjoint open almost covers of X, which satisfies the conditions (i) and (ii) of (2). For each $U \in \mathcal{U}_n$, put $W(U) = Y \setminus f(X \setminus U)$. Then each W(U) is a nonempty open subset of Y. Now put $\mathcal{V}_n = \{W(U) | U \in \mathcal{U}_n\}$ for each $n \in \mathbb{N}$. It is easy to see that $\{\mathcal{V}_n | n \in \mathbb{N}\}$ is a complete sequence of open almost covers of Y, which satisfies the condition (1) of Theorem 3.4. The proof is complete. \square

4. countable dense Δ -base. Here $\Delta_X = \{(x, x) | x \in X\}$ is the diagonal in $X \times X$. Arhangel'skii and Kočinac [1] asked the following questions:

Question 1. When there exist a countable family \mathcal{U} of open sets in $X \times X$ such that $\bigcap \mathcal{U} \cap \Delta_X$ is dense in Δ_X and for each open neighborhood V of Δ_X in $X \times X$ one can find $U \in \mathcal{U}$ such that $U \subset V$? Such \mathcal{U} will be called a dense Δ -base of X.

Question 2. Let X be a compact space with a countable dense Δ -base. Does there exist a dense open metrizable subspace $Y \subset X$? A dense separable subspace $Z \subset X$?

It is clear that if X has a dense discrete subspace, then X has a countable dense Δ -base. Now we prove the following theorem.

Theorem 4.1. Let X be a compact space. If X has a dense completely metrizable subspace, then X has a countable dense Δ -base.

Proof. Let M be a completely metrizable subspace of X and ρ a compatible metric on M. For each $n \in \mathbb{N}$, put $V_n = \{(x,y) \in M \times M \mid \rho(x,y) < 1/n\}$. Since each V_n is open set in $M \times M$, there exists an open set U_n in $X \times X$ such that $V_n = U_n \cap (M \times M)$. We show that $\mathcal{U} = \{U_n \mid n \in \mathbb{N}\}$ is a countable dense Δ -base of X.

Let V be an open neighborhood of Δ_X in $X \times X$. Then we prove that there exists $n \in \mathbb{N}$ such that $U_n \subset V$. By normality of $X \times X$, it is enough to show that $U_n \subset \mathrm{Cl}(V)$.

Indeed, suppose that $U_n \nsubseteq \operatorname{Cl}(V)$ for each $n \in \mathbb{N}$. Then there exists $(x_n,y_n) \in V_n \backslash \operatorname{Cl}(V)$ for each $n \in \mathbb{N}$. By the definition of V_n , $\rho(x_n,y_n) < 1/n$ and $\{(x_n,y_n)|\ N \in \mathbb{N}\} \subset (X \times X) \backslash \operatorname{Cl}(V) \subset (X \times X) \backslash V$. Since $(X \times X) \backslash V$ is compact, there exists a cluster point (x_0,y_0) of $\{(x_n,y_n)|\ n \in \mathbb{N}\}$ such that $(x_0,y_0) \in (X \times X) \backslash V$. Hence $x_0 \neq y_0$. Then there exist open subsets V_{x_0} and V_{y_0} such that $x_0 \in V_{x_0}$, $y_0 \in V_{y_0}$ and $\operatorname{Cl}(V_{x_0}) \cap \operatorname{Cl}(V_{y_0}) = \emptyset$. By the completeness, it follows that dist $(\operatorname{Cl}(V_{x_0}) \cap M, \operatorname{Cl}(V_{y_0}) \cap M) > 0$. But $\rho(x_n,y_n) < 1/n$ for each $n \in \mathbb{N}$, a contradiction.

Finally, since $\Delta_M \subset (\bigcap \mathcal{U}) \cap \Delta_X$, the set $(\bigcap \mathcal{U}) \cap \Delta_X$ is dense in Δ_X . The proof is complete. \square

Next we consider Question 2. We remark the following proposition.

Proposition 4.2. Let X be a space and M a dense completely metrizable subspace of X. Then the following conditions are equivalent.

(1) X is separable.

- (2) M is separable.
- (3) X satisfies the countable chain condition.

We have the negative answer of the second part of Question 2.

Example 4.3. Let X be the closed ordinal space $[0,\Omega]$, where Ω is the first uncountable ordinal. Since X is a compact scattered space, it has a dense uncountable discrete subspace. Therefore X has a countable dense Δ -base. But it is clear that X does not have any dense separable metrizable subspaces.

Let us note that if M is a dense open metrizable subspace of a compact space X, then M is a completely metrizable.

REFERENCES

- [1] A.V. Arhangel'skii and Lj.D. Kočinac, On a dense G_{δ} -diagonal, Publ. Inst. Math. 47 (61) (1990), 121–126.
- [2] R. Engelking, General Topology, PWN, Warszawa, (1977).
- [3] Z. Frolik, Generalizations of the G_{δ} -property of complete metric spaces, Czech. Math. J. 10 (1960), 359–379.
- [4] Z. Frolik, Baire spaces and some generalizations of complete metric spaces, Czech. Math. J. 11 (1961), 237-247.
- [5] R.W. Hansell, J.E. Jayne and M. Talagrand, First class selector for weakly upper semicontinuous multi-valued maps in Banach spaces, J. Reine. Angew. Mathematik 361 (1985), 201-220.
- [6] E. Michael, A note on completely metrizable spaces, Proc. Amer. Math. Soc. 96 (1985), 513-522.
- [7] E. Michael, Almost complete spaces, hypercomplete spaces and related mapping theorems, Topology Appl. 41 (1991), 113-130.
- [8] I. Namioka, Radon-Nikodým compact spaces and fragmentablity, Mathematika 34 (1987), 258-281.
- [9] Z. Piotrowski, Separately and jointly continuity, Real Anal. Exchange 11 (1985/86), no. 2, 293-322.
- [10] N.K. Ribarska, Internal characterization of fragmentable spaces, Mathematika 34 (1987), 243-257.
- [11] D.B. Shakhmatov, Compact spaces and their generalizations, (preprint).
- [12] C. Stegall, Topological spaces with dense subspaces that are homeomorphic to complete metric spaces and the classification of C(K) Banach spaces, Mathematika **34** (1987), 101–107.
- [13] C. Stegall, The topology of certain spaces of measures, Topology Appl. 41 (1991), 73-112.

Fukui National College of Technology Geshi Sabae Fukui 916 JAPAN (Received 12 11 1993) (Revised 19 04 1994)