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ON SOLVABILITY OF A NONLINEAR

ELLIPTIC BOUNDARY VALUE PROBLEM

I.G. Stratis

Abstract. The question of existence of solutions of a certain nonlinear elliptic boundary
value problem is treated, by studying the existence of critical points of a suitable functional; the
way in which this functional is related to the \standard" functional of the variational formulation
of the problem is described, and regularity of solutions for the problem is also proved.

1. Introduction. In this note, the question of the solvability of the nonlin-
ear elliptic boundary value problem

��v � �jv + f(v) = g; in 


v = 0; on @

(1.1)

is studied, where 
 � RN is bounded domain. The non-homogeneity term g is
in L2(
), while �j is a �xed eigenvalue of the Laplacian with Dirichlet boundary
conditions. For the nonlinearity term f we make the following assumptions:

(F1) f is a potential operator, i.e. there is a C1 function F , such that gradF = f

(F2) �1kv1 � v2k
2 � hf(v1) � f(v2); v1 � v2i � �2kv1 � v2k

2; 8v1; v2 2 H
1
0 (
)

where �1;�2 2 R are such that

�j � �j+1 < �1 � �2 < �j � �j�1:

Let fj(v) be de�ned by
fj(v) = f(v)� �jv (1.2)

and Fj be such that
gradFj = fj : (1.3)

Then, the functional I : H1
0 (
)! R, de�ned by

I(v) =
1

2
j grad v j2 +Fj(v)� hg; vi (1.4)
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satis�es the relation

hgrad I(v); �i = h��v � �jv + f(v)� g; �i 8� 2 H1
0 (
) (1.5)

and, therefore, the solvability, or \more precisely" the H1
0 (
)-weak solvabilty, of

(1.1) is reduced to establishing the existence of critical points for I(v).

The main object of this paper is to formulate and prove a necessary and
suÆcient condition for the existence of critical points of I(v). It will be shown,
that this existence is reduced to existence of critical points for another functional,
de�ned on a suitable �nite-demensional subspace of H1

0 (
), whereby, the desired
necessary and suÆcient condition will come out. The precise statement of this
condition is left until Section 3, due to technicalities in its description. In Section
3, we provide, as well, the conditions under which f is a potential operator (i. e.
such that (F1) holds). The last section consists of a proof of a regularity result for
the solutions of (1.1).

The results of this note are in a way related to those of the classical theory
of [9]. The idea of using reduction methods, from functionals de�ned on in�nite
dimensional spaces to suitable others, de�ned on �nite dimensional subspaces is
due to Castro [3], [4], [5]. Conditions on the nonlinearity like (F2), have been
considered by many authors; see for example [2], [5], [10]. Of course there exists
an extensive bibliography, with di�erent approaches, for resonance at the �rst or
higher eigenvalues; see the references in [2], [3] and [5].

2. Preliminaries. Let H be a real Hilbert space, and F : H ! R be
a strictly convex function. Then, provided F 2 C1(H ;R), gradF is a strictly
monotone operator, and F is weakly lower semicontinuous.

If F is strictly convex, it can have a minimum, at most at one point. A weakly
lower semicontinuous function has a minimum i� it has a bounded minimizing
sequence. All minimizing sequences of a coercive function are bounded.

Let X be a Banach space, with dual X�. A mapping � : X ! �R is Gateaux
di�erentiable at x 2 X , if there exists an f 2 X�, such that

lim
t!0

1

t
f�(x + ty)� �(x)g = hf; yi 8y 2 X:

In this case, f is said to be the Gateaux di�erential of � at x, and is denoted by
�0(x).

An operator T : X ! X� is called a potential operator, if it is the Gateaux
di�erential, in X , of a function � : X ! �R. Such an operator is also called the
gradient of �, and is denoted by grad�.

Let 
 be a bounded domain in RN , with smooth boundary @
. Then the
eigenvalues of the boundary value problem

��u = �u in 


u = 0 on @

(2.1)
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form a non-decreasing sequence 0 < �1 < �2 � �3 � . . . with limj!1 �j = 1. If
 j is the unique eigenfunction corresponding to the eigenvalue �j , then the  j can
be so chosen as to be real and to form an orthonormal system, with  1 � 0 in 
.

In the sequel we shall work in the Sobolev space H1
0 (
) with inner product

hu; vi1 =

Z



hgradu(x); grad v(x)idx

where h�; �i denotes the usual inner product of L2(
). Let k � k1 and k � k denote the
corresponding norms.

Let �j be a �xed eigenvalue of (2.1), with corresponding eigenfunction  j .
Let

S�j = span f k : k = 0; 1; . . . ; j � 1g (2.2)

S+j = span f k : k � j + 1; k 2 Ng (2.3)

Kj = ker(��� �jI) = span f jg: (2.4)

Then
kuk21 � �j�1kuk

2 for u 2 S�j (2.5)

kwk21 � �j+1kwk
2 for w 2 S+j (2.6)

H1
0 (
) = S�j �Kj � S+j : (2.7)

We shall abuse notation and drop the subscript 1 in inner products and norms,
since it will be clear from the context to which of them we refer.

3. Existence of weak solutions. In this section, we establish a theorem
that provides a necessary and suÆcient condition for the (weak) solvability of (1.1).
The proof will be accomplished in a sequence of lemmata.

Lemma 3.1. For each y 2 S�j � Kj , there exists a unique critical point

c2(y; g) of the functional Iy(w) := I(y + w), w 2 S+j . Moreover c2(y; g) depends
continuously on y.

Proof. (i) Iy is strictly monotone. Indeed,

hgrad Iy(w1)� grad Iy(w2); w1 � w2i =

h(��� �jI)(y + w1)� (��� �jI)(y + w2); w1 � w2i

+ hf(y + w1)� f(y + w2); w1 � w2i =

h��(w1 � w2); w1 � w2i � �jkw1 � w2k
2

+ hf(y + w1)� f(y + w2); y + w1 � (y + w2)i >

�j+1kw1 � w2k
2 � �j+1kw1 � w2k

2 = 0:

(ii) Iy is coercive. Indeed,

hgrad Iy(�w); wi =h��(�w) � �j�w + f(�w) � g; wi

=
1

�
j grad (�w) j2 ���jkwk

2 � hg; wi+
1

�
hf(�w); �wi

���j+1kwk
2 � ��jkwk

2 � hg; wi+ �f�1kwk
2 + hf(0); wig

��f�j+1 � �j +�1gkwk
2 � hg; wi+ �hf(0); wi:
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But

Iy(w) = Iy(0) +

Z 1

0

hgrad Iy(�w); wid�

and the above inequality implies that limkwk!1 Iy(w) =1 as desired.

From (i) and (ii) it follows that Iy(w) has a minimum, c2(y; g) say. Its unique-
ness follows from the strict monotonicity of Iy(w).

To prove the continuity of c2(y; g) with respect to y, let us suppose, arguing
as in [4], that c2(y; g) is not continuous. Then, there exists a sequence (yn) such
that

limn!1 yn = y 2 S�j �Kj and j c2(yn; g)� c2(y; g) j� 2Æ, for some Æ > 0.

Let � be the projection of H1
0 (
) onto S

+
j de�ned by �(y + w) = w and let

�� be its adjoint. �� is a projection itself. We can see that

w = c2(y; g)() ��(grad I(y + w)) = 0;

since hgrad I(y + c2(y; g)); �i = 0 if � 2 S+j . By the continuiuty of grad I and the
above relationships, it follows that

k��(grad I(yn + c2(y; g)))k < (�j+1 � �j +�1)Æ
2 (3.1)

for suÆciently large n. Therefore,

k��(grad I(yn + c2(y; g)))kkc2(yn; g)� c2(y; g)k �

� h�grad I(yn + c2(y; g)); c2(yn; g)� c2(y; g)i

� hgrad I(yn + c2(yn; g))� grad I(yn + c2(y; g)); c2(yn; g)� c2(y; g)i

� (�j+1 � �j +�1)kc2(yn; g)� c2(y; g)k
2 � 4(�j+1 � �j +�1)Æ

2;

contradicting (3.1).

Remark 3.1. If we consider the decomposition g = g0 + ĝ, g0 2 Kj � S�j ,

ĝ 2 S+j we can easily see that c2(y; g) actually depends only on ĝ.

Proof. For p 2 Kj � S�j consider the equation

��v � �jv + f(v) = g + p

and let T be such that

hgradT (v); qi = h��v � �jv + f(v)� g � p; qi:

Then, for each w 2 S+j , we have

hgradTy(c2(y; g)); wi

= h��(y + c2(y; g))� �j(y + c2(y; g)) + f(y + c2(y; g))� g; wi � hp; wi

= hgradTy(c2(y; g)); wi = 0

and hence, from the de�nition of c2(y; g + p), we conclude that

c2(y; g + p) = c2(y; g); for each p 2 Kj � S�j :
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Lemma 3.2. The functional R : Kj �S
�
j ! R : y ! Iy(c2(y; g)) is of class

C1, and satis�es the relation

hgradR(y); �i = hgrad I(y + c2(y; g)); �i; 8� 2 Kj � S�j : (3.2)

Proof. Let � > 0 and � 2 Kj � S�j . Then

R(y + ��)�R(y)

�
=
I(y + �� + c2(y + ��; g))� I(y + c2(y; g))

�

and by the de�nition of c2(y; g)

�
I(y + �� + c2(y; g))� I(y + c2(y; g))

�

=

Z 1

0

hgrad I(y + c2(y; g) + ���); �id�:

(3.3)

Similarly, we get that

R(y + ��)�R(y)

�
�

Z 1

0

hgrad I(y + c2(y + ��; g) + ���); �id�: (3.4)

From (3.3), (3.4) and the continuity of grad I and c2(y; g), we have

lim
�!0+

R(y + ��)�R(y)

�
= hgrad I(y + c2(y; g)); �i

and hence R, having a continuous Gateaux derivative, is a C1 -functional. But, by
the de�nition,

hgradR(y); �i = lim
�!0+

R(y + ��)�R(y)

�

and, therefore, hgradR(y); �i = hgrad I(y + c2(y; g)); �i.

Lemma 3.3. For each u 2 Kj , there exists a unique critical point c1(u; g) of
the functional Ru(�) : = R(u+�); � 2 S�j . Moreover, c1(u; g) depends continuously

on u. Finally, the functional J : Kj ! R : u ! Ru(c1(u; g)) is of class C1 and
satis�es the relation:

hgradJ(u); �i = hgradR(u+ c1(u; g)); �i; 8� 2 Kj : (3.5)

Proof. It has already been shown, that there exists a function c2(�; g) such
that

I(u+ z + c2(u+ z; g)) = minfI(u+ z + w) : w 2 S+j g; for u 2 Kj and z 2 S�j :

Moreover, R(u+ �) = I(u+ �+ c2(u+ �; g)). Now,

R(u+ �) =I(u+ �+ c2(u+ �; g)) � I(u+ �)

=I(u) + hgrad I(u); �i+

Z 1

0

hgrad I(u+ ��) � grad I(u); �id�:
(3.6)



On solvability of a nonlinear elliptic boundary value problem 43

From (3.6) it follows, that

R(u+ �) � I(u) + kgrad I(u)kk�k+
1

2
f�2 + �j�1 � �jgk�k

2

and hence
lim

k�k!1
R(u+ �) = �1: (3.7)

Now, for �xed u 2 Kj , and for a sequence f�kg in S
�
j , such that

lim
k!1

R(�k) = supfR(u+ �) : � 2 S�j g

we can see that, since f�kg turns to be bouned, �k * �̂; �̂ 2 Kj . But then

R(u+ �k) � I(u+ �k + c2(u+ �k; g)) � I(u+ �k + c2(u+ �̂; g)):

So, the function �! I(u+ �+ c2(u+ �; g)) is concave, and, therefore,

lim sup I(u+ �k + c2(u+ �̂; g)) � I(u+ �̂+ c2(u+ �̂; g)) = R(u+ �):

Hence R has a critical point at �̂. We denote this critical point by c1(u; g).

The proof of the remaining assertions of the lemma, can be carried out at the
same lines as in Lemmata 3.1 and 3.2.

Lemma 3.4. The point v = u+ z+w, u 2 Kj, z 2 S
�
j , w 2 S+j is a critical

point of functional I if and only if w = c2(u+z+g), z = c1(u; g) and u is a critical
point of the functional J .

For the proof, it suÆces to observe that, for each h 2 Kj we have:

hgradJ(u); hi = hgrad I(u+ c1(u; g) + c2(u+ c1(u; g); g)); hi:

The rest is a direct consequence of the previous lemmata.

Now we are in a position to state and prove the main result of this section:

Theorem 3.1. A necessary and suÆcient condition for the (weak) solvability
of the boundary value problem

��v � �jv + f(v) = g in 
 (3.8)

v = 0; on @


where �j ; f; g are as in the Introduction, is the following: there exists a u 2 Kj,
such that

hf(u+ c1(u; ĝ) + c2(u+ c1(u; ĝ); ĝ)); hi = hg0; hi 8h 2 Kj : (3.9)

Proof. As in Remark 3.1, we consider the decomposition

g = g0 + ĝ; g0 2 Kj � S�j ; ĝ 2 S
+
j :
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By Lemma 3.4, we have that v = u+ z + w, u 2 Kj , z 2 S�j , w 2 S+j , is a
critical point of the functional J if and only if

h ��(u+ c1(u; g) + c2(u+ c1(u; g); g))� �j(u+ c1(u; g) + c2(u+ c1(u; g); g))

+ f(u+ c1(u; g) + c2(u+ c1(u; g); g))� g; hi = 0; 8h 2 Kj : (3:10)

Since hg; hi = hg0; hi + hĝ; hi = hg0; hi and using Remark 3.1 and the de�nition of
c1(u; g), (3.10) becomes

hg0; hi =hf(u+ c1(u; ĝ) + c2(u+ c1(u; ĝ); ĝ)); hi

+ h(��� �j ~I)(u+ c1(u; ĝ) + c2(u+ c1(u; ĝ); ĝ)); hi;
(3.11)

where ~I denotes the identity mapping. Since the operator ��� �j ~I is selfadjoint
(3.11) gives (3.9).

Remark 3.2. By standard arguments, the result of Theorem 3.1 holds, if,
instead the Laplacian, a general second order elliptic operator is considered in
(3.8).

We close this Section by providing conditions under which (F1) holds, i. e.
such that f is a potential operator.

Proposition 3.1. Consider the function f̂(x; v): = f(v) � �jv � g and

let N : L2(
) ! L2(
) denote its Nemitski�� operator, i.e. Nv = f̂(x; v(x));
x 2 
, v 2 R. If N is continuous, then N is a potential operator, and we can
�nd the functional ' whose gradient is N :

'(v) = '0 +

Z



dx

Z v(x)

0

f̂(x; �)d�: (3.12)

Proof. Let v(x); �(x) 2 L2(
), and consider the curvilinear integral along
the interval v(x) + ��(x), � 2 [0; 1]

i: =

Z 1

0

(N(v + ��); d(v + ��)) =

Z 1

0

(f̂(x; v(x) + ��(x)); d(v(x) + ��(x)))

=

Z 1

0

d�

Z



f̂(x; v(x) + ��(x))�(x)dx =

Z



dx

Z 1

0

f̂(x; v(x) + ��(x))�(x)d�

=

Z



dx

Z v(x)+�(x)

v(x)

f̂(x; z)dz = 	(v + �)�	(v); (3:13)

where z = v(x) + ��(x), and, for any '(x) 2 L2(
)

	(') =

Z



dx

Z '(x)

0

f̂(x; z)dz:

From [11, Cor. 2.1] it follows that (3.13) implies that i is independent of path, and
then from Gavurin's Theorem [11, Th. 6.2], N is a potential operator.

Remark 3.2. The notation
R 1
0
(N(v+��); d(v+��)) is used to emphasize that

the values of N are functionals.
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Remark 3.3. As it is known, the continuity of N is equivalent to

jf̂(x; v)j � �(x) + �jvj; � � 0; �(x) 2 L2(
):

Such a condition is satis�ed if f is, for instance, sublinear in the sense that
limv!1 f(v)=v = 0.

4. Regularity. In this section, it is proved that under suitable hypotheses,
any weak (H1

0 (
)) solution of our problem, is a classical solution. This is performed
by a bootstrap argument, as follows:

Theorem 4.1. Let 
 be a bounded domain in RN , N � 2. Let @
 be of
class C2+�; � 2 (0; 1). Let g 2 C�(�
). If the problem

��u� �ju+ f(u) =g in 


u =0 on @

(4.1)

with f satisfying (F2) has a weak H1
0 (
)-solution u, then u 2 C

2+�(�
).

Proof. Since u is a H1
0 (
)-solution, it is in L

2(
). Assume that u 2 LP (
),
p � 2. The conditions on f and g imply that H 2 LP (
), where

H(x) = g(x) + �ju(x)� f(u(x)): (4.2)

Consider now the problem
��u =H; in (
)

u =0; on @
:
(4.3)

By [1, Th. 15.2], u 2 W 2;P (
). By Sobolev's Embedding Theorem [7, Cor. 7.11],
we get that

if 2p � N; then u 2 Lq(
); for q 2 [1;1) while

if 2p < N; then u 2 Lq(
); for q = Np=(N � 2p):

Repeating this argument a suÆcient number of times, we arrive at

u 2W 2;q(
) for q such that 0 < � < 1�N=q:

But W 2;q(
) �W 1;q(
) and by [8, Th. 5.7.8 (i)], u 2 C1�N=q. Now C1�N=q � C�

and hence H 2 C�. By [7, Th. 6.14], there exists a unique solution w 2 C2+� of

��w = H; in 


w = 0; on @
:
(4.4)

Now u and w are H1
0 (
)-solutions of (4.4), and since (4.4) has a unique solution,

u = w. Hence u is a classical solution of (4.1).
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