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STRONGLY QUASICONVEX QUADRATIC FUNCTIONS

Milan V. Jovanovi�c

Abstract. A quadratic function is quasiconvex in Rn if and only if it is convex [3].
However, this is not true in Rn

+
. We prove that a quadratic function is strongly quasiconvex in a

convex cone K (0 2 K, intK 6= ;) if and only if it is strongly convex.

1. Introduction. Let C be a nonempty convex subset of the Euclidean
n-space Rn. For x; y 2 Rn we denote by hx; yi =

P
n

i=1 xiyi the scalar product,

and by kxk =
p
hx; xi the norm of x. If x; y 2 Rn, then x � y means that xi � yi

for all i = 1; n. We write Q � 0 for a real matrix Q of order n if all its entries are
non-positive. Q < 0 means Q � 0 and Q 6= 0.

De�nition 1. [4] A real valued function f is said to be strongly convex on C
if there exists some real number r > 0 such that for each x; y 2 C and � 2 [0; 1]

f(�x+ (1� �)y) � �f(x) + (1� �)f(y)� r�(1� �)kx� yk2: (1)

De�nition 2. [2,5] A function f : C ! R is strongly quasiconvex on C if
there exists an s > 0 such that for any x; y 2 C, � 2 [0; 1]

f(�x+ (1� �)y) � max
n
f(x); f(y)

o
� s�(1� �)kx� yk2: (2)

If r = 0 in (1), then f is convex, and if s = 0 in (2), then f is quasiconvex.

Let rf(x) and r2f(x) denote the gradient and the Hessian of f at x. The
following theorem will be useful.

Theorem 1. A continuously di�erentiable function f : C ! R is strongly

quasiconvex if and only if there exists an s > 0 such that

f(x) � f(y)) hrf(y); y � xi � skx� yk2: (3)

This is a particular case of Theorems (1) and (6) from [6].
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Theorem 2. [4] A twice di�erentiable function f : C ! R is strongly

convex on C (intC 6= ;) if and only if there exists an r > 0 such that

(8x 2 C)(8v 2 Rn)hr2f(x)v; vi � rkvk2: (4)

Remark. Clearly, every (strongly) convex function is (strongly) quasiconvex.
The function f(x) = x is strongly quasiconvex on [0, 1], but not strongly convex.

2. (Strongly) quasiconvex quadratic functions. Let q(x) = 1
2 hQx; xi+

hp; xi be a quadratic function of x 2 Rn (Q is a symmetric real matrix of order
n; p 2 Rn). It is well known that q is convex on any C (intC 6= ;) if and only
if Q is a positive semide�nite matrix, and q is strongly convex if and only if Q is
a positive de�nite matrix (by Theorem 2). A criterion for the quasiconvexity of a

quadratic function on Rn
+ = fx 2 Rn

��� x � 0g was given by Martos:

Theorem 3. [3, p.150] A nonconvex quadratic function q is quasiconvex in

Rn
+ if and only if

Q < 0 and p � 0: (5)

Q has exactly one negative eigenvalue. (6)

(9v 2 Rn) p = Qv ^ hp; vi � 0: (7)

This was extended in [1]. We shall mention here a necessary condition for
quasiconvexity of a nonconvex quadratric function on a convex cone. Let C0 be the

polar cone of a set C, i.e. C0 = fv 2 Rn

��� (8x 2 C) hv; xi � 0g and let ui = Uei,

i = 1; n, where U is an orthogonal matrix such that U tQU is diagonal, while ei is
a unit vector.

Theorem 4. [1] Let a nonconvex quadratic function q be quasiconvex on a

convex cone K with nonempty interior. Then

(8x 2 K) Qx 2 K0; (8)

either ui 2 K0; or � ui 2 K0; (9)

p 2 K0; (10)

(8v 2 Rn) Qv = p) hp; vi � 0: (11)

From a practical point of view, it is more diÆcult to recognize quasiconvexity
than convexity. It is, therefore, useful to know when the classes of the functions
mentioned above are identical. So, in [3, p.147] Martos proved that q is quasiconvex
in Rn if and only if it is convex in Rn. However, there are quadratic functions
quasiconvex in Rn

+ but not convex, for example q(x) = �x1x2 (x 2 R2
+).
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We shall prove that q is strongly quasiconvex on a convex cone K (0 2 K,
intK 6= ;) if and only if q is strongly convex. In the proof we shall need the result
given in the following Lemma.

Lemma. Let C (intC 6= ;) be an unbounded convex set in Rn and suppose

that f : C ! R is bounded above in C. Then f is not strongly quasiconvex on C.

Proof. For some �xed x0 2 intC there exists a nonzero vector z such that
fx0 + �z

�� � � 0g � intC. Assume that (2) holds. Let xn = x0 + nz, n 2 N . We
have xn 2 C and

f(x1) = f((1�
1

n
)x0 +

1

n
(x0 + nz))

� max
�
f(x0); f(xn)

	
� s

1

n
(1�

1

n
)kx0 � xnk2; i.e.;

s(n� 1)kzk2 � sup
C

f � f(x1) for each n > 1;

which contradicts s > 0. Thus our assumption is false and f is not strongly
quasiconvex.

Let K be a convex cone such that 0 2 K � Rn and intK 6= ;.

Theorem 5. A quadratic function q is strongly quasiconvex on K if and

only if q is strongly convex.

Proof. We show that strong quasiconvexity implies strong convexity. The
converse is obvious. Supposse that q is a strongly quasiconvex function. If q is
not convex, by (8) and (10) we have hQx; xi � 0 and hp; vi � 0, so that q(x) � 0
for each x 2 K. This is impossible by Lemma. Therefore (8v 2 Rn)hQv; vi � 0.
Suppose now that 0 is eigenvalue from Q; then there exists a nonzero vector v0

such that Qv0 = 0. Since 0 2 K and intK 6= ;, we have K �K = Rn.

Hence there are v1; v2 2 K such that v0 = v1 � v2 and hQv1; v0i =
hv1; Qv0i = 0, hQv2; v0i = 0, Now q(v1) � q(v2) or q(v2) � q(v1) implies
hp;�v0i � skv0k2 or hp; v0i � skv0k2, by (3). Since q(v1) � q(v2) = hp; v0i we
get skv0k2 � jhp; v0ij � kpk kv0k, i.e., kv0k � kpk=s. Replacing v0; v1; v2 by
�v0; �v1; �v2 � > 0, (since K is cone), we obtain (8� > 0) � � kpk=skv0k; it is
impossible. Hence Q has positive eigenvalues, so that q is strongly convex.

Remark. Particulary, strong quasiconvexity of q on Rn
+ is equivalent to strong

convexity. This is not true for C � Rn
+. For example, q(x) = �x2 � x is strongly

quasiconvex on [0; 1], but is not even convex.

REFERENCES

[1] �S. Komlo�si, Obob�s�cenaja vypuklost' nekotorogo klassa kvadrati�cnyh funkcij , Izv. Vuz-ov
Mat. 9(1984), 38-43.

[2] A.I. Korablev, O relaksacionnyh metodah minimizacii psevdovypuklyh funkcij , Issled. Prikl.
Mat. Kazan 8(1980), 3-8.

[3] B. Martos, Nonlinear Programming, Akademiai Kiado, Budapest, 1975.



156 Milan V. Jovanovi�c

[4] B.T. Poljak, Teoremy su�s�cestvovanija i shodimost' minimiziruju�s�cih posledovatel'nostej
dlja zada�c na ekstremum pri nali�cii ograni�cenij , Dokl. AN SSSR 166(1966), 287-290.

[5] J-P. Vial, Strong convexity of sets and functions, J. Math. Economy 9(1982), 187-205.

[6] A.A. Vladimirov, Ju.E. Nesterov, Ju.N. �Cekanov, O ravnomerno kvazivypuklyh funkcionalah,
Vestn. Mosk. un-ta, vy�cis. mat. i kibern. 4(1978), 18-27.

Elektrotehni�cki fakultet (Received 04 08 1992)
78000 Banja Luka
Bosna i Hercegovina


