PSEUDO-GALOIS EXTENSIONS OF BOOLEAN ALGEBRAS

Žikica Perović

Abstract. We define pseudo-Galois extensions of Boolean algebras and reduce the problem of their characterization to some problems on permutations groups.

0. Introduction

In [9] was given a characterization of Galois extensions of Boolean algebras. Here we weaken the definition of Galois extensions and obtain an interesting characterization. Let us fix a few definitions first.

Let *B* be a Boolean algebra. Ult *B* denotes the Stone space of ultrafilters on *B*. Let *C* be a subalgebra of *B*. For $q \in \text{Ult } C$, $\langle q \rangle^{fi}$ is the filter on *B* generated by *q*. We say that *q* splits in *B* if there are distinct $p, p' \in \text{Ult } B$ which extend *q* i.e. such that $p \cap C = p' \cap C = q$. *C* is relatively complete (rc) subalgebra of *B* if for each $b \in B$ there exists the greatest element $c \in C$ such that $c \leq b$. We denote this element by $\text{pr}_C(b)$. We also use notation $\text{ind}_C(b)$ for -(pr(b) + pr(-b)). It is a clopen set in Ult *C* consisting of ultrafilters that have an extension to Ult *B* containg *b* and also an extension to Ult *B* containing -b.

B is a finite extension of C if there exist $u_1, \ldots, u_n \in B$, such that $B = C(u_1, \ldots, u_n)$. Let $B = C(u_1, \ldots, u_n)$. Set of generators $F = \{u_1, \ldots, u_n\}$ is reduced if they are partition of one, and for every $u \neq v \in F$, $u \notin \langle C \cup F \setminus \{u, v\} \rangle$. For $i \leq n$, $J_i^u = \{b \in B | b \cdot u_i = 0\}$ is an ideal in B. These ideals make an extender, meaning that their intersection contains just 0, and if $b \in B$ belongs to one of them, then -b does not belong to any of them. It is easy to see that in the case when B is an rc-extension of C, these ideals are principal.

Definition. Let $B = C(u_1, \ldots, u_n)$, where $\langle u_1, \ldots, u_n \rangle$ is a reduced set of generators. For $p \in \text{Ult } C$, h(p) is the number of extensions of p in Ult B.

PROPOSITION 0.1 Let C and B be as in definition, $p \in \text{Ult } C$ ultrafilter which splits in b and $M_p = \{i | i \leq n, p \in \text{ind}(u_i)\}; h(p) = |M_p|.$

Supported by the Science Fund of Serbia, grant number 0401A, through Math. Inst. AMS Subject Classification (1991): Primary 03 E 05

Žikica Perović

Definition. Let $B = C(u_1, \ldots, u_n)$, and $k \leq n$; define $\mathcal{F}_k^B = \{p \in U | t C | h(p) = k\}$.

PROPOSITION 0.2 \mathcal{F}_k^B is clopen in Ult C i.e. $\mathcal{F}_k^B \in C$, and $\bigvee \{\mathcal{F}_k^B | k \leq n\} = 1$.

Definition. Let B be a finite extension of C. The height sequence for B over C is $\{k \in N | \mathcal{F}_k^B \neq 0\}$ in the increasing order.

The following theorem is Theorem 2.2 from [8].

THEOREM 0.1. Let B be a finite rc-extension of C, such that $\max\{h(p) : p \in \text{Ult}C\} = l$. There exists a reduced set of generators $\langle v_1, \ldots, v_l \rangle$, such that $B = C(v_1, \ldots, v_l)$. B cannot be generated by a smaller reduced set over C. If M is a generating set for B over C, then $2^{|M|} \ge l$.

From the proof of this theorem (presented in [8]), one can see that $\langle v_1, \ldots, v_l \rangle$ was constructed so that $\mathcal{F}_k^B = \bigwedge \{ \operatorname{ind}(v_i) : i \leq k \}$, for $2 \leq k \leq l$, and $\mathcal{F}_1^B \leq v_1$. This means that for $2 \leq k \leq l$ and $p \in \mathcal{F}_k^B$, the atoms of $B/\langle p \rangle^{fi}$ are $v_1/\langle p \rangle^{fi}, \ldots, v_k/\langle p \rangle^{fi}$.

1. Pseudo-Galois extensions

Definition. Let B be a finite extension of a Boolean algebra C. Automorphisms $f, g \in \operatorname{Aut}_C B$ are relatively-strongly distinct if for every nonzero $c \in C$, there is an $s \in B$ such that $f(s) \cdot c \neq g(s) \cdot c$.

Definition. Let C < B. b is a pseudo-Galois extension of C, if B is a finite extension of C and there exists a finite subgroup G of relatively-strongly distinct members of $\operatorname{Aut}_C B$ such that $\operatorname{Fix} G = C$.

Pseudo-Galois extensions are relatively complete (Theorem 3.6 in [6]). Henceforth we can suppose that the generating set for B over C has been chosen according to the note following Theorem 0.1. Let $G < \operatorname{Aut}_C B$. For $g \in G$ and $p \in \mathcal{F}_k^B \subset \operatorname{Ult} C$, let $\hat{g} : B/\langle p \rangle^{fi} \to B/\langle p \rangle^{fi}$ be the automorfism induced by g. Let also $\rho_g^p : At(B/\langle p \rangle^{fi}) \to B/\langle p \rangle^{fi}$ be the correspondence among the atoms of factor algebras. ρ_g^p ia actually a permutation of the set $\{u_1/\langle p \rangle^{fi}, \ldots, u_k/\langle p \rangle^{fi}\}$. Finally, we define a mapping $\sigma_p : G \to S_k$, by $\rho_g^p(u_i/\langle p \rangle^{fi}) = u_{\sigma_p(g)(i)}/\langle p \rangle^{fi}$.

The following two propositions are from [9]:

PROPOSITION 1.1. Let $a, b \in B$. Then a = b iff for every $p \in \text{Ult } C$, $a/\langle p \rangle^{fi} = b/\langle p \rangle^{fi}$.

PROPOSITION 1.2. Let $p \in \mathcal{F}_k^B \subset \text{Ult } C$. There exists $c \subset \mathcal{F}_k^B$, such that for all $q \in c$, $\sigma_q = \sigma_p$. For c we also have that for every $i \leq k$ and every $g \in G$, $g(cu_i) = cu_{\sigma(i)}$.

PROPOSITION 1.3. Let $B = C(v_1, \ldots, v_n)$ be a pseudo-Galois extension of Cand $G < \operatorname{Aut}_C B$ a group of relatively-strongly distinct automorphisms, such that $\operatorname{Fix} G = C$. Then, for $k \leq m$ and $p \in \mathcal{F}_k^B$, $\sigma_p(G)$ is a transitive subgroup of S_k . Proof. Let $\langle u_1, \ldots, u_n \rangle$, $n \leq m$, be the generating set for B over C, constructed in the proof of Theorem 0.1 i.e. having the properties from the note following the theorem. Let also, $a_k = \mathcal{F}_k^B$, $k \leq n$, and let G be a finite subgroup of $\operatorname{Aut}_C B$, consisting of relatively-strongly distinct automorphisms. If $a_1 = 1$, then B = C and h(p) = 1. Otherwise, there exists $k, 2 \leq k \leq n$, such that $a_k \neq 0$. Let us prove $a_1 = 0$ first. Since $a_1 \leq u_1$, $\forall g, h \in G \ \forall x \in B \ g(x)a_1 = h(x)a_1$. Really, if $x = \sum_{i \leq n} c_i u_i$, then for every $g \in G$, $g(x)a_1 = g(xa_1) = g(c_1a_1) = c_1a_1$. The result does not depend on g, i.e. it is a constant. Since the automorphisms from G are relatively-strongly distinct, $a_1 = 0$. Let $c \subset a_k$ be the set from Proposition 1.2. The mapping $\sigma_p : G \to S_k$ is an embedding. It is a homomorphism, since $\rho_g^p \circ \rho_h^p = \rho_{gh}^p$. Let us check that it is 1–1. Let $g \neq h$ and $\sigma_p(g) = \sigma_p(h)$. Then $\rho_g^p = \rho_h^p$. Let $x \in B$, $x = \sum_{i \leq n} c_i u_i$. We have:

$$g(c)x = g(cx) = g(\sum_{i \le k} cc_i u_i) = \sum_{i \le k} c_i g(cu_i) = \sum_{i \le k} cc_i u_{\sigma(g)(i)}$$
$$= \sum_{i \le k} cc_i u_{\sigma(h)(i)} = h(cx) = h(c)x.$$

Since x was arbitrary, and $c \in C$, g and h are not relatively-strongly distinct. Contradiction.

Now we prove that $\sigma_p(G)$ is a transitive subgroup of S_k . Suppose contrary. Then none of the orbits is the whole set $\{1, \ldots, k\}$. Consider an orbit F. Then for $x = \sum_{i \in F} cu_i$ and arbitrary $g \in G$, we have:

$$g(x) = \left(\sum_{i \in F} cu_i\right) = c \sum_{i \in F} g(u_i) = c \sum_{i \in F} u_{\rho(g)(i)} = c \sum_{i \in F} u_i = x$$

Henceforth, $x \in \text{Fix}G$. On the other hand, for $p \in \text{Ult } C$, $x/\langle p \rangle^{fi} = \sum_{i \in F} u_i/\langle p \rangle^{fi}$ is neither 0 nor 1 (in B_p), since F is neither empty nor the whole set $\{1, \ldots, k\}$. Henceforth, $x \in B \setminus C$. Contradiction.

THEOREM 1.4. Let B be a relatively complete extension of Boolean algebra C, with the height sequence (n_1, \ldots, n_k) . The following are equivalent:

- (i) B is a pseudo-Galois extension of C.
- (ii) There exists a group G which transitively embedes into permutation groups S_{n_1}, \ldots, S_{n_k} .

(iii) There exist irreducible polynomials of powers n_1, \ldots, n_k , with the same Galois group.

Proof. The equivalence between (ii) and (iii), follows from the well known correspondence in Galois theory, between irreducible polynomials and transitive subgroups of permutation groups (Theorem. 4.14 in [3]). We will prove that (i) and (ii) are equivalent.

(i) \Rightarrow (ii) is just Proposition 1.3, so we are left with the proof of (ii) \Rightarrow (i). Suppose that G is a group having properties from (ii). Let also, for $i \in \{n_1, \ldots, n_k\}$, $\rho_i: G \to S_i$ be transitive embedings. For $g \in G$, let us define $\varphi = h(g) \in \operatorname{Aut}_C B$ in the following way: we will define $\varphi(x)$, for $x \leq a_i$, $i \in \{n_1, \ldots, n_k\}$ first. If $x = \sum_{j \leq n} c_j \cdot u_j = \sum_{j \leq i} c_j \cdot u_j \ (a_i \cdot u_j = 0 \text{ for } j > i)$, then $\varphi(x) = \sum_{j \leq i} c_j \cdot u_{\rho_i(g)(j)}$. Actually, it is the automorphism that maps $C|(a_i)$ indenticly onto itself, and $u_j \cdot a_i$ to $u_{\rho_i(g)(j)} \cdot a_i$, for $j \leq i$. This automorphism exists by the Sikorsky exstension criterion. Let x be arbitrary element of B. If $x = \sum_{i \in S} d_i \cdot a_i$, then for $S = \{n_1, \ldots, n_k\}$ we define $\varphi(x) = \sum_{i \in S} \varphi(d_i \cdot a_i)$. We will prove that $H = \{h(g) | g \in G\}$ is a subgroup of $\operatorname{Aut}_C B$ such that $\operatorname{Fix} H = C$ and that the members of H are relatively-strongly distinct.

 $H < \operatorname{Aut}_C B$ since it is isomorphic to G. Really, h is a homomorphism since $h(g \cdot k)(u_j \cdot a_i) = u_{\rho_i(g \cdot k)(j)} \cdot a_i = u_{(\rho_i(g) \circ \rho_i(k))(j)} \cdot a_i = (h(g) \circ h(k))(u_j \cdot a_i)$. Since they also agree on C, we have $h(g \cdot k) = h(g) \circ h(k)$. It is also easy to see that h is a bijection.

We now prove that $\operatorname{Fix} H = C$. First $C \subset \operatorname{Fix} H$ by definition. On the other hand, let $x \in \operatorname{Fix} H \setminus C$. Since $x \neq 0$, $x \cdot a_i \neq 0$, for some $i \in \{n_1, \ldots, n_k\}$, and $x \cdot a_i \in \operatorname{Fix} H$. Therefore we can assume, without loss of generality, that $x \leq a_i$ for some $i \in S$. Let $x = \sum_{j \leq i} c_j \cdot u_j$. Let us note first, that nonzero elements among $\{c_1, \ldots, c_i\}$ are equal. Suppose not. Then for some $k, l \leq i$, $d = c_k \cdot -c_l$. Let $g \in G$ be an element such that $\rho_i(g)(l) = k$. Then, $d \cdot u_k \leq x$, but $d \cdot u_k \cdot h(g)(x) = d \cdot u_k \cdot \sum_{j \leq i} c_j \cdot u_{\rho_i(g)(j)} = d \cdot u_k \cdot c_l \cdot u_k = 0$, contradicting the assumption h(g)(x) = x. Therefore, we have $x = \sum_{j \in T} c \cdot u_j$, for some $T \subset$ $\{1, \ldots, i\}, c \leq a_i$. If T was the whole set $\{1, \ldots, i\}$, we would have $x/\langle p \rangle^{fi} = 1$, for every $p \in C$, and further $x = c \in C$, contrary to our assumption. Henceforth, we conclude that $C \neq \{1, \ldots, i\}$. But now we have for every $g \in G$, that h(g)(x) = $\sum_{j \in T} c \cdot u_{\rho_i(g)(j)} = \sum_{j \in \rho_i(g)[T]} c \cdot u_j = x$. This means that $\tau[T] = T$, for every $\tau \in$ $\rho_i[G]$, i.e. T is an orbit of $\rho_i[G]$ different from the whole set $\{1, \ldots, i\}$, contradicting the fact that $\rho_i[G]$ is a transitive subgroup of S_i . This contradiction proves that FixH = C.

Finally, we show that the automorphisms from H are strongly distinct. So let $\varphi, \psi \in H, \varphi \neq \psi, \varphi = h(g), \psi = h(k)$, for some $h, k \in G$. Let also $c \in C$, $c \neq 0$. Since $c \cdot a_i \neq 0$, for some $i \in \{n_1, \ldots, n_k\}$, without loss of generality, we can assume that $c \leq a_i$, for some $i \in \{n_1, \ldots, n_k\}$. Let $j \leq i$ be a number such that $\rho_i(g)$ $(j) \neq \rho_i(k)$ (j). Then, $\varphi(c \cdot a_i \cdot u_j) = a_i \cdot u_{\rho_i(g)}(j) \neq a_i \cdot u_{\rho_i(k)}(j) = \psi(c \cdot a_i \cdot u_j)$, hence $c \cdot \varphi(a_i \cdot u_j) \neq c \cdot \psi(a_i \cdot u_j)$. This proves that φ and ψ are relatively-strongly distinct. This ends the proof of our theorem.

Unfortunately, we are not able to simplify this characterization, and we pose this as a question.

Question 1. What is a necessary and sufficient condition, given an increasing sequence (n_1, \ldots, n_k) , for the existence of a group G which transitively embeds into S_{n_1}, \ldots, S_{n_k} .

Even the simplest case of the above question seems unclear to us. We pose it as a separate question.

Question 2. Let $m < n \in N$. When S_m transitively embeddes into S_n ?

Relevant to this question could be the following known facts.

PROPOSITION 1.5. (i) Let $G < S_n$, so that n < |G|. Then G is transitive iff the subgroup $G_1 = \{f \in G : f(1) = 1\}$ (the stabilizer of 1), is of index n in G.

- (ii) If S_m contains a subgroup H of index n, then there exists a transitive embedding of S_m into S_n so that H is the stabilizer of 1.
- (iii) Let $\{p_i | i \in I\}$ be a family of integers, $\sum \rho_i = m$ and x the set of partitions $\langle F_i \rangle_{i \in I}$ such that $|F_i| = p_i$. Then S_m acts transitively on X, and $|X| = m! / \prod_{i \in I} p_i$.

From the first two facts we see that our question is equivalent to the question of existence of a subgroup of S_m of a given index n. A necessary condition is n|m|. (iii) gives a sufficient condition. We could give some partial answers to this question, like giving examples showing that for the pairs (3, 6), (4, 6), (5, 10), (m, m!/2m) for m > 4, such embedings do exist, but we cannot answer the question completely.

REFERENCES

- [1] N. Bourbaki, Algebra, Addison Wesley, Reading Massachusets, 1974
- [2] N. Božović and Ž. Mijajlović, Uvod u teoriju grupa, Naučna knjiga, Beograd, 1982
- [3] N. Jacobson, Basic Algebra I, Freeman, San Francisko, 1982
- [4] S. Koppelberg, On Boolean algebras with distinguished subalgebras, Enseign. Math 28 (1982), 233-252
- S. Koppelberg, Projective Boolean algebras, in: D. Monk, ed., Handbook of Boolean algebras, vol. 3, North Holand, Amsterdam, 1989, pp. 741-775
- [6] D. Monk, Automorphism groups, in: D. Monk, ed., Handbook of Boolean Algebras, vol. 2, North Holand, Amsterdam, 1989, pp. 517-546
- [7] Ž. Perović, Relatively complete 2-extensions of Boolean algebras, Mathematica Balkanica 6(2), (1992), 125-128.
- [8] Ž. Perović, Relatively complete finite extensions of Boolean algebras, Zbornik radova Fil.fak. u Nišu 5 (1992) 169–174.
- [9] Ž. Perović, Galois extensions of Boolean algebras, (to appear)

Filozofski fakultet 18000 Niš Jugoslavija (Received 26 09 1992)