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THE SPECTRAL APPROXIMATION

FOR THE SHOCK LAYER PROBLEMS

Nevenka Z. Ad�zi�c

Abstract. The paper is concerned with a singularly perturbed boundary value problem,
having single turning point. The solution is represented as a sum of the reduced solution and
the layer function, which is approximated by the truncated orthogonal series. The domain of the
layer function is obtained by the use of numerical layer length, depending on the perturbation
parameter and degree of the spectral approximation. The approximate error function, constructed
upon the layer subinterval, provides the error estimate. A numerical example is included.

1. Introduction. This paper will be concerned with the singularly per-
turbed boundary value problem

Ly(x) � �"2y00(x)� 2xp(x)y0(x) + p(x)q(x)y(x) = 0; x 2 [�1; 1] (1.1)

y(�1) = A; y(1) = B; (1.2)

where " > 0 is a small parameter, p(x); q(x) 2 C2[�1; 1]; A;B 2 R and p(x) > 0
for x 2 [�1; 1]. It is well known that the solution of the problem (1.1), (1.2) has a
single turning point at x = 0. The asymptotic behavior of the solution is given in
[1] by the following theorem:

Theorem 1. Let p(x) > 0 for all x 2 [�1; 1] and q(0) 6= �2n; n = 1; 2; . . . .
Then, for the solution of the problem (1.1), (1.2) it holds

y(x) =

8><
>:

yL(x) +O("2) �1 � x < 0

O("k); k = q(0)=2 x = 0

yD(x) +O("2); 0 < x � 1;

(1.3)

where yL(x) is the left solution of the reduced problem

�2xp(x)y0L(x) + p(x)q(x)yL(x) = 0; yL(�1) = A; (1.4)

and yD(x) is the right solution of the reduced problem

�2xp(x)y0D(x) + p(x)q(x)yD(x) = 0; yD(1) = B: (1.5)
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A proof of this theorem is given in [1].

From (1.3) we can conclude the following: a) If q(0) > 0, then y(0)! 0 when
" ! 0 and yL(0) = yD(0) = y(0). This case is known as "corner layer" problem.
b) If q(0) < 0, then y(0)! +1. c) If q(0) = 0 and y(�1) 6= y(1), than we have
nonuniform convergence and

y(0)! (y(�1) + y(1))=2 = (yL(0) + yD(0))=2: (1.6)

This case is known as the "shock layer" problem.

Our aim is to construct the approximate solution for the problem (1.1), (1.2)
in the case c), that is with the additional assumptions A 6= B and q(0) = 0, by
using spectral methods.

Transformation of the problem. We are going to search for the solution
of the problem (1.1), (1.2) in the form

y(x) =

�
yL(x) + u(x); x 2 [�1; 0]
yD(x) + v(x); x 2 [0; 1];

(2.1)

where yL(x) is left reduced solution, obtained from (1.4), and u(x) satis�es the
di�erential equation

Lu(x) � �"2u00(x)� 2xp(x)u0(x) + p(x)q(x)u(x)

= "2y00L(x);
(2.2)

x 2 [�1; 0] and the boundary conditions

u(�1) = y(�1)� yL(�1) = 0;

u(0) = A0 = y(0)� yL(0) = (yD(0)� yL(0))=2:
(2.3)

(For the right-hand boundary conditions we have used (1.6).) In the same way,
yD(x) is right reduced solution, obtained from (1.5), and v(x) satis�es the di�er-
ential equation

Lv(x) � �"2v00(x)� 2xp(x)v0(x) + p(x)q(x)v(x)

= "2y00D(x);
(2.4)

x 2 [0; 1] and the boundary conditions

v(0) = B0 = (yL(0)� yD(0))=2; v(1) = y(1)� yD(1) = 0: (2.5)

The �rst step is to approximate functions u(x) and v(x) by

�

u(x) =

�
0 x 2 [�1;�Æ]
w(x) x 2 [�Æ; 0]

�

v(x) =

�
z(x) x 2 [0; Æ]

0 x 2 [Æ; 1]
(2.6)

where Æ > 0 is so called "numerical layer lenght", which will be determined later.
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All further investigations will be carried out for the interval [0; 1], and the
investigations for x 2 [�1; 0] are similar. The function z(x) represents a solution
of the boundary value problem

Lz(x) � �"2z00(x)� 2xp(x)z0(x) + p(x)q(x)z(x) = "2y00D(x); x 2 [0; Æ] (2.7)

z(0) = B0; z(Æ) = 0: (2.8)

Our aim is to approximate the layer function z(x) by a truncated orthogonal series
according to some orthogonal polynomial basis de�ned on [�1; 1]. Intending to
construct the spectral approximation for z(x) we must, at �rst, transform the
iterval [0; Æ] into [�1; 1] using the substitution x = Æ(t + 1)=2. Thus (2.7), (2.8)
become

LÆZ(t) � ��2Z 00(t)� 2P (t)Z 0(t) +R(t)S(t)Z(t) = G(t); t 2 [�1; 1] (2.9)

Z(�1) = B0; Z(1) = 0; (2.10)

where we denoted

Z(t) = z(Æ(t+ 1)=2); � = 2"=Æ; P (t) = (t+ 1)R(t);

R(t) = p(Æ(t+ 1)=2); S(t) = q(Æ(t+ 1)=2);

G(t) = "2y00D(Æ(t+ 1)=2):

(2.11)

3. Orthogonal projecting. Let �n denote the projecting operator such
that

�n : Z(t)! Zn(t) =

nX
k=0

akQk(t); (3.1)

where fQk; k = 0; . . . ; ng are classical orthogonal polynomials on [�1; 1] with
respect to the weight function p(t) = (1� t)r(1+ t)s, r = B(1)=2, s = �B(�1)=2.
Here, B(t), is linear function in the di�erential equation

(1� t)2Q00

k(t) + B(t)Q0

k(t) + �kQk(t) = 0; �k = k(k � 1�B0(0))

which determines Qk(t). The inner product and the norm are de�ned by

(f; g) =

Z 1

�1

f(t)g(t)p(t)dt; kfk2 = (f; f):

It is well known that all classical orthogonal polynomials satisfy Bonnet's recurrent
relation

Qk+1(x)� (�kx+ �k)Qk(x) + kQk�1(x) = 0; k = 1; 2; . . . ;

Q0(x) = 1; Q1(x) = x;
(3.2)

where �k; �k and k are constants depending on the chosen basis.

So, when speaking of the spectral approximation for the solution Z(t) of the
problem (2.9), (2.10), we, in fact, want to �nd its orthogonal projection in terms of
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the de�nition (3.1). If we denote by Pn the space of all real polynomials of degree
up to n, then we ask for Zn(t) 2 Pn, such that

Zn(�1) = B0; Zn(1) = 0; and (3.3)

(��2Z 00

n � 2PZ 0

n +RSZn;W ) = (G;W ) for each W 2 Pn�2 (3.4)

when we use � - method, or

��2Z 00

n(ti)� 2P (ti)Z
0

n(ti) +R(ti)S(ti)Zn(ti) = G(ti);

ti = cos i�=n; i = 1; . . . ; n� 1
(3.5)

when we use collocation method.

4. Numerical layer length. Numerical layer length has to be deter-
mined in such a way that it depends on the caracter of the boundary layer, i.e.
parameter " and on the chosen spectral approximation, i.e. degree n. So we are
going to determine the layer interval [0; Æ] upon which the unknown solution, in the
neighbourhood of the layer point x = 0, resembles some n-th degree parabola that
satis�es given boundary conditions. This leeds to the following:

De�nition 1. The resemblance function for the "shock layer" problem, upon
the subinterval [0; Æ] is pn(x) 2 Pn, such that 1Æ pn(x) satis�es given boundary
conditions. 2Æ x = Æ is a stationary point for pn(x). 3Æ pn(x) is concave for
yL(0) > yD(0), and convex for yL(0) < yD(0).

Lemma 1. The n-th degree parabola

pn(x) = a(Æ � x)n=Æn; a = (yL(0)� yD(0))=2; n � 2 (4.1)

is the ressemblance function for the problem (2.7), (2.8).

Proof. We have to verify the conditions in De�nition 1.

1Æ pn(0) = a = (yL(0) � yD(0))=2 = B0 = z(0), by using (2.5) and (2.8), and
pn(Æ) = 0 = z(Æ).

2Æ p0n(x) = �an
Æ

�
Æ�x
Æ

�n�1
; n � 2, which gives p0n(Æ) = 0.

3Æ From p00n(x) = an(n�1)
Æ2

�
Æ�x
Æ

�n�2
; n � 2; x 2 [0; Æ] we can see that

sgn p00n(x) = sgn pn(x) = sgn a, which is positive if yL(0) > yD(0), and
negative if yL(0) < yD(0).

De�nition 2. The numerical layer length Æ = Æ(n; ") is a positive num-
ber for which the resemblance function satis�es given di�erential equation in the
neighbourhood of the layer point.

Theorem 2. The numerical layer lenght for the problem (2.7), (2.8) is

Æ = "

s
an(n� 1)

2ap(0)� "2y00D(0)
(4.2)
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Proof. Substituing pn(x), determined by (4.1), into (2.7) we obtain

�"2an(n� 1)

Æ2
�Æ � x

Æ

�n�2
+2xp(x)

an

Æ

�Æ � x

Æ

�n�1
+ p(x)q(x)a

�Æ � x

Æ

�n
= "2y00D(x):

At the neighbourhood point x = Æ=n of the layer point x = 0 this will give

�"2an(n� 1)

Æ2
�
1� 1

n

�n�2
+2p

� Æ
n

�
a
�
1� 1

n

�n�1
+ p
� Æ
n

�
q
� Æ
n

�
a
�
1� 1

n

�n
= "2y00D

� Æ
n

�
:

For suÆciently large n we have: p(Æ=n) � p(0), q(Æ=n) � q(0) = 0 and (1 �
1=n)n�i � 1 for i = 0; 1; 2; so �"2an(n � 1)=Æ2 + 2p(0)a = "2y00D(0) which gives
(4.2). As p(x) > 0 and " > 0 is suÆciently small, the existence of the square root
in (4.2) is always provided.

5. Construction of the spectral approximation When we want to �nd
the appriximate solution on the "shock layer" problem using spectral approxima-
tion, at the �rst step, by the use of Theorem 2, we have to determine the numerical
layer length, and, then, to approximate the given problem by using (2.1) - (2.8), so
that we �nally come to the boundary layer problem (2.9), (2.10). The third step is
to determine the coeÆcients ak; k = 0; . . . ; n of its spectral solution

Zn(t) =

nX
k=0

akQk(t): (5.1)

Remark 1. As the original interval [0; Æ] for the problem (2.7), (2.8) is small,
it is suÆcient of approximate the coeÆcients in the di�erential equation (2.7) by
constants obtained for x = Æ=2. The error of such an approximation is of order
O(Æ), which does not e�ects signi�cantly the accuracy of the practical calculations.
We shall, also, approximate the right-hand side of the di�erential equation (2.9) by
the appropriate orthogonal series

G(t) �
nX

k=0

gkQk(t): (5.2)

Theorem 3. The coeÆcients of the spectral solution of the problem (2.9),
(2.10), obtained using �-method, represent the solution of the system

nX
k=0

akQk(�1) = B0;

nX
k=0

akQk(1) = 0 (5.3)

(��2cj + P (0)bj)

nX
k=0

ak +R(0)0S(0)aj = qj ; j = 0; . . . ; n� 2; (5.4)

where, �, P (t), R(t) and S(t) are determined by (2.11) and cj and bj are coeÆcients

in the orthogonal representations

Q0

k(t) =

k�1X
i=0

biQi(t); Q00

k(t) =

k�2X
i=0

ciQi(t): (5.5)
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Proof. The derivatives Q0

k(t) and Q00

k(t), being the polynomials of n� 1 and
n� 2 degree, can be represented exactly as linear combinations of the elements of
the chosen orthogonal basis by (5.5). Introducing (5.1) and (5.2) into (3.3) and
(3.4), according to Remark 1, we obtain

� �2
nX

k=0

ak(Q
00

k ;W )� 2P (0)

nX
k=0

ak(Q
0

k;W ) +R(0)S(0)

nX
k=0

ak(Qk;W )

=

nX
k=0

gk(Qk;W ):

If we make use of (5.5) and choose W = Qj , j = 0; . . . ; n� 2, we shall have

� �2
nX

k=0

ak

k�2X
i=1

ci(Qi; Qj)� 2P (0)

nX
k=0

ak

k�1X
i=1

bi(Qi; Qj)

+R(0)S(0)
nX

k=0

ak(Qk; Qj) =
nX

k=0

qk(Qk; Qj); j = 0; 1; . . . ; n� 2:

According to the orthogonality relation (Qi; Qj) = kQjk2Æi;j , where Æi;j is Kro-
necker Æ - symbol, we �naly get

��2
nX

k=0

akcjkQjk2 � 2P (0)

nX
k=0

akbjkQjk2 +R(0)S(0)ajkQjk2 = gjkQjk2

that can be written down as (5.4). The two more equations (5.3) are obtained
directly from the boundary conditions by using (3.3).

Theorem 4. The coeÆcients of the spectral solution of the problem (2.9),
(2.10), obtained by using collocation method, represent the solution of the system

nX
k=0

fk;iak = hi; i = 0; . . . ; n; (5.6)

with

fk;0 = Qk(�1); fk;n = Qk(1); k = 0; . . . ; n; h0 = B0; hn = 0 (5.7)

fk;i =� �2Q00

k(ti)� 2P (ti)Q
0

k(ti) +R(ti)S(ti)Qk(ti);

hi =G(ti); ti = cos i�=n; i = 1; . . . ; n� 1:
(5.8)

Proof. The coeÆcients (5.7) of the �rst and the last equation of the system
(5.6) are obtained directly from (3.3), and the coeÆcients (5.8) of the other n� 1
equations from (3.5).

Remark 2. The values for Qk(ti) and its derivatives are evaluated recurrently
by the use of Bonnet's relation (3.2).
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Remark 3. In the same way we can �nd the spectral approximation for
w(x), x 2 [�Æ; 0]. In this way we have constructed the approximate solution to the
problem (1.1), (1.2) in the form

yn(x) =

�
yL(x) + wn(x); x 2 [�Æ; 0]
yD(x) + zn(x); x 2 [0; Æ];

(5.9)

with
zn(x) = zn(Æ(t+ 1)=2) = Zn(t): (5.10)

6. The error estimate. Out of the boundary layer, according to (2.1) and
(2.6), using (1.3), we have the error estimates

d(x) = jy(x) � yL(x)j � CL"
2; x 2 [�1;�Æ] (6:1)

d(x) = jy(x) � yD(x)j � CD"
2; x 2 [Æ; 1]: (6:2)

In order to estimate the error upon the layer subinterval [0; Æ] we have to start from

d(x) = jy(x)� yn(x)j = jv(x) � zn(x)j � jv(x) � z(x)j+ jz(x)� zn(x)j (6.3)

and prove the following lemma:

Lemma 2. For the solutions v(x) and z(x) of the problems (2.4), (2.5) and
(2.7), (2.8), with the additional assumption q(x) � 0 for x 2 (0; Æ], we have

d0(x) = jv(x) � z(x)j � jC0j = jy(Æ)� yD(Æ)j; x 2 (0; Æ]: (6.4)

Proof. It is well known that the assumption xp(x) > 0 for x 2 (0; 1], as " is
suÆciently small, garanties inverse monotonicity of the solutions to the problems
(2.4), (2.5) and (2.7), (2.8). Starting from

Lv(x) � �"2v00(x)� 2xp(x)v0(x) + p(x)q(x)v(x) = "2y00D(x); x 2 (0; Æ]

v(0) = B0; v(Æ) = y(Æ)� yD(Æ)

and substracting from it (2.7), (2.8), we obtain

L(v(x) � z(x)) � �"2(v(x) � z(x))00 � 2xp(x)(v(x) � z(x))0

+ p(x)q(x)(v(x) � z(x)) = 0

v(0)� z(0) = 0; v(Æ) � z(Æ) = y(Æ)� yD(Æ) = C0

(6.5)

By the principle of inverse monotonicity this gives

v(x) � z(x) � 0 if C0 � 0 and v(x) � z(x) � 0 if C0 � 0:

If C0 > 0, for the function S(x) = u(x)� v(x)� C0, by using (6.5), we get

LS(x) � �"2S00(x)� 2xp(x)S0(x) + p(x)q(x)S(x) = �p(x)q(x)C0;

S(0) = �C0; S(Æ) = 0:
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Again, by the principle of inverse monotonicity we conclude that S(x) � 0, i.e.
v(x) � z(x) � C0.

If C0 < 0, by using �S(x) instead of S(x), in the same manner we can
conclude v(x) � z(x) � C0. These two conclusions together give (6.4).

As there is no exact method for the error estimate in the case of spectral
approximations, we are going to use an approximate error estimate proposed in [4].
It is known that if n ! 1, then the spectral approximation (5.10) tends to the
exact solution z(x) of the problem (2.7), (2.8). Thus, it is necessery to increase n
until the values for the coeÆcients ak, evaluated for (n � 1)-st and n-th degree of
the spectral approximation, become suÆciently close. Then we can suppose that
z2n(x) suÆciently well approximates the exact solution and we can write

jz(x)� zn(x)j � jz2n(x)� zn(x)j = dn(x) (6.6)

This �naly gives:

Theorem 5. For the error of the approximation (5.9) to the solution of the

problem (1.1), (1.2), upon the layer subinterval (0; Æ], the following estimate holds:

d(x) = jy(x)� yn(x)j � C"2 + dn(x): (6.7)

Proof. We shall use the inequality (6.3). The �rst term is estimated by
(6.4), and this, according to (6.2) gives jv(x) � z(x)j � CD"

2. The second term is
estimated by (6.6), which together gives (6.7).

7. Numerical example We shall construct an approximate solution to the
problem

�"2y00(x) � xy0(x) = 0; x 2 [�1; 1]; y(�1) = 0; y(1) = 2;

with the exact solution

y(x) = 1 +
erf x=("

p
2)

erf 1=("
p
2)

Left reduced solution is yL(x) = 0, and right reduced solution is yD(x) = 2. The
approximate solution upon the layer interval is constructed in the form

yn(x) =

�
wn(x); �Æ < x < 0

2 + zn(x); 0 < x < Æ

where zn(x) is the spectral approximation to the solution of the problem

�"2z00(x) � xz0(x) = 0; x 2 [0; Æ]; z(0) = �1; z(Æ) = 0:

The division point Æ, obtained by (4.2) is Æ = "
p
2n(n� 1):

In the following tables we give the values of exact error and the error estimate
for several points from the interior layer, for x > 0. The results for x < 0 are the
same.
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