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INTENSIONAL LOGIC WITH DEEP CASES

Marica D. Pre�si�c

Abstract. Deep cases may be treated as a type of unary operations which transform
nouns (or noun phrases) to the corresponding noun case forms. As noun phrases usually occur
in the form of noun cases and as intensional logic is one of the most important logical tools for
the treatment of natural language, it seems reasonable to introduce deep case operations into the
syntax of intensional logic.

In this paper the logic CIL (Case Intensional Logic), an extension of Montague intensional logic IL
[Montague, 1970] is described. The main characteristic of CIL is that operations (2) corresponding
to the deep noun cases are explicitly introduced into its syntax. This logic is very convenient for
translating natural language locutions, particlularly for the languages with free word order. The
role of participant is expressed in an explicit form. Thus the underlying structure, especially
the structure TR (tectogrammatical representation) [Sgall, Haji�cova & Penevova, 1986], is much
more closer to the corresponding intensional logic formula. The idea for such an approach can
be found in inective languages in which deep cases are usually expressed by the corresponding
morpholo�cal forms. We show that such an extension is not unnatural and that the main features
of intensional logic IL are not violated. In the sequel, we develop the syntax and semantics of CIL,
de�ne generalized semantics and, for the given axiomatization, prove the generalized completeness
theorem.

Introduction. Three main lines can be followed in the explanation of
ordinary proper names: denotative [Names are mere labels serving simply to stand for

a person, place or thing, but not to describe them. Thus, names have only detonation and no

sense.], descriptive [Names have both denotation and sense, where sense is determined by some

de�nite description or some set of de�nite descriptions], predicative [Names are a special sort of

unary predicates possessed by a unique individual.]

On the line of denotative approach from Mill [1843] to Kripke [1979] proper
names have only denotation and no sense. Thus there is a sharp distinction between
names and de�nite description [which in praxis is sometimes not so easy to draw]. In Zi�'s
view [Zi�, 1960] proper names are in some sense not even part of the language. For
Kripke they are 'rigid designator' having the same reference in all possible worlds
[which in the real world may be �xed by means of a de�nite description]; the semantic account
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of names is supplemented by causal explanations of the pragmatics of naming, by
the chain of communication which goes back to the individual designated by the
name in an initial `baptism'.

A typical classi�cation of the roles which an individual, denoted by a proper
name may play in the real or some possible world is the one made on the basis of
deep cases [Fillmore, 1968 and Sgall, Haji�cova & Penevova, 1986]. Thus for the
individual named Peter we can talk about:

� Situations in which Peter is an actant,

� Situations in which Peter is an objective,

� Situations in which Peter is an addressee,. . .

And so fort, running over all the deep cases. Which and how many of these
situations are taken into account for the identi�cation of Peter, depends on the
corresponding approach to proper names.

The line of descriptive approach has several directions. Frege [1892] regards
proper names as having sense as well as reference, and equates the sense of an
ordinary name with the sense of a de�nite description referring to the same object.
And the cosignative de�nitive description is one that the speaker has in mind or
happens to know. Russell [1905, 1956], like Frege identi�es the meaning of ordinary
proper names with the meaning of some relevant de�nite description [although his

view of meaning and his explanation of de�nite description di�ers from Frege's]. Again the
meaning of the name is variable between speakers. This diÆculty could be avoided
by identifying the meaning of the name with the set of all descriptions true of the
bearer. Wittgenstein in his Philosophische Untersuchungen [1953] suggested that
rather than a �xed meaning a name has instead some sort of unequivocal, fuzzy
meaning and is loosely associated with a set of descriptions of its bearer.

Similar to classi�cation of situations all de�nite descriptions related to a prop-
er name can be classi�ed according to the corresponding deep cases. Thus, for
somebody named Peter the related classi�cation would be for example:

� the man who writes poems, the man who gets up early in the morning, the
man who loves travelling,...

� the man whom people love, the man whom I expect tonight,. . .

� the man to whom somebody gives something, brings something,. . .

And so forth: De�nite descriptions corresponding to the same deep case thus
belong to the same class.

Both classi�cations suggest that one speci�c role (function, portion) of Peter
is relevant and related to each deep case and that these portions di�er from each
other. This is similar to the mathematical examples of a vector and its coordinates,
or a natural number and its prime factors. The vector can be identi�ed by the
sequence of its coordinates and the number by the sequence of the corresponding
exponets of primes.

What the previous discussion suggests is that the name could be determined
by the sequence of its deep cases. This is the idea we would like to develop in this
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paper. Thus the deep cases are treated as operations which project the noun (or
noun phrase) into the corresponding case forms. Suppose that the total number
of deep cases is k and that they are ordered in some given way. The ordering, for
example, in which they usually appear in the underlying structure [Seidlov�a, 1983]:

Actor, Addressee, Objective, Origin, E�ect, Manner,

Directional (from where), Accompaniment, Means, (1)

Directional (which way), Directional (where to), Locative, . . . , Casek

where with Casek the last deep case is denoted. As symbols for deep cases we use
the Roman superscripts:

I; II; III; IV; . . . ;K (2)

corresponding to the standard sequence (1) respectively.

To conclude our discussion we just mention that in accordance with the pred-
icative approach names are in fact reduced to the predicates of the second order
having the property of \being satis�ed for exactly one individual" [Montague, 1973].
This is a typical case of representation, so that the whole classi�cation modulo deep
cases can be reformulated in terms of this speci�c kind of predicates.

1. We now present the logic CIL. Throughout the paper the notation from
Gallin [1975] is adopted. We start with the de�nition of the set T of types of CIL.

Types. Let e1; e2; . . . ; ek; e; t; s be any k + 3 symbols, none of which is an
order pair. T is the smallest set satisfying:

(i) t 2 T , (iii) �; � 2 T imply (�; �) 2 T ,

(ii) e; e1; e2; . . . ; ek 2 T , (iv) � 2 T implies (s; �) 2 T .

Short notation is often used: ��, s� is written instead of (�; �), (s; �).

Primitive Symbols. Same as in Gallin [1975:11] plus the case operations (2).

Terms. To the Gallin [1975:11] de�nition of terms one more line is added:

A 2 Tme implies AI 2 Tme1 ; A
II 2 Tme2 ; . . . ; A

K 2 Tmek (3)

where AI ; AII; . . .AK are terms obtained by means of the operations (2) and they
are called: �rst, second, . . . ;Kth case of A respectively.

Semantics. Let D1; D2; . . .Dk and I be non-empty sets. By a standard frame
based on these sets the indexed family (Ma)�2T of sets is understood, where:

(i) Me1 = D1;Me2 = D2; . . . ;Mek = Dk

(ii) Me = D1xD2x . . . xDk

(iii) Mt = f0; 1g

(iv) M�� =MM�

� = fF jF :M� !M�g

(v) Ms� =M I
� = fF jF : I !M�g

A (standard) model of CIL based on D1; D2; . . . ; Dk and I is a system M =
(M�;m)�2T , where:
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(i) (M�)�2T is a standard frame based on D1; D2; . . . ; Dk and I ,

(ii) m (the meaning function) is a mapping which assigns to each constant c�
of CIL a function from I into M� (an element of M I

�).

The de�nition of assignment over M , the assignment a(x=X) and the set
As(M) of all assignment over M is same as in Gallin [1975:12].

The de�nition of value V M
i;a (A�) in M of the term A� with respect to the index

i and the assignment a is similar to the corresponding Gallin [1975:13] de�nition
but in addition it has the part corresponding to the case operations (2) which reads
[The superscript M has been suppressed]:

Vi;a(A
I
e) = �1(Vi;a(Ae)); . . . ; Vi;a(A

K
e ) = �k(Vi;a(Ae)) (4)

where �1; . . . ; �k designate the projection functions.

As CIL is an extension of IL all valid formulae of IL remain valid in CIL. In
addition, it is easy to prove that the following formulae of CIL are valid:

Ae � Be ! AI � BI ; Ae � Be ! AII � BII; . . . ; Ae � Be ! AK � BK (5)

Ae � Be ! [AI � BI ^ AII � BII ^ . . . ^AK � BK ] (6)

[AI
e � BI

e ^ A
II
e � BII

e ^ . . . ^ A
K
e � BK

e ]! A � B (7)

The de�nitions of modally closed terms, sentencial connectives, quanti�ers and
modal operators are same as those given in Gallin [1975:14{17].

Because the deep case operation are incorporated into the syntax of CIL, this
logic is very convenient for translating the locutions of natural ineced languages.
We give several examples from Serbo-Croatian.

The most important role of deep cases is the role of the verb participants.
Thus verbs are not only relations of the given length: IV unary, TV binary and
so on, but they also are characterized by the deep cases which are required for the
noun phrases to which the verb is applied. In accordance with this, intransitive
verbs are of the grammatical category IV(I),

Transitive verbs like voleti (to love), o�cekivati (to expect), posmatrati (to watch)

are of grammatical category TV(I,III) [for they require an actant and an objective]. In ac-
cordance with the discussion in Materna & Sgall [1983] there are at least two verbs
pisati (to write): one is pisati1 of length four [write something to somebody with something]

and the other is pisati2 of length 3 [to write something with something] . Their grammati-
cal categories would be respectively: TV(I, III, II, IX); TV(I, III, IX). Generally, the
grammatical category of a transitive verb is of the form: TV(R;S; . . . ; T ) where
R;S; . . . ; T are some of the case operation symbols (2), the �rst one being usually
actant. The corresponding type in CIL is then:

et(. . . (es(ert)) . . . )
[r;s;... ;t are natural numbers corresponding

to the deep cases R;S;... ;T respectively]

Thus the type of voleti [to love] is e3(e1t) and types of pisati1, pisati2 are:

e9(e2(e3(e1t))); e9(e3(e1t))
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respectively. Similarly, the type of the verb otvarati [to open something with something]

is e9(e3(e1t)) and the type of the corresponding intransitive verb se otvarati [as

in the sentence: The door opens] is e1t. We note that such treatment of intransitive
verbs is in the spirit of TIL, Transparent Intensional Logic [Tichy, 1980], whereas
in Montague [1973] approach this category is de�ned as IV=T , T being the category
of terms [noun phrases and proper names].

Applying the verb voleti [to love] �rst on the variable x3 of type e3 we obtain
the expression voleti(x3) which is of type e1t, thus an intransitive verb phrase.
Applying it on the variable x1 of type e1 we obtain the formula voleti(x3)(x1),
for which we also use the usual writing: voleti(x1; x3). This formula serves as a
CIL translation of the sentence-scheme: x1 voli x3 [x1 loves x3] . If instead of the
variables x1; x3 the terms xI ; yIII are used [where both x; y are variables of type e] the
corresponding CIL formula reads: voleti (xI ; yIII) which is the translation of the
sentence-scheme: xI voli yIII. Similarly, the translation of the sentence:

Jovan pi�se Ani [John writes to Ann]

would be the following formula of CIL:

(9x)(9y)pisati(jI ; xIII; aII; yIX)

where j; a are the individual constants of CIL corresponding to the proper names
Jovan, Ana respectively. And the translation of the sentence:

Ani Jovan pi�se [To Ann John writes.]

would be the formula:

(9x)(9y)pisati(aII; xIII; jI ; yIX)

in which the verb pisati of category TV(II, III, I, IX) appears and the original word
order of the noun phrases has been preserved which was possible thanks to the deep
case operations.

[It is assumed that the translation into CIL of any word from the lexicon is the same word

unless otherwise stated.]

We recall that in Gallin [1975], following Montague's idea, proper names are
treated as second ordered properties. Thus, the translation of the nth case of Jovan,
for example, would be:

�Pn[Pnfj
Ng] (8)

where Pn is a variable of type s(ent), j is non-logical constant of type e correspond-
ing to Jovan and AfBg stands for [_A](B) [A is of type s(��), B is of type �]. If
we apply this expression to the intransitive verb hodati [which is of type e1t in which

case we chose n = 1], we obtain the formula hodati
�
jI

�
which is a translation of the

sentence: Jovan hoda [John walks]. Similarly, starting from the formula voleti(x1; x3)
and applying � operator on x3 we obtain the expression: �x3 voleti(x1; x3) having
the type e3t.
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We note: If the expression of natural language has the functional form f(g)
then generally, following Montague [1973], the corresponding translation into CIL
is f 0(^(g0)) where f 0 and g0 are the translations of f; g respectively. Thus applying
on the intension of �x3voleti(x1; x3) the translation for Jovan (in the objective
case), we obtain: �P3[P3fj

IIIg](^�x3voleti(x1; x3)), which, by � conversion on P3,
is equivalent to the expression: �x3[voleti(x1; x3)](j

III) and by � conversion on
x3 is equivalent to the formula: voleti(x1; j

III). This formula is a translation of
the sentence-scheme x1 voli Jovana [x1 loves John]. The translation of the verb
phrase voleti Jovana [to love John] is then: �x1voleti(x1; j

III) The translation of the
determiner svaki [every] into CIL is the following:

�Pm[�Qn8x[Pmfx
Mg ! Qnfx

Ng]] (9)

where Pm; Qn are variables of type s(emt), s(ent) respectively, x is a variable of
type e. It is easy to see that every is of the following type:

(s(emt))((s(ent))t)

The idea is that every is usually employed to express the fact that every x which
has a property Pm has also a property Qn. To emphasize the dependence of the
determiner from two deep cases, we use two superscripts and write svakiM;N . To
translate the noun phrase svaki �covek [every man] into CIL we recall that this is in
fact the short form of svaki onaj koji je �covek [every one who is a man] , so that �covek
is in fact the predicate je �covek [is a man] having the type e1t. Bearing this mind
the translation of the nth case of the phrase svaki �covek would be the following:
(svakiI;N )0(^((�covek)0)). Using the translation (9) for svakiI;N , � conversion, valid
formula _^A � A, this expression can be transformed into the following one, of
type (s(ent))t:

�Qn8x [�covek(xI )! Qnfx
Ng]

If we apply the determiner svaki �covek (in nominative) to the verb tr�cati [run] which
is of the category IV(I) we obtain the sentence: Svaki �covek tr�ci [Every man runs]
Translates of this into CIL is the following formula:

(svakiI;I)0(^((�covek)0))(^(tr�cati)0)

which can easily be transformed into the equivalent one:

8x[�covek(xI )! tr�cati(xI )]

Similarly we can translate the following noun phrase, where a is an individual
constant of CIL corresponding to the proper name Ann:

Sve �sto Ana zaradi [Everything which Ann earns]

in which the verb zaraditi [to earn] of category TV(I,III) occurs. Starting from the
sentence zaraditi(aI ; x3) we obtain predicate phrase:

�x3zaraditi(a
I ; x3) [x3 is a variable of type e3]
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which is of type e3t wherefrom applying svakiIII, N it can easily be deduced:

�P3[�Qn8x[P3fx
IIIg ! Qnfx

Ng]](^�x3zaraditi(a
I ; x3))

which is equivalent to:

�Qn8x[(
^�x3zaraditi(a

I ; x3))fx
IIIg ! Qnfx

Ng]

and further equivalent to the expression of type (s(ent))t:

�Qn8x [zaraditi(a
I ; xIII)! Qnfx

Ng]

Applying this to the intension of the predicate phrase b potro�si [b spends] where b
is an individual constant of CIL corresponding to the proper name Bill, we obtain
the expression of type t, i.e. the formula:

�Q38x [zaraditi(a
I ; xIII)! Q3fx

IIIg](^�y3potro�siti(b
I ; y3)

which after several transformations can be reduced to the equivalent formula:

8x[zaraditi(aI ; xIII)! potro�siti(bI ; xIII)]

And this is a CIL translation of the sentence:

Sve �sto Ana zaradi Bil potro�si [Everything which Ann earns Bill spends]

The last example is two readings of the sentence [`de dicto' and `de re']:

Jovan veruje da Ana voli nekog �coveka [John believes that Ann loves a man]

which would translate into the following formulae of CIL:

veruje(j; ^9x[�covek(xI) ^ voleti(aI ; xIII)])

9[�covek(xI ) ^ veruje(jI ; ^[voleti(aI ; xIII)])]

We note that, on the basis of the discussion in Montague [1973] and Gallin [1975],
the intensional verbs like verovati [to believe] are of the category TV(I,t) and the
corresponding type in CIL would be the following: (st)(e1t).

2. In this part of the paper we de�ne generalized semantics, give an axioma-
tization of CIL and prove the generalized completeness theorem.

Generalized Semantics. Let D1; D2; . . .Dk and I be non-empty sets. By a
frame based on these sets the indexed family (Ma)�2T of sets is understood, where:

(i) Me1 = D1;Me2 = D2; . . . ;Mek = Dk

(ii) Me is a non-empty subset of D1xD2x . . . xDk

(iii) Mt = f0; 1g

(iv) M�� is a non-empty subset of MM�

�

(v) Ms� is a non-empty subset of M I
�
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A general model (g-model) of CIL based on D1; D2; . . . ; Dk and I is a system
M = (M�;m)�2T , where:

(i) (M�)�2T is a frame based on D1; D2; . . . ; Dk and I

(ii) m (the meaning function) is a mapping which assigns to each constant c�
a function from I into M�

(iii) There exists a function V M (the value function) which assigns, to each
i 2 I , a 2 As(M), and A� 2 Tm�, a value V M

i;a (A�) 2 M� in such a way as to

satisfy the recursive conditions (1) through (7) on page 13 of Gallin [1975] as well
as the condition (3) of this paper.

The de�nitions of g-model, g-semantical consequence, g-valid formula, g-
satis�able set of formula do not di�er from the corresponding de�nitions in Gallin
[1975: 17-18].

The Theory CIL. This theory is obtained from the corresponding theory of
IL by adding formula (7) as a new axiom. If instead axiom AS4 of IL the Henkin
type schemata AS4.1 through AS4.7 are supposed, for the logic CIL the following
axioms should be added to this list:

AS4:8N (�x�A
N
e )B� � [(�xA)B]N

Also, Rule R can be replaced by the eight rules R1 through R8 of Gallin [1975: 20]
to which the rules:

R9N From Ae � Be to infer AN � BN

are added, where N can be any of the case operations (2).

All metatheorems T1 through T69 proved in Gallin [1975:21-24] remain
metatheorems for CIL.

From the deduction theorem it follows that all formulae (5) are theorems of
CIL. Further, by (5), T11 and tautology [A ! B] ^ [A ! C] ! [A ! B ^ C] we
conclude that (6) is a theorem of CIL. Combining (6) and (7) the theorem below
follows immediately:

Ae � Be  ! [AI � BI ^ AII � BII ^AK � BK ] (10)

The key lemma 3.2 of Gallin [1975: 25-29] together with the given proof can be
completely transferred into the theory CIL. We can now prove the following theo-
rem:

Theorem (Generalized Completeness Theorem for CIL). Let � be any set
of formulae. Then, � is consistent in CIL implies that � is g-satis�able in CIL.

Proof. Supposing � is consistent in CIL we prove that � is g-satis�able in
g-model M = (M�;m)�2T of CIL based on sets D1; D2; . . . ; Dk and I , where I is
denumerable and D1; D2; . . . ; Dk and each domain M� are at most denumerable.
Let � = (�i)i2! be a sequence of sets of formulae satisfying (i) through (vi) of
Lemma 3.2 of Gallin [1975:25]. The relation ' (mod i) between terms of type � is
de�ned by:

A� ' B�(mod i) if and only if [A � B] 2 �i (11)
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where � 2 T , i 2 !. This relation is independent of i 2 ! for variables x; y and in
this case we write x ' y. Let D1; D2; . . . ; Dk be de�ned as:

D1 = Vare1= '; . . . ; Dk = Varek= ' (12)

and I = !. Then I is denumerable and each D1; D2; . . . ; Dk is at most denumer-
able. By recursion on � 2 T , we simultaneously de�ne a set M� and a mapping ��
for Tm� into M I

�, satisfying the following three conditions:

For i; j 2 I; x 2 Var� : ��(x)(i) = ��(x)(j) (13)

For every X 2M� there exists x 2 Var� such that X = ��(x)(i) (14)

For i 2 I; A;B 2 Tm� : ��(A)(i) = ��(B)(i) if and only if A ' B (mod i) (15)

The conditions (13) through (15) are the same as the Gallin [1975] conditions
(1) through (3) on page 31.

� = en(n = 1; 2; . . . ; k): Let Mn = Dn = Varen= ' and de�ne �en as follows:

�en(Aen)(i) = x= ' if and only if A ' x (mod i)

where x is a variable of type en. By theorem T29 such a variable exists and
the de�nition does not depend on the choice of x. In the case A is variable x:
�en(x)(i) = x=', from which it follows that conditions (13) and (14) hold. The
veri�cation of (15) follows immediately.

� = e: Let A 2 Tme. Then AI 2 Tme1 , A
II 2 Tme2 ; . . . ; A

K 2 Tmek .
Suppose that Me1 ;Me2 ; . . . ;Mek and �e1 ; �e2 ; . . . ; �ek have already been de�ned
so that the conditions (13) through (15) hold for e1; e2; . . . ; ek. Firstly, we de�ne
the mapping �e from Tme into (Me1xMe2x . . . xMek )

I as follows:

�e(A)(i) = (�e1 (x
1)(i); . . . ; �ek (x

k)(i)) i� AI ' x1(mod i); . . . ; AK ' xK(mod i)
(16)

where x1 2 Vare1 ; . . . ; x
k 2 Varek . Such variables exist by T29 and the de�nition

does not depend on the choice of sequence (x1; . . . ; xk). We verify the conditions
(13) through (15). To prove (13), suppose A is a variable x 2 Vare. Then for i 2 I
there exist variables y1; . . . ; yk; y1 2 Vare1 ; . . . ; y

k 2 Varek , such that:

xI ' y1(mod i); . . . ; xK ' yk(mod i)

i.e. such that xI � y1; . . . ; xK � yk belong to �i. As these formulae are modally
closed, by T39 it follows that �[xI � y1], �[xK � yk] belong to �i, from which it
follows that xI � y1; . . . ; xK � yk belong to �j for every j 2 I . This yields:

xI ' y1(mod j); . . . ; xK ' yk(mod j); for every j 2 I (17)

By applying de�nition (16) to the variable x by (17) we conclude:

�e(x)(j) = (�e1(y
1)(j); . . . ; �ek (y

k)(j)); for every j 2 I (18)

As condition (13) holds for the variables y1; . . . ; yk, we deduce from (18) �e(x)(i) =
�e(x)(j), for every i; j 2 I , which proves (13).
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To prove (15), let A;B 2 Tme, i 2 I . Then:

A ' B (mod i) implies A � B 2 �i

implies �i ` A � B

implies �i ` A
I � BI ^ . . . ^ AK � BK

(By (5))

implies �i ` A
I � BI ; . . . ;�i ` A

K � BK

implies AI ' BI (mod i); . . . ; AK ' BK (mod i)

implies [AI ' x1 (mod i) i� BI ' x1 (mod i)];

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :

[AK ' xk (mod i) i� BK ' xk (mod i)]

(For any variables x1 2 Vare1 ; . . . ; x
k 2 Varek )

implies [[AI ' x1 (mod i); . . . ; AK ' xk (mod i)]

i� [BI ' x1 (mod i); . . . ; BK ' xk (mod i)]]

implies [�e(A)(i) = (�e1(x
1)(i); . . . ; �ek (x

k)(i))

i� �e(B)(i) = (�e1(x
1)(i); . . . ; �ek (x

k)(i))]

implies �e(A)(i) = �e(B)(i)

We have thus proved:

A ' B (mod i) implies �e(A)(i) = �e(B)(i) (19)

To complete the veri�cation of (15) it suÆces to prove:

�e(A)(i) = �e(B)(i) implies A ' B (mod i) (20)

A proof is the following:

�e(A)(i) = �e(B)(i) implies [�e(A)(i) = (�e1(x
1)(i); . . . ; �ek (x

k)(i));

�e(B)(i) = (�e1(x
1)(i); . . . ; �ek (x

k)(i))]

(For some x1 2 Vare1 ; . . . ; x
k 2 Varek )

implies [AI ' x1(mod i); . . . ; AK ' xk(mod i);

BI ' x1(mod i); . . . ; BK ' xk(mod i)]

implies AI ' BI (mod i); . . . ; AK ' BK(mod i)

implies AI � BI 2 �i; . . . ; A
K � BK 2 �i

implies �i ` A
I � BI ; . . . ;�i ` A

K � BK

implies �i ` A
I � BI ^ . . . ^AK � BK

implies �i ` A � B

(By the axiom (7) and T19)

implies A ' B (mod i)



Intensional Logic with Deep Cases 11

which completes the proof of (20) and thus the proof of (15).

We can now set

Me = f�e(x)(i)jx 2 Vareg �Me1x . . . xMek (21)

which by condition (13) is independent of i 2 I , and the condition (14) will be
satis�ed.

The de�nitions of all other sets M and the corresponding mappings �� are
the same as in Gallin [1975:331-33], as well as the de�nition of V M

i;a . To prove that

V M is a value function in M , it suÆces to prove that condition (4) holds.

Let A 2 Tme, a 2 As(M) and let x0; . . . ; xm�1 be all distinct free variables of
A, having the types �0; . . . ; �m�1. We choose a representing sequence y0; . . . ; ym�1

for A and a, i.e. a sequence satisfying the conditions:

��(y
n)(i) = a(xn) (n = 0; . . . ;m� 1; independent of i 2 I) (22)

yn is free for xn in A (n = 0; . . . ;m� 1) (23)

By de�nition of Vi;a we have:

Vi;a(A) = �(A)(i) = (�e1(z
1)(i); . . . ; �ek (z

k)(i)) (24)

where A is A(y0; . . . ; ym�1) and z1 2 Vare1 ; . . . ; z
k 2 Varek are variables satisfying

the conditions:
AI ' z1(mod i); . . . ; AK ' zk(mod i) (25)

It is obvious that A
I
= AI ; . . . ; A

K
= AK . Thus the conditions (25) become:

AI ' z1(mod i); . . . ; AK ' zk(mod i)

from which we obtain:

�e1

h
AI

i
(i) = �e1(z

1)(i); . . . ; �ek

h
AK

i
(i) = �eK (z

k)(i)

In other words:

Vi;a(A
I ) = �e1(z

1)(i); . . . ; Vi;a(A
K) = �ek (z

k)(i)

which yields:

(Vi;a(A
I); . . . ; Vi;a(A

K)) = (�e1(z
1)(i); . . .�ek (z

k)(i)) (26)

Using (24) and (26) we conclude that condition (4) is satis�ed. This completes the
proof that M is a g-model of CIL. If a 2 As(M) is de�ned by:

a(x�) = ��(x)(i) (independent of i)

then for any formula A of CIL we have:

M; i; a sat A i� A 2 �i
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Since � � �o, it follows that:
M; 0; a sat �

which completes the proof of the Theorem.
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