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LOGICS WITH TWO TYPES OF INTEGRAL OPERATORS

Radosav S. -Dor -devi�c

Abstract. We prove completeness theorems for absolutely continuous and singular biprob-
ability models of a logic with integrals. Also in both cases, we prove the �nite compactness theorem
for a set of sentences of the form � 2 [r; s].

We assume throughout the paper that A is a countable admissible set with
! 2 A. In [2], Keisler introduced a logic LAs which has an integral operator which
builds terms with bound variables. In our case two types of integral operatorsR
1

. . . dx and
R
2

. . . dx are allowed.

A biprobability model for LAs1 s2 logic is a model
A = hA;Ri; cj ; �1; �2ii2I; j2J , where hA;Ri; cji is a �rst-order model without op-
erations and �1; �2 are probability measures on A. We shall see a di�erence in
semantics for LaAs1 s2

and LsAs1 s2
by means of the following de�nition.

De�nition 1. (a) An absolutely continuous biprobability model for LaAs1 s2
is a biprobability model A such that �1 is absolutely continuous with respect to �2,
i. e. �1 � �2.

(b) A singular biprobability model for LsAs1 s2
is a biprobability model A such

that �1 is singular with respect to �2, i. e. �1 ? �2. �

In both cases, quanti�ers are interpreted by

(sk �(x;~a) dx)A = s �(b;~a)A d�k(b) for k = 1; 2 ,

where �(x; ~y) is a term and ~a 2 An.

Diagonal products �
(n)
k , which are the coresponding restrictions of comple-

tions of �nk 's (k = 1; 2) to �{algebras generated by the measurable rectangles and
the diagonal sets f ~x 2 An : xi = xj g, can be replaced by sequences of probabil-
ity measures on An's which satisfy the Fubini theorem. That generalization of a
probability structure is relevant for us.

Mathematics Subject Classi�cation (1991): Primary 03 C 70
This research was supported by Goverment of Serbia grant number 0401A, through Matemati�cki
institut.



Logics with two types of integral operators 19

De�nition 2. A graded biprobability model for LAs1 s2 is a model
A = hA;Ri; cj ; �

1
n; �

2
nii2I; j2J; n�1 such that:

(1) Each �kn is a countably additive probability measure on An.
(2) Each n-ary relation Ri is �kn-measurable and the identity relation is �k2-

measurable.
(3) �kn � �km � �kn+m.

(4) Each �kn is preserved under permutation of f 1; 2; . . . ; n g.
(5) h�kn : n 2 Ni has the Fubini property: If B is �km+n-measurable, then

(a) For each ~x 2 Am, the section B~x = f ~y : B(~x; ~y) g is �kn-measurable.
(b) The function f(~x) = �kn(B~x) is �km-measurable.
(c)

R
f(~x) d�km = �km+n(B). �

De�nition 3. (a) A graded biprobability model for LaAs1 s2
is a graded biprob-

ability model A such that �1n � �2n for each n 2 N.

(b) A graded biprobability model for LsAs1 s2
is a graded biprobability model

A such that �1n ? �2n for each n 2 N. �

1. The logic LaAs1 s2
. Axioms and rules of inference for LaAs1 s2

are those

for LAs , as listed in [3] with both
R
1 and

R
2 playing the role of

R
, together with

the following axioms:

(A1) Axioms of continuity of integral operators: (i; j = 1; 2)

(a)
V
n

W
m

W
k

R
i
Fk

�R
j
�(~x; ~y) d~x

�
d~y < 1

n
,

where Fk(s) =

8><
>:

1; if r � 1=m+ 1=k � s � r � 2=k

0; if s � r � 1=m or s � r � 1=k

linear; for other cases

is a continuous real function such that Fk � Q 2 A.

(b)
V
n

W
m

W
k

R
i
G k

�R
j
�(~x; ~y) d~x

�
d~y < 1

n
,

where Gk(s) =

8><
>:

1; if r + 2=k � s � r + 1=m� 1=k

0; if s � r + 1=k or s � r + 1=m

linear; for other cases.

(A2) Axiom of absolute continuity:V
"2Q+

W
Æ2Q+

V
n

V
�2Tn

�
j
R
2 �(~x) d~xj < Æ =) j

R
1 �(~x) d~xj < "

�
,

where T =
S
n Tn, Tn is a set of terms with n free variables and T; Tn 2 A.

(A3)
R
1

�R
2 � dy

�
dx =

R
2

�R
1 � dx

�
dy.

Now we introduce two sorts of auxiliary models.

De�nition 4. (a) A weak model for Las1 s2 is a model hA; I1; I2i where A is

a �rst-order model and Ik is what may be called an A-Daniell integral on A, that
is, Ik is a positive linear real function on the set of terms with at most one free
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variable x and parameters from A, i. e.

Ik(r) = r; k = 1; 2

Ik(r � � + s � �) = r � Ik(�) + s � Ik(�);

if �(b;~a)A � 0 for all b 2 A, then Ik(�(x;~a)) � 0.

(b) A middle model for LaAs1 s2
is a weak model A such that for each " > 0 there

is Æ > 0 such that for each term �(x; ~y) and ~a 2 An, if jI2(�(x;~a))j < Æ then
jI1(�(x;~a))j < ". �

In both cases, for � a term, de�ne �A inductively as for biprobability models,
except that at the integral step, we de�ne

(sk �(x;~a) dx)
A

= Ik(�(x;~a)) :

Lemma 1. (Middle Completeness Theorem for LaAs1 s2
) Let T be a set of

sentences of LaAs1 s2
such that T is �1-de�nable over A. Then T is consistent with

the axioms of this logic i� it has a middle model in which each theorem of LaAs1 s2
is true.

Proof. The soundness is easy to prove because all the axioms represent
known properties of integrals (the Generalized Radon-Nikodym Theorem and the
Fubini Theorem prove that each function �(x; y)A:A � A ! R is compatible with
absolutely continuous measures �1 and �2, i. e.ZZ

�(x; y)A d�1(x) d�2(y) =

ZZ
�(x; y)A d�2(y) d�1(x) ):

A Henkin argument is used to construct a weak model hA; I1; I2i of T in which
each theorem of LaAs1 s2

is true. Let K = L[C be the language introduced in this

construction, where C is a set of new constant symbols and C 2 A. We wish the
axiom A2 to hold for all the terms and that is done by the following construction
(see [9]).

Let K 0 be a language with four kinds of variables: X;Y; Z; . . . are variables for
sets, x; y; z; . . . are variables for urelements, r; s; t; . . . are variables for reals from
[0; 1]\A, and U; V;W; . . . are variables for functions An 7! R, n � 0. Predicates are:
Es
n(~x;X) for sets, n � 1; Et

n+1(~x; r; U) for terms, n � 0; Ik(U; r) for U :A0 ! R or
U :A1 ! R; k = 1; 2; and � for reals. Function symbols are f; g; h; . . . for each
continuous real functions F :Rn ! R such that F � Qn 2 A. Constant symbols
are: X' for each formula '; U� for each term � ; and r for each real number
r 2 [0; 1] \A.

Let S be the following theory of K 0
A:

1. Axioms of validity:

1.1 (8X)
V

n<m

:(9~x; ~y)(Es
m(~x; ~y;X) ^ Es

n(~x;X)), where f ~x g \ f ~y g = ;;

1.2 (8U)
V

n<m

:(9~x; ~y; r; s)(Et
m+1(~x; ~y; r; U) ^ Et

n+1(~x; s; U));

1.3 (8U)(8~x; r; s)((Et
n+1(~x; r; U) ^ Et

n+1(~x; s; U)) =) r = s);
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2. Axioms of extensionality:

2.1 (8~x)(Es
n(~x;X) () Es

n(~x; Y )) () X = Y ;
2.2 (8~x; r)(Et

n+1(~x; r; U) () Et
n+1(~x; r; V )) () U = V ;

3. Axioms of terms:

3.1 (8~x)(Et
n+1(~x; 0; U� ) _ Et

n+1(~x; 1; U�)) if � is 1(R(~x));
3.2 (8x; y)(Et

2+1(x; y; 0; U� ) _Et
2+1(x; y; 1; U� )) if � is 1(x = y);

3.3 Et
0+1(r; U� ) if � is r;

3.4 (8~x; r)(Et
n+1(~x; r; U� ) () (9~s)(

kV
i=1

Et
n+1(~x; si; U�i) ^

^ f(s1; . . . ; sk) = r)) if � is F(�1 ; . . . ; �k);
3.5 (8~x; r)(Et

n+1(~x; r; U� ) () (9V )((8y; s)(Et
1+1(y; s; V ) ()

() Et
n+1+1(~x; y; s; U�)) ^ Ik(V; r))) if � is

R
k
�(~v; v0) dv0; k = 1; 2;

4. Axioms of satisfaction:

4.1 (8~x)(Es
n(~x;X') () (9r � 0)Et

n+1(~x; r; U� )) if ' is � � 0;
4.2 (8~x)(Es

n(~x;X:') () :Es
n(~x;X'));

4.3 (8~x)(Es
n(~x;X^�) ()

V
'2�

Es
n(~x;X'));

5. Axioms of integral operators:

5.1 (8U)((
V
n�2

:(9~x; r)Et
n+1(~x; r; U)) () (91s)Ik(U; s)); k = 1; 2;

5.2 (8r)Ik(Ur; r);
5.3 (8U; V; r; s)Ik(r � U + s � V ) = r � Ik(U) + s � Ik(V ), where Ik(U) = r i�

Ik(U; r);
5.4 (8U)((8x)(9r � 0)Et

1+1(x; r; U) =) (9s � 0)Ik(U; s));

6. Axiom of absolute continuity:

(8" > 0)(9Æ > 0)(8U) (jI2(U)j < Æ =) jI1(U)j < ");

7. Axioms for an Archimedean �eld;

8. Transformations of axioms of Ka
As1 s2

:

(8~x)Es
n(~x;X'), where ' is an axiom of this logic;

9. Axioms of realizability of all sentences ' of T :

(8x0)Es
1(x0; X').

A weak model hA; I1; I2i for Ka
As1 s2

can be transformed to a standard model

B for K 0
A by taking: BB' = f~a 2 An : A j= '[~a] g, UB� (~a) = �A(~a) for ~a 2 An and

IBk (UB� ) = Ik(�) for each term � with at most one free variable. By the Barwise
Compactness Theorem (see [1]), it can be shown that S has a standard model D,
because S is �-de�nable over A and A2 holds in A. D can be transformed to a
middle model C of T by taking:

RC = f ~x 2 Dn : Es
n(~x;X1(R(~x))=1) g and

ICk (�(x;~a)) = IDk (U�(x;~a)) for ~a 2 Dn and k = 1; 2.

This completes the proof of the Middle Completeness Theorem. �
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In order to construct an absolutely continuous biprobability model, we need
the following lemma.

Lemma 2. (Loeb [4]) In an !1-saturated nonstandard universe, let M be
an internal vector lattice of functions from an internal set A into �R (the set of
hyperreal numbers), and let I be an internal positive linear functional on M , such
that 1 2 M and I(1) = 1. Then there is a complete probability measure � on A
such that for each �nitely bounded ' 2M , the standard part of ' is integrable with
respect to � and its integral is equal to the standard part of I(').

Theorem 1. (Completeness Theorem for LaAs1 s2
) Let T be a set of sentences

of LaAs1 s2
such that T is �1 on A and consistent. Then there is an absolutely

continuous biprobability model of T .

Proof. Let hA; I1; I2i be a middle model of T in which each theorem of LaAs1 s2
is true. The Daniell integral construction from Lemma 2 produces probability
measures �1; �2 on �A such that for each �-term �(x), the standard part of �Ik(�)
is the integral

R
st(�(b)A) d�k(b) (we de�ne measures �kn on �An by using iterated

integrals). The absolute continuity in the middle model A implies the absolute
continuity for all measurable sets. Also, using axiom A3, it can be shown that
�1n � �2n for each n 2 N. This graded biprobability model Â = h�A; �1n; �

2
ni can be

used to produce an absolutely continuous biprobability model of T (see [3]). �

We can look only for a part of LaAs1 s2
which satis�es the �nite compactness

property, because this logic cannot satisfy the full compactness (for example, each
�nite subset of T = f

R
1
1(R(x)) dx > 0 g [ f

R
1
1(R(x)) dx � 1

n
: n 2 N g, where R

is a unary predicate, has a probability model, but not T itself).

Theorem 2. Let T be a set of sentences of LaAs1 s2
of the form � 2 [r; s].

If every �nite subset of T has a graded biprobability model, then T has a graded
biprobability model.

Proof. Let us suppose that each �nite subset 	 � T has a model A	. By
Lemma 1 we can suppose that A	 is a middle model. Take an ultraproduct �A such
that, for each ' 2 T , almost every A	 satis�es '. Then form a graded biprobability

model Â from �A by the Daniell integral construction (Lemma 2). It can be shown
by induction that every sentence of LaAs1 s2

of the form � 2 [r; s] which is true in

almost all A	 holds in Â, too. The absolute continuity condition can be expressed
in the middle model by the �rst-order sentence

(8" > 0)(9Æ > 0)(8U)(jI2(U)j < Æ =) jI1(U)j < ") :

By  Los's Theorem and Loeb construction the sentence

(8" > 0)(9Æ > 0)(8X)(�2(X) < Æ =) �1(X) < ")

holds in Â. �
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2. The logic LsAs1 s2
. Axioms and rules of inference for the logic LsAs1 s2

are those of LAs (with both
R
1 and

R
2 in place of

R
, see [3]) together with the

axioms of continuity A1 and

(A4) Axiom of singularity:W
k

R
i
H k (

R
1
1(x = y) dy;

R
2
1(x = y) dy) dx = 0; i = 1; 2,

where Hk(s; t) =

8><
>:

1; if s � 2
k

and t � 2
k

0; if s � 1
k

or t � 1
k

linear; for other cases

.

Theorem 3. (Completeness Theorem for LsAs1 s2
) A theory T of LsAs1 s2

is consistent i� T has a singular biprobability model.

Proof. The proof of soundness is easy. Let hA; I1; I2i be a weak mod-
el of T in which each theorem of LsAs1 s2

is true. Let F = fB � A : �B 2

dom(I1) = dom(I2) g be an algebra of subsets of A, where �B(x) =

�
1; if x 2 B

0; if x =2 B
.

De�ne �nitely additive probability measures �1, �2 on F by �k(B) = Ik(�B),
B 2 F and k = 1; 2.

Then, for a 2 A, the singleton f a g belongs to F because �f a g = (x = a)A,
the set B = f a 2 A : �1f a g > 0 & �2f a g > 0 g belongs to F and �k(B) = 0
k = 1; 2 by A4.

By construction from [7], the measures �1, �2 can be extended so that �1 � �1,
�2 � �2 and the measures �1; �2 are singular. Then construct a middle biprobability
model hA; I1; I2i of T by

dom(Ik) = dom(Ik) [ f�C : C 2 F rF g and Ik(�C) = �k(C);

for each C from the extension F of F .

By Loeb's construction (Lemma 2) and the construction of the biprobability
model from a graded biprobability model (see [3]), the singularity of �nitely additive
measures in the middle model will be preserved in the biprobability model. �

Finally, we prove Finite Compactness Theorem for the singular case.

Theorem 4. Let T be a set of sentences of LsAs1 s2
of the form � 2 [r; s].

If every �nite subset of T has a graded biprobability model, then T has a graded
biprobability model.

Proof. As in Theorem 2, our proof is based on the ultraproduct and Daniell
integral construction. Now, we can suppose that A	 is a weak model for each
�nite subset 	 � T . Let A	 be a middle model as in Theorem 3. Take an
ultraproducts �A =

Q
A	 such that, for each ' 2 T , almost every A	 satis�es '.

The condition of singularity can be express in the middle model by the �rst-order
sentence (9f)(I1(f) = 1 ^ I2 = 0). By  Los's Theorem and Loeb's construction

the sentence (9X)(�1(X) = 1 ^ �2(X) = 0) holds in Â. �
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