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SPACES WITH EXCEPTIONAL FUNDAMENTAL GROUPS

Boris A. Rosenfeld

Abstract. The geometric interpretations of all real exceptional simple Lie groups of classes
G2; F4; E6; E7 and E8 are described. In particular, we describe the interpretations of the four
last classes as groups of motions of elliptic and hyperbolic planes over algebras of octaves and
split octaves and over tensor products of them and algebras of usual and split complex numbers,
quaternions and octaves. The explicite expressions of motions of these planes are found. The
symmetry �gures and parabolic �gures of all considered spaces and geometric interpretations of
all fundamental linear representations of real exceptional simple Lie groups are found.

1. Spaces with classical fundamental groups

The geometric meaning of the complex simple Lie groups of the in�nite series
An; Bn; Cn; Dn ("classical simple Lie groups") was well known to the founder of the
theory of these groups Sophus Lie. Lie knew that: the groups An are the groups
of collineations of the complex projective n-spaces CPn, the groups Bn are the
groups of motions of the complex non-Euclidean 2n-spaces CS2n, the groups Cn

are the groups of symplectic transformations of the complex symplectic (2n � 1)-
spaces CSy2n�1, and the groups Dn are the groups of motions of the complex non-
Euclidean (2n� 1)-spaces CS2n�1. The spaces CSN are the spaces CPN in which
the quadrics

P
i(x

i)2 = 0 are given; the motions of these spaces are the collineations
preserving these quadrics called the absolutes of these spaces; the spaces CSy2n�1

are the spaces CP 2n�1 in which the linear complex of lines
P

i p
2i;2t+1 = 0 is

given (pij = xiyj�yixj are the Pl�uckerian coordinates of the lines), the symplectic
transformations are collineations preserving this linear complex, de�ned just as the
spaces CS2n. All complex simple Lie groups were found by Killing [1888-1890] and
by Cartan [1894].

All real simple Lie groups were found by Cartan [1914]. The geometric mean-
ing of some of these groups was known in 19th century: certain non-compact real
groups An and Cn are the groups of collineations of the real projective spaces Pn

and the groups of symplectic transformations of the real symplectic spaces Sy2n�1

de�ned just as the complex ones; the compact real groups Bn andDn are the groups
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of motions of elliptic spaces S2n and S2n�1 with imaginary absolutes having the
same equations as the absolutes of the complex non-Euclidean spaces. It was also
known that the non-compact real groups Bn and Dn are the groups of motions of
hyperbolic (Lobachevskian) spaces H2n and H2n�1 whose absolutes are real oval
quadrics, and that the compact real groups An are the groups of motions of complex
Hermitian elliptic spaces C �Sn de�ned by Study [1905]. The spaces CSn are the
spaces CPn in which the absolute is an imaginary Hermitian quadric

P
i �xix

i; the
motions of this space are the collineations preserving this absolute. Study [1905]
also de�ned the complex Hermitian hyperbolic spacesC �Hn whose group of motions
is a non-compact real group of the same class.

The geometric interpretations of many real simple Lie groups were found
by Cartan in his extended translation [1915] of Fano's paper in the Encyclopae-

dia of mathematical sciences , the �rst 21 pages of which were published in 1914,
but the whole paper was not published then because of World War I and was
published only in Cartans Collected works in 1955. Some results of this paper
were published in Cartan [1931] and in some Cartan's papers. The non-compact
real groups Bn and Dn, besides the groups of motions of H2n and H2n�1, are
the groups of motions of real pseudo-elliptic and pseudo-hyperbolic spaces S2nl ,

S2n�1l , H2n
l and H2n�1

l whose absolutes are quadrics �
P

�(x
�)2 +

P
i(x

i)2 = 0
(1 � � < l for pseudo-elliptic spaces and 1 < � � l for pseudo-hyperbolic spaces)
and the groups of symplectic transformations of the quaternion Hermitian sym-
plectic spaces H �Syn�1, that is the spaces HPn�1 in which the absolute

P
i �x

iixi is
given. The non-compact real groups An, besides the groups of collineations of Pn
and the groups of motions of C �Hn, are the groups of motions of complex Hermitian
pseudo-elliptic and pseudo-hyperbolic spaces C �Snl and C �Hn

l whose absolutes are
Hermitian quadrics �

P
� x

��x�+
P

i �x
ixi = 0 (1 � � < l and 1 < � � l respective-

ly) and the groups of collineations of quaternion projective spaces HP (n�1)=2. The
compact real groups Cn, as Cartan [1927] established, are the groups of motions
of quaternion Hermitian elliptic spaces H �Sn�1 de�ned just as the spaces C �Sn�1

(earlier Cartan used more complicated geometric interpretations of these groups by
means of the spaces C �S2n�1 with linear complex. This interpretation is equiva-
lent to the interpretation of H �Sn by the paratactic congruence of lines in C �S2n+1

analogous to the interpretation of C �Sn by the paratactic congruence of lines in
S2n+1).

These compact groups are often called "unitary symplectic groups" or "qua-
ternion symplectic groups". The non-compact real groups Cn, besides the groups of
symplectic transfomations of Sy2n�1, are the groups of motions of quaternion Her-
mitian hyperbolic, pseudo-elliptic and pseudo-hyperbolic spaces H �Hn�1, H �Sn�1l

and H �Hn�1
l de�ned just as spaces C �Hn�1, C �Sn�1l and C �Hn�1

l . The names and
notations of pseudo-elliptic and pseudo-hyperbolic spaces are used by Wolf [1984].
The geometry of all these spaces except H �Syn were described in author's book
[1955]. The spaces H �Syn were described by Rumyanceva [1963a] (let us note that
the spaces Snl and Hn

l�1 have the same absolute but the curvature of the �rst and
second spaces is positive and negative respectively).
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Fig. 1. Dynkin diagrams for classical groups An, Bn, Cn, Dn

The complex, compact and split real simple Lie groups are characterized by
Dynkin diagrams (Fig. 1) whose dots represent the simple roots of these groups (all
these roots for compact real groups are purely imaginary; for split groups all these
roots are real). The non-compact and non-split simple Lie groups are characterized
by Satake diagrams (Fig. 2), whose white dots represent the real simple roots of
these groups, while the black dots represent their purely imaginary simple roots,
and the white dots which are joined by double arrows represent their conjugate
imaginary simple roots.

2. Isomorphisms of the classical groups

In the papers mentioned above Killing and Cartan found also the isomor-
phisms between complex and real simple groups A1 = B1 = C1, D2 = A1 � A1,
B2 = C2 and A3 = D3 and all their geometric interpretations (Cartan [1915] called
the geometries with isomorphic groups equivalent geometries).

Let us note that the compact real group C1 is the group of automorphisms of
the skew �eldH of quaternions. The Dynkin and Satake diagrams of the isomorphic
groups are similar (Fig. 3 and 4). The isomorphisms A1 = B1 and B2 = C2 are
connected with isometries of lines C �S1 and H �S1 to the spheres of the Euclidean
spaces R3 and R5 respectively.

Let us note also that if we replace in the de�nition of the space C �Sn the �eld
C by the algebra C0 of split complex numbers a+ be, where a; b are real numbers,
e2 = +1 (this algebra is isomorphic to the direct sum R�R of two �elds R of real
numbers), then we obtain the space C0 �Sn whose group of motions is isomorphic to
the group of collineations of Pn (the space C0 �Sn admits interpretation as manifold
of pairs point+hyperplane of Pn.

If in the de�nitions of the spaces H �Pn, H �Sn and H �Syn we replace the �eld
H by the algebra H0 of split quaternions a + bi + ce + df , where a; b; c; d are real
numbers, i2 = �1, e2 = +1, ie = �ei = f (this algebra is isomorphic to the algebra
R2 of real 2-matrices), then we obtain the spaces H0 �Pn, H0 �Sn and H0 �Syn whose
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Fig. 2. Satake diagrams for classical groups An, Bn, Cn, Dn
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Fig. 3. Dynkin diagrams for isomorphic classical groups A1 = B1 = C1, D2 =
A1 �A1, B2 = C2, A3 = D3

fundamental groups are isomorphic to the groups of collineations of P 2n+1, to
the groups of symplectic transformations of Sy2n+1 and to the gruop of motions of
S2n+1 respectively (these split quaternion spaces admit interpretations as manifolds
of lines of real spaces).

Fig. 4. Satake diagrams for isomorphic classical groups A1 = B1 = C1, D2 =
A1 �A1, B2 = C2, A3 = D3

If in the de�nitions of the spaces C �Sn and H �Sn we replace the �elds C and
H by the tensor products C 
C, C 
H and H 
H, then we obtain the spaces

(C 
 C) ~�S
n
, (C 
 H) ~�S

n
and (H 
 H) ~�S

n
investigated by Abbasov [1962, 1963]

and Rumyanceva [1963b]. The equations of absolutes of the elliptic spaces over

tensor products of �elds have the form
P

i
~�x
i
xi = 0, where the involution x ! ~�x

consists of the involutions x ! �x and x ! ~x in both tensor factors. Abbasov and
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Rumyanceva proved that the groups of motions of these spaces are isomorphic to
the direct products of two groups of motions of C �Sn and to the groups of motions
of C �S2n+1 and S4n+3 respectively, and that these spaces admit interpretations as
manifolds of pairs of points of two C �Sn, of lines of C �S2n+1 and of 3-planes of S4n+3

respectively.

3. Octave planes

As was shown by Killing [1888-1890] and Cartan [1894], besides the in�nite
series An, Bn, Cn, Dn there are 5 classes of exceptional complex simple Lie groups
G2, F4, E6, E7 and E8. Cartan [1914] found all the real simple Lie groups of these
classes and showed that the compact real group G2 is the group of automorphisms
of the alternative skew �eld O of octaves (Cayley numbers). The geometric mean-
ing of the remaining exceptional Lie groups was for a long time a riddle for the
matematicians.

Borel [1950] and Freudenthal [1951] proved that the compact real group F4 is
the group of motions of the octave Hermitian elliptic plane O �S2 and that one of the
non-compact real groups E5 is the group of collineations of the octave projective
plane O �P 2 investigated by Moufang [1939] and Hirsch [1949]. Borel de�ned the
planes O �P 2 and OS2 by means of topological methods, Freudenthal by means of
algebraic methods. Tits [1956] proved that one of the non-compact real groups F4
is the group of motions of octave Hermitian hyperbolic plane O �H2.

In the cases of the spaces Pn, CPn, C0Pn, HPn and H0Pn over the associa-
tive �elds and algebras the points of these spaces are characterized by coordinates
xi de�ned up to the multiciplation xi ! xi�, where � is non-zero element of the
�elds R, C, H, and algebras C0 and H0 and in the two last cases the multiplier �
must not be a zero divisor. But in the case of the plane OP 2 and the analogous
plane O0P 2 over the alternative algebra O0 of split octaves (having the common
complex form with �eld O) this is impossible since (xi�)� 6= xi(��). Therefore
Freudenthal used for de�nition of the plane OP 2 the Jordan algebra J3 of octave
3-matrices (xij) for which xij = �xji and xijxjk = xjjxik . All elements of these
matrices are from an associative sub�eld of the alternative �eld O, since all aii are
real. These associative sub�elds are isomorphic to the �elds H, C or R. Therefore
the points of the plane OP 2 can be de�ned by three coordinates x0, x1, x2 from
an associative sub�eld of O connected with elements xij of 3-matrices (xij) of J3
by relations xij = �xixj . The coordinates of points of the plane O0P 2 are de�ned
analogously. The absolutes of the planes O �S2 and O0 �S2 are Hermitian conics with
equations �x0x0 + �x1x1 + �x2x2 = 0, the absolute of the plane O �H2 is a Hermitian
conic with equation ��x0x0 + �x1x1 + �x2x2 = 0.

The collineations in the spaces over associative �elds and algebras have the
form 0xi =

P
j a

j
if(x

j), where aji and xj are arbitrary elements of a �eld or of

an algebra and x ! f(x) is an automorphism of this �eld or algebra. In the
spaces over non-associative �elds and algebras the collineations have the analogous

form 0xi =
P

j
�̂a
i
jf(x

j) where the elements xj are from an associative sub�eld or
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subalgebra. Here the elements aji are arbitrary elements of a �eld or of an algebra,
x ! f(x) is an automorphism of this �eld or algebra and the operation x ! �̂x is
a "projection" of the element x onto the associative sub�eld or subalgebra. This
"projection" for the �eld O and its sub�eld H is de�ned as follows: in the �eld
O there is an automorphism x ! x̂ preserving the sub�eld H, for instance for
a = a0 + a1i+ a2j + a3k+ a4l+ a5p+ a6q+ a7r we have a! â = a0+ a1i+ a2j +
a3k � a4l � a5p � a6q � a7r and �̂x = (x + x̂)=2. In other cases this "projection"
is de�ned analogously. The motions of the planes O �S2, O �H2 and O0 �S2 are the
collineations of the planes OP 2 and O0P 2 preserving the absolutes. Therefore the
Lie algebras of the groups of collineations of planes OP 2 and O0P 2 are direct sums
of the sets of 3-matrices (aij) of the algebras O3 or O0

3 over the �eld O or over
the algebra O0 satisfying one condition a00 + a11 + a22 = 0 and of Lie algebras
of the groups of automorphisms of the �eld O or of the algebra O0; these groups
of automorphisms are compact and split groups G2 respectively. Analogously, the
groups of motions of elliptic planes O �S2 and O0 �S2 are the direct sums of the sets
of 3-matrices (aij) of algebras O3 or O0

3 satisfying the conditions aji = ��aji and
a00 + a11 + a22 = 0 and of Lie algebras of groups of automorphisms of the �eld O
or of the algebra O0, and the Lie algebra of the group of motions of the plane O �H2

is the direct sum of the sets of 3-matrices (aij) of the algebra O3 satisfying the
conditions aij = ��aji"i"j ("0 = �1, "1 = "2 = 1) and �a00 + a11 + a22 = 0 and of
Lie algebras of the groups of automorphisms of the �eld O. Therefore in the case of
the groups F4 the dimension of these Lie algebras is 8+8+8+7+7+14 = 52, and
in the case of the groups E6 the dimension of these Lie algebras is 8 � 8 + 14 = 78.
These numbers (52 and 78) coincide with the dimensions of the groups F4 and E6.

Let us note that the plane O �S2 is compact symmetric Riemannian space V 16

which is the irreducible symmetric space FII according to Cartan [1926{1927]. The
lines of this plane are isometric to spheres of R9. The plane O �H2 is divided by
its absolute into two domains, one of which is non-compact Riemannian symmetric

space V 16, and the other is pseudo-Riemannian symmetric space V 16
1 . The plane

O0 �S2 is divided by its absolute into two domains which are the pseudo-Riemannian
symmetric spaces V 16

8 . All these symmetric spaces are spaces of rank 1. The
isotropy groups of these spaces (the groups of rotations around their points) are
locally isomorphic to the groups of motions of lines O �S1, O �H1 and O0 �S1, that is to
the groups of rotations of R9, R9

1, or R
9
4 or to the groups of motions of the spaces

S8, H8 and S84 .

Fig. 5. Dynkin and Satake diagrams for exceptional groups F4
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Since all symmetric spaces with groups of motions (isometries) isomorphic to
the fundamental groups of certain spaces can be interpreted as manifolds of sym-

metry �gures of this space, the symmetry �gures of the plane O �S2 are points with
their polar lines forming an interpretation of the symmetric Riemannian 16-space
FII, and normal quaternion plane chains (isometric to the plane H �S2) forming an
interpretation of the symmetric 28-space FI. The symmetry �gures of the plane
OP 2 are pairs point+line forming an interpretation of the symmetric 32-space EI-
II, Hermitian conics forming an interpretation of the symmetric 26-space EIV and
more complicated geometric �gures interpreting the symmetric 42-space EI and the
40-space EII (we shall consider these �gures in the next section). Fig. 5 represents
Dynkin and Satake diagrams for real simple groups F4.

4. Planes over tensor products

In our paper [1954] it was proved that the group of collineations of the plane
OP 2 is isomorphic to the group of motions of the Hermitian elliptic plane (C0 


O) ~�Sq admitting the interpretation as the manifold of pairs point+line of the plane
OP 2 (analogous to the interpretation of the space C0 �Sn by the manifold of pairs
point+hyperplane of Pn) and that the compact group E6 is isomorphic to the group

of motions of the Hermitian elliptic plane (C
O) ~�Sq.

In our paper [1956] this result was generalized to the compact groups E7 and
E8 and was proved that these groups are isomorphic to the groups of motions of

the planes (H
O) ~�Sq and (O
O) ~�Sq . These planes and their groups of motions
are de�ned analogously as for the plane O �S2 and its group of motions, but in these

cases the equations of the absolutes have the form ~�x
0
x0 + ~�x

1
x1 + ~�x

2
x2 = 0, where

the involution x ! ~�x as in the cases of tensor products of associative algebras,
consists of the involutions x ! �x and x ! ~x in both tensor factors. The Lie
algebras of these groups are the direct sums of the sets of 3-matrices (aij) of the
algebras (C 
O)3, (H 
O)3 and (O 
O)3 satisfying the conditions aij = �~�aji
and a00 + a11 + a22 = 0 and of the Lie algebras of groups of automorphisms of
the corresponding algebras. These groups of automorphisms are direct sums of the
Lie algebras of groups of automorphisms of tensor factors of these tensor products.
Therefore in the case of the compact group E6 the dimension of this Lie algebra is
16+16+16+8+8+14= 78, in the case of the compact group E7 the dimension of
this Lie algebra is 32+32+32+10+10+14+3 = 133, and in the case of the compact
group E8 the dimension of this Lie algebra is 64+64+64+14+14+14+14= 248.
All these numbers (78, 133 and 248) coincide with the dimension of the groups E6,
E7 and E8.

The lines of these planes admit the interpretations as the Grassmann mani-

folds G9;1, G11;3 and G15;7 of lines of the elliptic space S9, of 3-planes of S11 and
of 7-planes of S15 respectively. The polar manifolds of all these lines, 3-planes are
7-planes, thus the Hermitian elliptic line over the tensor product of 2p- and 2q-
dimensional �elds admit an interpretation as the Grassmann manifold Gp+q�1;p�1

of (p � 1)- or (q � 1)-planes of Sp+q�1 (this rule is also valid for p; q = 1; 2). The
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isotropy groups of points of these elliptic planes are locally isomorphic respectively
to direct products of the groups of motions of S9, S11 and S15 and the groups
j�j = 1 of the corresponding �elds (in the cases of the �elds C and H these groups
are the groups of rotation of a circle and of a 3-sphere; in the case of O the set
j�j = 1 is not a group, but it is a loop).

The non-compact simple Lie groups admit analogous geometric interpreta-
tions as the planes obtained from Hermitian elliptic planes over tensor products
C 
 O, H 
 O and O 
 O by replacing the absolutes of elliptic planes by the

Hermitian conics �~�x
0
x0 + ~�x

1
x1 + ~�x

2
x2 = 0 which are the absolutes of hyperbolic

planes, or by replacing one or both �elds C, H and O by the coresponding split
algebra C0, H0 and O0.

Let us note that the planes (C
O) ~�S
2
, (H
O) ~�S

2
and (O
O)S2 form the

interpretations of compact symmetric Riemannian 32-space EIII, 64-space EVI and
128-space EVIII de�ned in Cartan [1926-1927] and the corresponding Hermitian
hyperbolic planes and Hermitian planes over another tensor products form the
interpretations of symmetric Riemannian or pseudo-Riemannian spaces of the same
dimensions. The ranks of the symmetric 32-, 64-, and 128-spaces EIII, EVI and
EVIII are equal to the ranks of symmetric 16-, 32- and 64-spaces interpreted as lines
of the corresponding elliptic planes over tensor products and as the corresponding
Grassmann manifolds G9;1, G11;3, and G15;7; these ranks are 2, 4 and 8 respectively.

The symmetry �gures corresponding to the compact symmetric Riemannian

spaces EIII, EVI and EVIII are points and their polar lines of the planes (C
O) ~�S
2
,

(H 
O) ~�S
2
and (O 
O) ~�S

2
respectively. The symmetry �gures corresponding to

the compact symmetric 40-space EII and 26-space EIV are normal biquaternion

plane chains isometric to (C
H) ~�S
2
and normal octave plain chains isometric to

O �S2 respectively. The symmetry �gures corresponding to the compact symmetric

54-space EVII are normal plane chains isometric to (C
O) ~�S
2
(the isotropy group

of the manifold of normal plane chains of this plane isometric to (H 
 H) ~�S
2
is

isomorphic to the isotropy group of this plane). The symmetry �gures correspond-
ing to the compact symmetric 112-space EIX are normal plane chains isometric to

(H
O) ~�S
2
.

The symmetries of plane chains are determined by involutive automorphisms
of one tensor factor of the tensor product. The symmetry �gures with symmetries
determined by involutive automorphisms in both factors of the tensor product are
normal bichains. These �gures correspond to the compact symmetric 42-space
EI and 70-space EV (the isotropy group of the manifold of normal bichains of

(O
O) ~�S
2
is isomorphic to the isotropy group of this plane). The normal bichains

are isometric to the split octave bi-Hermitian plane O0 �̂S
2
determind by N. M.

Zablotskikh [1969] and to analogous bi-Hermitian planes over the algebra with
basis elements 1, i, j, I , Jl, Jp, Jq, Jr, Kl, Kp, Kq, Kr, where 1, i, . . . , r are the
basis elements of the algebra O and 1, I , J , K are the basis elements of the
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Fig. 6. Dynkin and Satake diagrams for exceptional groups E6, E7, E8
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algebra H commuting with 1, i, . . . , r, and the algebra with basis elements 1, i, j,
I , J , K, Ll, Lp, Lq, Lr, P l, Pp, Pq, Pr, Ql, Qp, Qq Qr, Rl, Rp, Rq, Rr, where
1, i, . . . , r and 1, I , . . . , R are the basis elements of two commuting algebras O;
the subalgebras of these algebras with basis elements 1, i, j, k, Jl, Jp, Jq, Jr, . . . ,
and 1, i, j, k, Rl, Rp, Rq, Rr are isomorphic to the algebra O0. The fundamental
groups of these bi-Hermitian planes are isomorphic to the groups of motions of

these spaces H ~�S3, (C 
 H) ~�S3, and (H 
 H) ~�S3, respectively and there are the
bijective correspondence between points of the absolutes of these spaces and bi-
Hermitian planes and between lines of these spaces and points of the bi-Hermitian
planes. These interpretations of the manifolds of lines of Hermitian spaces on the
bi-Hermitian planes are analogous to the Kotelnikov{Study interpretation of the
manifold of lines of the space S3 in the form of plane C0S2. Fig. 6 represents the
Dynkin and Satake diagrams of real simple Lie groups E6, E7 and E8.

5. Symplectic and metasymplectic geometries

Freudenthal [1954-1963] de�ned the octave Hermitian symplectic 5-space

O �Sy5 and proved that its fundamental group is a non-compact group E7. In the
same paper he de�ned also four metasymplectic geometries and proved that their
fundamental groups are non-compact groups of all 4 classes F4, E5, E7 and E8.

Since a projective space over a non-associative �eld or algebra can exist only
if its dimension is � 2, the de�nition of O �Sy5 as the space O �P 5 with restricted
group of collineations is impossible; therefore Freudenthal de�ned the space O �Sy5

only as the set of 2-planes O �P 2 analogous to isotropic 2-planes P 2 and HP 2 of the
spaces Sy5 and H �Sy5.

If in the de�nition of the space H �Sy5 we replace the �eld H by the �eld C,
then we obtain the complex Hermitian symplectic spaces C �Syn coinciding with
space C �Sn or C �Snl (the general form of the absolute

P
i �x

iixi = 0 is
P

ij �x
jaijx

i =
0, where aij = ��aji, but in CPn this equation is the equation of an Hermitian
quadric); the isotropic points, lines and planes of the complex Hermitian symplectic
spaces coincide with points and rectilinear and planar generators of the Hermitian
quadric and the symplectic transformations of the spaces C �Syn coincide with the
motions of C �Sn and C �Snl .

Freudenthal [1954-1963] de�ned also the "magic square" now called the

Freudenthal magic square. This square consists of 16 groups

B1 A2 C3 F4
A2 A2 �A2 A5 E6

C3 A5 D6 E7

F4 E6 E7 E8

The groups of the �rst row of this square are the groups of motions of the
elliptic planes S2, C �S2, H �S2, O �S2. The groups of the second row are the qroups
of collineations of the projective planes P 2, CP 2, HP 2, OP 2. The groups of
the third row are the groups of symplectic transformations of the symplectic 5-
spaces Sy5, C �Sy5, H �Sy5, O �Sy5, where C �Sy5 is the space C �S5l with real 2-planer
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generators, that is C �S53 . Therefore Freudenthal called the geometries of the fourth
row metasymplectic geometries. Let us denote these geometries by Ms, C �Ms,
H �Ms, O �Ms.

Freudenthal considered these geometries as geometries of the sets of symplecta

which are sets of isotropic 2-planes of the spaces of the third row, these 2-planes
are planes of the second row, and they contain the projective lines and points.

The compact groups of the same classes as the groups of Freudenthal magic
sguare are the groups of motions of the Hermitian elliptic planes

S2 C �S2 H �S2 O �S2

C �S2 (C
C) ~�S
2

(C
H) ~�S
2

(C
O) ~�S
2

H �S2 (H
C) ~�S
2

(H
H) ~�S
2

(H
O) ~�S
2

O �S2 (O
C) ~�S
2

(O
H) ~�S
2

(O
O) ~�S
2

The split groups of the same classes are the groups of motions of the planes
obtained from compact groups by substitution of all �elds by corresponding split
algebras. In the groups considered by Freudenthal himself only the �rst tensor
factors of tensor products are replaced by corresponding split algebras. If in the
square of planes with the compact groups of motions we replace all planes by the
lines over the same algebras, then we obtain the square of Hermitian elliptic lines
with the groups of motions isomorphic to the groups of motions of the real elliptic
spaces forming the square

S1 S2 S4 S8

S2 S3 S5 S9

S4 S5 S7 S11

S8 S9 S11 S15

6. Parabolic �gures

Tits [1956] de�ned an important class of geometric �gures called by him
fundamental elements . These �gures are the cases of parabolic �gures { �gures
whose isotropy groups are parabolic subgroups of the fundamental group of the
space. Tits [1957] called the manifolds of such �gures R-spaces, Wolf [1969] called
them 
ag manifolds. These manifolds can be called, by analogy with symmetric
spaces, parabolic spaces, (see our paper with Zamakhovsky and Timoshenko [1990]).
Each kind of Tits' fundamental elements corresponds to one simple root of the
fundamental group of the space and to one dot on the Dynkin or Satake diagram of
this group; the real and imaginary �gures correspond to white and black dots of the
Satake diagrams respectively, the imaginary conjugated �gures correspond to white
dots of these diagrams which are joined by double arrows, general parabolic �gures
correspond to a set of simple roots or dots of the Dynkin or Satake diagrams. Let
us call the parabolic �gures corresponding to simple roots �i or to sets of simple
roots �i1 ; �i2 ; . . . ; �ik �i-�gures and (�i1 ; �i2 ; . . . ; �ik )-�gures respectively.

The �i-�gures of the spaces with split classical fundamental groups are as
follows. The �1-�gures of the space Pn (see Fig. 1) are points of this space, the
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�2-�gures are lines, the �i-�gures are (i� 1)-planes, the (�1; �n)-�gures are pairs
of incident points and hyperplanes of Pn or points of the absolute of C0 �Sn, the
(�i; �n�i+1)-�gures are pairs of incident (i� 1)-planes and (n� i)-planes of Pn or
(i � 1)-planar generators of the absolute of C0 �Sn, the general parabolic �gures of
Pn are 
ags consisting of incident planes of di�erent dimension (hence the term
"
ag manifold"). The �1-�gures of S

2n
n are the points of its absolute, the �i-�gures

are the (i�1)-planar generators of the absolute. The �1-�gures of S
2n�1
y are points

of this space, the �i-�gures are isotropic (i � 1)-planes. The �i-�gures of S
2n�1
n

are points of its absolute, the �i-�gures (i = 2; 3; . . . ; n � 2) are (i � 1)-planar
generators of the absolute, the �n�1- and �n-�gures are (n� 1)-planar generators
of the �rst and the second families of the absolute ((n � 2)-planar generators are
(�n�1; �n)-�gures).

The symplecta, 2-planes, lines and points of metasymplectic geometries Ms,
C �Ms,H �Ms andO �Ms are also parabolic �gures. The symplecta of these geometries
are �i-�gures of the geometries (see Fig. 5 and 6), the 2-planes are �2-�gures of these
geometries, the lines are �3-�gures of Ms, H �Ms and O �Ms and (�3; �5)-�gures of
C �Ms, the points are �4-�gures ofMs, (�4; �5)-�gures of C �Ms, �5-�gures of H �Ms
and �7-�gures of O �Ms. All these parabolic �gures are real.

The same parabolic �gures can be de�ned on all Hermitian planes over O, O0

and their tensor products byC, C0,H,H0,O andO0. The points of metasymplectic
geometries are points of absolutes of corresponding planes (see our paper with
Stepashko [1983]). Symplecta, 2-planes, lines and other parabolic �gures of these
geometries are sets of points of absolutes of these planes.

The Hermitian planes with split groups of motions are the planes O0 �S2, (C0


O0) ~�S
2
, (H0 
 O0) ~�S

2
and (O0 
 O0) ~�S

2
. The geometries of these groups can be

considered also as matasymplectic geometries Ms, C0 �Ms, H0 �Ms and O0 �Ms; the
second and third of these geometries can also be considered as geometries of the
plane O0P 2 and of the space O0 �Sy5. All parabolic �gures of these geometries are
real.

The dimension of �3-, �2- and �i-�gures of O
0 �S2 are 1, 2 and 5. The di-

mensions of manifolds of �1-, �2-, �3- and �4-�gures of this plane are 15, 20, 20
and 15.

�4- and �6-�gures of the plane O
0P 2 are its points and lines, the dimensions

of �i-�gures (i = 1; 2; 3; 5; 6) of O0P 2 are 9, 4, 1, 4 and 8. The dimensions of
manifolds of �i-�gures of this plane (i = 1; 2; . . . ; 6) are 21, 29, 25, 16, 25 and 16.

�1-, �7- and �6-�gures of the space O
0 �Sy5 are its isotropic points, lines and

2-planes, the dimensions of two last parabolic �gures of this space are 8 and 16.
The dimensions of �i-�gures of H

0 �Ms (i = 1; 2; 3; 4; 5; 6; 7) are 33, 8, 4, 2, 10 and
11. The dimensions of manifolds of �i-�gures of this geometry (i = 1; 2; . . . ; 7) are
33, 47, 53, 51, 42, 27 and 42.

The dimensions of �i-�gures of O
0 �Ms (i = 1; 2; 3; 4; 5; 6; 8) are 33, 16, 8, 4,

2, 1 and 7. The dimensions of manifolds of �i-�gures of O
0 �Ms (i = 1; 2; . . . ; 8) are

57, 83, 97, 104, 106, 98, 78 and 92.
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7. The geometries of the groups D4 and G2

Among classical simple Lie group D4 plays a special role since its Dynkin
diagram (Fig. 7 represents the Dynkin and Satake diagrams of real simple groups
D4) has trilateral symmetry. The compact real group D4 is the group of motions
of the elliptic 7-space S7, the split real group D4 is the group of motions of the
pseudo-elliptic space S74 , the other real groups D4 are the groups of motions of the
hyperbolic space H7 and the pseudo-elliptic spaces S72 and S73 and the group of
symplectic transformations of the space H �Sy3.

Fig. 7. Dynkin and Satake diagrams for classical group D4

The symmetry �gures of the space S7 are points with their polar hyper-
planes, lines with their polar 5-planes, 2-planes with their polar 4-planes, pairs
of polar 3-planes, and paratactic congruences of lines, that is sets of lines joining
the conjugate imaginary points of conjugate imaginary 3-planar generators of the
absolute of this space belonging to one family of these generators. The space
S7 is the compact symmetric Riemannian space DII. The manifolds of lines and
planes of S7 form interpretations of compact symmetric Riemannian spaces DI, the
manifold of paratactic congruences forms an interpretation of compact symmetric
Riemannian space DIII.

�i-�gures of the space S
7
4 are the points of its absolute, �2-�gures of this space

are the rectilinear generators of the absolute, �3- and �4-�gures of this space are the
3-planar generators of the absolute belonging to two families of these generators.

Triliteral symmetry of the Dynkin diagram of this group de�nes the principle
of triality of spaces S7 and S74 discovered by Cartan [1925]. According to this prin-
ciple the points of absolutes of these spaces correspond to its 3-planar generators of
both families and the lines joining the conjugate imaginary points of the absolute of
S7 and arbitrary points of the absolute of S74 correspond to paratactic congruences
(de�ned by 3-planar generators belonging to one family); the corresponding �gures
have isomorphic stationary subgroups.

This isomorphism de�nes an isomorphism of the fundamental groups of the
spaces S72 and H �Sy3 and an interpretation of one of these spaces in the other.

The principle of triality of the space S7 and S74 is connected with algebras
O and O0: in these algebras one can intrduce the metrics of the spaces R8 and
R8
4: the distance between � and � is j� � �j. The hyperspheres j�j = 1 of these

spaces with identi�ed antipodal points are models of the spaces S7 and S74 ; the
absolutes of these spaces are imaged by bioctaves (elements of the tensor product
C
O) or split octaves of zero moduls. The 3-planar generators of these absolutes
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are de�ned by equations �� = 0 and �� = 0; therefore these generators are also
de�ned by bioctaves or split octaves of zero moduls. If � and � de�ne two 3-planar
generators of di�erent families, then their product �� de�nes the unique point of
their intersection; if this product is equal to zero, then the intersection of these
3-planar generators is a 2-planar generator (see Weiss [1938]).

Trilateral symmetry of the Dynkin diagram of the group D4 de�nes a 3-
involutive automorphisms � of this group (�3 = 1). The elements invariant under
this automorphism form the group G2 which is a subgroup of the group D4 and of
its subgroup B3. The real simple groups G2 are two groups: the compact group
is the group of automorphisms of the �eld O and the split group is the group of
automorphisms of the algebra O0. If in the algebras O and O0 we introduce the
metrics of the spaces R8 and R8

4 as above, then the groups of automorphisms of
these algebras are subgroups of groups of rotations of these spaces, which are the
groups D4, preserving the real axes (� = ��) of these spaces and 7-planes � = ���
perpendicular to these axes, which are the spacesR7 andR7

3. Therefore the compact
and split groups G2 are subgroups of rotations of these 7-spaces or of the groups
B3. The groups G2 are also subgroups of the groups of motions of the elliptic space
S6 and pseudo-elliptic space S63 , admitting models as 6-sphere of the spaces R7 and
R7
3 with identi�ed antipodal points. The groups of automorphisms of algebras O

and O0 are transitive on the space S6 and on each of domains of S63 de�ned by its
absolute. The space S6 and S63 , whose fundamental groups are these subgroups,
were studied by Adamushko [1969] and were called by her G-elliptic space Sg6 and
G-pseudo-elliptic space Sg63 . Fig. 8 represents the Dynkin and Satake diagrams of
real groups G2 and the groups B3 and D4 containing these groups.

Fig. 8. Dynkin and Satake diagrams for exceptional groups G2 and for classical
groups D4 and B3 containing these groups

The symmetry �gures of the space Sg6 are special 2-planes obtained from the
intersections of the 6-sphere which is the intersection of the hyperplane � = ���
and the 7-sphere j�j = 1 with associative sub�elds of the �eld O isomorphic to the
�eld H. The manifold of these 2-planes forms an interpretation of the compact
symmetric 8-space G.

The �i-�gures of the space Sg
6
3 are special rectilinear generators of the abso-

lute of this space which are the intersections of this absolute with 2-planes de�ned
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by associative subalgebras of the algebraO0 isomorphic to the algebrasH0 andH00

of semiquaternions and split semiquaternions a+ bi+ c"+ d� and a+ be+ c"+ d�
where a, b, c, d are real numbers, i2 = �1, e2 = �1, "2 = 0 i" = �"i = �,
e" = �"e = �. The �2-�gures of this space are points of the absolute together with
special 2-planar generators of this absolute de�ned by associative subalgebras of the
algebra O0 isomorphic to the algebra H00 of quarter-quaternions a+ b"+ c� + d!,
where a, b, c, d are real numbers, "2 = �2 = 0, "� = ��" = !, through these points.
The special generators of the absolute of Sg63 were studied by Schellekens [1962].

8. Linear representations of the groups

The theory of linear representations of simple Lie groups was created by Car-
tan [1913]. He proved that each linear representation of these groups is de�ned by
the dominant weight which is rational linear combination of simple roots �i. If the
simple roots of a simple Lie group are �i (i = 1; 2; :::; n) and if �i = 2�i=(�i; �i),
where (�; �) is the inner product in the Cartan subalgebra with the metric of Rn

induced in this subalgebra by Killing{Cartan metric in the Lie algebra of the simple
Lie group, then the inner products aij = (�i; �j) are integers forming the Cartan

matrix A = (aij) which is equivalent to the Dynkin diagram of the simple Lie

group. If the vectors �i form the basis reciprocal to the basis �i ((�i; �
j) = Æji ),

then the simple roots �i and vectors �i are connected by the relations �i = aij�
j ,

�i = Aij�j , where (Aij) = A�1 is the matrix inverse to the Cartan matrix A.
Cartan proved that all linear representations are reduced to the fundamental rep-
resentations, the number of which is equal to the rank of the group, and that the
dominant weights of the fundamental representations of simple Lie groups are the
vectors �i mentioned above; the vectors �i are called fundamental weights. The
linear combinations of simple roots �i with integer coeÆcients form the root lattice;
the linear combinations of fundamental weights �i with integer coeÆcients form
the weight lattice. Both these lattices are additive groups and �rst of them is a
subgroup of the second one and the quotient qroup of these lattices is a �nite group,
whose order, the index of connectedness of simple Lie group, is equal to the deter-
minant of the Cartan matrix. All weights of linear representations are vectors of
the weight lattice. Each fundamental representation corresponds to a fundamental
weight �i and to the corresponding simple root �i; therefore it corresponds to the
corresponding Tits' fundamental element and this representation can be considered
as a linear transformation of coordinates of this element. Let us denote the funda-
mental representation corresponding to the weight �i and to the simple root �i by
'i.

The fundamental representation '1 of the group of collineations of Pn, is the
representation of this group by linear transformations of the linear space Ln+1,
whose vector coordinates are equal to projective coordinates of points of Pn. The
representation 'n of this group is the representation by linear transformations of
Ln+1, whose vector coordinates are equal to tangential coordinates of hyperplanes
of Pn. The representations 'k of this group (k = 2; 3; . . . ; n�1) are the representa-
tions by linear transformations of Ln, where N = Ck

n+1, whose vector coordinates
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are equal to Grassmannian coordinates pi1i2...ik = x
[i1
1 xi22 . . .x

ik ]
k (the brackets [ ]

denote alternation of indices) of (k� 1)-planes, for k = 2 Pl�uckerian coordinates of
lines of Pn.

The fundamental representations '1 of the groups Bn and Dn, which are
the groups of motions of S2n and S2n�1, are the representations of these groups
by linear transformations L2n+1 and L2n, whose vector coordinates are equal to
projective coordinates of points of S2n and S2n�1. The representations 'k of these
groups (k = 2; 3; . . . ; n � 1 for the groups Bn, k = 2; 3; . . . ; n � 2 for the groups
Dn) are representations by linear transformations in the same spaces LN as the
representation 'k of the group An. The fundamental representations 'n of the
group Bn and 'n�1 and 'n of the group Dn are spinor representations of these
groups by linear transformations of LN , where N = 2n for the group Bn and
N = 2n�1 for the group Dn, whose coordinates are equal to coordinates of (n� 1)-
planar generators of absolutes of S2n. In the last case the representations 'n�1 and
'n correspond to di�erent families of these generators (see Cartan [1938]). Other
representations 'k of these groups can also be considered as transformations of
coordinates of points and rectilinear and (k � 1)-planar generators of absolutes of
S2n and S2n�1.

The fundamental representation '1 of the group Cn of symplectic transforma-
tions of Sy2n�1 are analogous to the representations '1 of the groups An, Bn and
Dn, but the representations analogous to the representations 'k of these groups
(1 < k < n for the groups An and Bn, 1 < k < n � 1 for the groups Dn) are
reducible and the representations 'k of the groups Cn are their irreducible parts.

The important linear representations of Lie groups are their adjoint groups

{ the linear groups in their Lie algebras de�ned by their inner automorphisms
x ! axa�1. The dimensions of the spaces of these representations are equal to
dimensions of the groups. In the cases of groups Bn and Dn these representations
are representations '2. In the case of group An this representation is the Kronecker
product '1 
 'n of representations '1 and 'n. In the case of group Cn this
representation is the representation '21 in the space of symmetric tensors zij = zji.

The fundamental representations '1 and '2 of the group G2 have the dimen-
sions of their representation spaces (14 and 7). The �rst of them is the represen-
tation by the adjoint group, the second one is the representation by rotations of
space R7 or R7

3.

The fundamental representations '1 of the groups F4, E6, E7 and E8 are
representations by adjoint groups. These representations correspond to symplecta
of the metasymplectic geometries. The dimensions of the spaces of these represen-
tations are equal to the dimensions of the groups 52, 78, 133 and 248.

The dominant weights of adjoint representations are �1 + �n for the group
An, �

2 for the groups Bn and Dn, 2�
1 for the group Cn and �1 for all exceptional

simple Lie group. Let us note that the dots of the Dynkin diagrams corresponding
to non-zero coeÆcients at �i in these expressions of dominant weight of the adjoint
representations of these groups are those dots of these diagrams with which are
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joined to the dots of the extended Dynkin diagram corresponding to the minimal
root �� (see Wolf's book [1984, p. 269]).

The linear representations of the exceptional simple Lie groups with minimal
dimension of the spaces of representation are in the case of the groups F4 the
representations '4 corresponding to points of absolutes of Hermitian planes (in
this case this dimension is 26); in the case of groups E6 the representations '4 and
'6 corresponding to points and lines of projective planes (this dimension is 27); in
the case of groups E7 the representations '6 corresponding to isotropic 2-planes
of symplectic 5-spaces (this dimension is 56), in the case of groups E8 they are
the representations '1 mentioned above. The role of vectors of the representations
'4 and '6 of the groups E6 is played by the 3-matrices X = (xij ) (xij = �xji)
representing the points and lines of projective planes. The role of these vectors of
the representation '4 is played by the same 3-matrices satisfying the conditions
x00 + x11 + x22 = 0 in the cases of elliptic planes and �x00 + x11 + x22 = 0 in the
case of hyperbolic plane equivalent to equations of absolutes of these planes. The
role of these vectors of the representation '6 is played by matrices representing
isotropic 2-planes of symplectic 5-spaces.

The dimensions of the spaces of the representations '2 and '3 of the groups
F4 are 1274 and 273; the dimensions of the spaces of the representations '2, '3 and
'5 of the groups E6 are 2925, 351 and 351; the dimensions of the spaces of the rep-
resentations 'i (i = 2; 3; 4; 5 and 7) of the groups E7 are 8645, 365750, 27664, 1539
and 912; the dimensions of the spaces of the representations 'i (i = 2; 3; . . . ; 8)
of the groups E8 are 30380, 2450240, 146325270, 6899072464, 6696000, 3875 and
147250. Let us note that the representations '4 of the groups F4, '4 
 '6 of the
groups E6, '5 of the groups E7 and '7 of the groups E8 are representations by
transformations of coordinates of points of corresponding metasymplectic geome-
tries and of points of absolutes of corresponding Hermitian planes.

9. Local absolutes of symmetric spaces

If a Riemannian symmetric space V n is a space of constant curvature, then its
isotropy group is the group On of the rotations of the space Rn tangent to V n in this
point. If a Riemannian symmetric space V n is not a space of constant curvature,
then its isotropy group is a subgroup of the group On. If this subgroup preserves a
cone in the tangent space Rn and this cone cuts a surface from the hyperplane at
in�nity of this space Rn, which is the elliptic space Sn�1, then we call this surface
local absolute of the symmetric space V n. Analogous local absolutes are de�ned
in pseudo-Riemannian symmetric spaces V n

1 . If a symmetric space V rn or V rn
L is

interpreted as n-space over an r-dimensional algebraA, then the tangent rn-spaces
Rrn and Rrn

L of the spaces V rn and V rn
L can be considered as aÆne n-spaces AEn

over this algebra and the points of local absolutes are points at in�nity of straight
lines of the tangent spaces whose director vectors correspond to singular vectors

of the space AEn, that is non-zero vectors a with zero products by zero divisors
(a� = 0). In the general case local absolutes are subsets of the sets of points at
in�nity of lines with singular director vectors. In this case the complete set of these
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points in in�nity can be called local superabsolute of the symmetric space. The local
superabsolutes are real only if the algebra A has zero divisors, and are imaginary
if this algebra is a �eld.

The local absolutes and superabsolutes were considered in the papers of the
author with Kostrikina and others [1990], with Burceva [1990] and with Masagutova
[1991]. In the �rst and the third of these papers it was proved that the local absolute
of the space V 2n

n isometric to C0 �Sn consists of two (n� 1)-planar generators of the
absolute quadric of S2n�1n , and that the local absolute of the space V 2n isometric to
C �Sn consists of two conjugate imaginary (n�1)-planar generators of the imaginary
absolute quadric of S2n�1. In these papers it was also proved that the local absolute
of the space V 4n

2n isometric to H0 �Sn is a segrean
P

i;2n�i on the absolute of S4n�12n

(segrean
P

m;n is an algebraic (m+n)-surface of order Cm+n
m = Cm+n

n in projective

(mn + m + n)-space de�ned by parametric equations zi� = xiy� or equations
zi�zj�� zi�zj� = 0, and that the local absolute of the space V 4n isometric to H �Sn

is the imaginary segrean
P

i;2n�i on the absolute of S4n�1 de�ned by equations

di�ering from the equations of the real segrean
P

i;2n�i by replacing of the forms
z1z2 � z3z4 by sums of four squares of coordinates.

In the second case the real lines joining imaginary conjugate points of the
(n�1)-planes form the paratactic congruence of S2n�1 isometric to C �Sn�1 and the
isotropy group of the symmetric space V 2n is isomorphic to the direct product of
the groups of motions of C �Sn�1 and S1; therefore the metric of S2n�1 induces on
(n � 1)-planar generators of its absolute the metric of C �Sn�1. These imaginary
(n�1)-planes form the focal surface of the paratactic congruence of lines. The lines
of this congruence are cut from the hyperplane at in�nity of the tangent space R2n

of the space V 2n by tangent 2-planes to the 2-spheres of V 2n which are isometric
to lines of C �Sn.

In the fourth case the metric of S4n�1 induces on the rectilinear generators of
the imaginary segrean

P
i;2n�i the metric of C �S1 and on the (2n� 1)-planar gen-

erators of this segrean metric of C �S2n�1. The tangent hyperplane to the absolute
in each point of this (2n � 1)-plane cut from this (2n � 1)-plane a (2n � 2)-plane
de�ned by a null-system; therefore in C �S2n�1 is de�ned a paratactic congruence
of lines which is isomorphic to H �Sn�1, and the isotropy group of the space V 4n

is isomorphic to the direct product of the groups of motions of H �Sn�1 and C �Si.
This imaginary segrean is the focal surface of the paratactic congruence of 3-planes
which are cut from the hyperplane in in�nity of the tangent space R4n of the space
V 4n by tangent 4-planes to the 4-spheres of V 4n which are isometric to lines of
H �Sn.

In the same papers it was also proved that the local absolute of the space
V (m+1)(n�m) which can be interpreted as a Grassmann manifold Gm;n of m-planes
of Sn and also as a n+1

m+1 -space over the algebra Rm+1 of real (m+1)-matrices (the
dimension of this space can be integer and fractional; about spaces of fractional
dimension, see Chakhtauri [1971]) is a segrean

P
m;n�m�1 in S(m+1)(n�m)�1. The

space V (m+1)(n�m) is isometric to a grassmannian �n;m - an algebraic
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(m+1)(n�m)-surface in the space SN , where N = Cm+1
n+1 �1, with equations

pi0i1...im�1[impim+1...i1...i2m�1] = 0 (in these equations pi0i1...im = x[i0xi1 . . .xim] are
Grassmannian coordinates of m-planes). This symmetric space has also local su-
perabsolutes consisting of points of m-planes intersecting segreans

P
m;n�m�1 in

m+ 1 points.

Compact real simple Lie groups with the Killing-Cartan metric de�ned by the
metric tensor aij = �Ch

ikC
k
jh, are also symmetric Riemannian spaces. The local

absolute of the space V n(n�1)=2, which is the group On with the Killing-Cartan
metric, is a grassmannian �n�1;1.

Since the symmetric space V 8 with fundamental compact group G2 can be
interpreted as a manifold of special 2-planes of the space Sg6 and since through
each line of this space passes only one special 2-plane space, the space V 8 can be
interpreted as quotient space G6;1=G2;1 = V 10=S2. Therefore the local absolute
of V 8 can be obtained from the segrean

P
1;4 by corresponding factorization and

consists of a line with �xed points in S7 and of the quadric with 2-planar generators
(which is the grassmannian �3;1) in the polar 5-plane of this line. The isotropy
group of V 8 is locally isomorphic to the group O4.

In the paper of the author and Burceva [1991] the lipschitzian 
n was de�ned
as an algebraic n(n � 1)=2 surface in the projective (2n�1 � 1)-space de�ned by
equations

x0xi1i2i3i4 = 3!!xi1[i2xi3i4];

x0xi1i2i3i4i5i6 = 5!!xi1[i2xi3i4i5i6];

. . .

x0xi1i2...i2k = (2k � 1)!!xi1[i2xi3i4...i2k];

. . .

In these equations (2k�1)!! is the product of all odd integers from 1 to 2k�1
and the brackets [ ] denote alternation of indices. The intersection of the cone with
these equations in an Euclidean 2n�1-space with the sphere x2 = 1 of this space
was considered by Lipshitz [1886]: if this 2n�1-space is a Cli�ord algebra with the
basis 1, ei (i = 1; 2; . . . ; n � 1) and ei1i2...ik = ei1ei2 . . . eik where e2i = �1 and
eiej = �ejei and if the coordinate at 1 is denoted by x0 and to each coordinate
with odd number of indices the index n is added, then these equations de�ne the
subgroup of the group of invertible elements of Cli�ord algebra which is spinor

group S �On covering the group SOn. Therefore the lipshitcian 
n is homeomorphic
to the group SOn.

In author's paper with Burceva [1990] it was proved that the local absolute
of the symmetric space V 16 isometric to the plane O �S2 is an imaginary lipschitzian

5 which is the imaginary 10-surface in S15; this imaginary lipschitzian is the focal
surface of the paratactic congruence of 7-planes of S15 which are cut from the
hyperplane in in�nity of the tangent space R16 to the symmetric space V 16 by
tangent 8-planes to the 8-spheres of V 16 which are isometric to lines of O �S2. The
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isotropy group of the space V 16 is represented by the fundamental representation '4
of the group B4. The group B4 is the group of motions of S8 and the fundamental
representation '4 of this group is de�ned by 3-planar generators of the absolute of
this space. Cartan [1938] proved that the manifold of planar generators of maximal
dimension of quadric in P 2n�2 and each of two famillies of planar generators of
maximal dimension of quadric in P 2n�1 are homeomorphic to the group SOn.
Therefore the manifold of 3-planar generators of the absolute of S8 is homeomorphic
to the complex group SO5, and therefore to the imaginary lipschitzian 
5, and
the isotropy group of V 16 represents transformations of the manifold of 3-planar
generators of the absolute of S8 under the fundamental linear transformation '4.

Analogous are the proofs that the local absolutes of the symmetric spaces
V 32, V 64 and V 126 which are isometric to elliptic Hermitian 2-planes over tensor
product O 
 C, O 
 H and O 
 O, are located on the imaginary absolutes of
the elliptic spaces S31, S63 and S127 and are respectively a couple of conjugate
imaginary lipschitzians 
5 in two conjugate imaginary 15-planar generators of the
absolute of S31, an imaginary segrean

P
1;31 in 31-planar generators of which are

given imaginary lipszhitzians 
6, and an imaginary lipschitzian 
8.

The isotropy groups of these symmetric spaces are, respectively, represented
by direct product of the fundamental representation '5 of the group D5 and of the
group of motions of the line S1 joining conjugate imaginary points of imaginary
segreans 
5, by direct product of the fundamental representation '6 of the groupD6

and of the group of motions of the line C �S1, and by the fundamental representation
'8 of the group D8.

The lipschitzians mentioned above are homeomorphic, respectively, to the
families of planar generators of maximal dimension of absolutes of S9, S11 and
S15, whose groups of motions are isomorphic to the groups of motions of elliptic
Hermitian lines over corresponding tensor products. The local superabsolutes of
these symmetric spaces V 32, V 64 and V 128 are focal surfaces of the congruences,
respectively, of 15-planes of S31, of 31-planes of S63 and of 63-planes of S127, which
are cut from hyperplanes at in�nity of the tangent spaces R32, R64 and R128 to
the symmetric spaces by tangent 16-, 32- and 64-planes to the surfaces of these
symmetric spaces de�ned by lines of corresponding elliptic Hermitian 2-planes over
tensor products. The intersection of local superabsolutes of these symmetric spaces
with the planes of congruences mentioned above are isometric, respectively, to the
sets of lines, 3-planes and 7-planes intersecting in 2, 4 and 8 points segreans

P
1;7,P

3;7 and
P

7;7 which are local superabsolutes of the Grassmann manifolds G9;1,
G11;3 and G15;7. These local superabsolutes are real.

Since the families of 4-planar generators of the absolute of S9, of 5-planar
generators of the absolute of S11, and of 7-planar generators of the absolute of S15

are homeomorphic, respectively, to the lipschitzians 
5, 
6 and 
8, the isotropy
groups of the spaces V 31, V 63 and V 127 represents transformations of these families
of planar generators under corresponding fundamental linear representations '5, '6
and '8 of the groups D5, D5 and D8.
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