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ON THE CONTINUITY OF INTERNAL FUNCTIONS

Hermann Render

Abstract. A modi�cation of the S-continuity is studied. Our concept clari�es the rela-
tionship between S-continuity and almost S-continuity introduced by N. Vakil. Moreover we give
a standard description of almost S-continuity of a standard family of internal functions solving a
problem posed by N. Vakil.

Introduction and Terminology. Let (X;U) and (Y;V) be uniform spaces
and let x; y be elements in the nonstandard model �X . As usual, y � x is de�ned
to mean that (x; y) 2 �U for every U 2 U and �[x] := fy 2 �X : y � xg is called
the monad of x 2 �X . The union of all monads �[�x] with x 2 X is the set ns �X of
all nearstandard points. Let f : �X ! �Y be an internal function. Recall that f is
S-continuous at x 2 �X if for every y 2 �X with y � x we have f(y) � f(x). It is
a matter of fact that this concept is too restrictive for non-locally compact spaces.
We discuss the following modi�ed notion: let M be an arbitrary subset of �X . Call
f to be M -continuous if y � x with y; x 2 M implies f(y) � f(x). Obviously f is
�[x]-continuous [ns �X-continuous resp.] if and only if f is S-continuous at x 2 �X

[at each x 2 X resp.]. We call f strongly M -continuous if for every a 2 M; V 2 V
there exists U 2 U such that (�x; a) 2 �U implies (f(�x); f(a)) 2 �V for all x 2 X .
The last de�nition is due to N. Vakil who called f to be almost S-continuous on
M . The reason for adopting a new notion is the simple result that strong M -
continuity implies M -continuity. The �rst section contains general results about
the relationship between the M -continuity and the strong M -continuity. In the
second section we prove the main result characterizing almost S-continuity of a
standard family. We always assume that the nonstandard model is polysaturated.

1. Strong M-continuity. Recall that pnsX := \U2U [x2X
�U [x] is the

set of all prenearstandard points of X . It is obvious that the condition of strong
continuity is trivially satis�ed for each a 2 �X n pns �X . Hence we should restrict
ourselves to the case that M � pns �X . By �X we denote the set f�x : x 2 Xg.

Proposition 1.1 Let M � pnsX. If f : �X ! �Y is strongly M-continuous,

then it is M-continuous. If M is closed under the operation �, then the converse

is also true.
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Proof. Let y1; y2 2 M with y1 � y2 and let V 2 V . Choose V1 symmetric
with V1 Æ V1 � V . Then there exists U 2 U such that (�x; yi) 2

�U implies
(f(�x); f(yi)) 2

�V1 for all x 2 X . Choose x1; x2 2 X with yi 2
�U [xi]. Then

(f(y2); f(y1)) 2
�V1 Æ

�V1 �
�V . For the converse let a 2M and V 2 V . Since M is

closed under � the following statement is true: (8x 2 �X)(x � a) (f(a); f(x)) 2
�V ). Then I := fx 2 �X : (f(a); f(x)) 2 �V g and Ua := fx 2 �X : (a; x) 2 �Ug
are internal sets satisfying the relation \U2UUa � I . By a saturation argument
there exists Ua with Ua � I . Hence there exists U 2 U such that (a; x) 2 �U

implies (f(a); f(x)) 2 �V .

Corollary 1.2 Let g:X ! Y be a function. Then the following assertions

are equivalent:

a) g is continuous. b) �g is ns �X-continuous.

c) �g is strongly ns �X-continuous. d) �g is strongly �X-continuous.

Proof. a) ) b) follows from the nonstandard characterization of continuity,
Proposition 1.1 yields b ) c), and c) ) d) is trivial. d) ) a) is an immediate
consequence of the de�nition of strong continuity and the transfer principle.

In general the converse in Proposition 1.1 is not true as the example 2.4 in
[8] (with M := �X) or the example after Proposition 2.3 in [6] shows where M is
equal to the set cpt �X of all compact points, i.e. the union of all �K with K � X

compact. Nonetheless there exists a topological property de�ned in [3] assuring a
converse in Proposition 1.1.

De�nition 1.3 Let X be a topological space and � be a family of subsets of
X . De�ne �pts �X := [A2�

�A. We call X an �-space if a set U � X is open if and
only if U \A is open in every subspace A 2 � endowed with the relative topology.

If k is the family of all compact subsets we obtain in 1.3 the well known
de�nition of a k-space or compactly generated space. Every locally compact and
every metric space is a k-space, cf. [9, p. 285].

Theorem 1.4 Let X be an �-space and �pts �X � ns �X. Then an internal

function f : �X ! �Y with f(�X) � ns �Y is strongly �pts �X-continuous if and

only if f is �pts �X-continuous.

Proof. For every x 2 X we have by assumption f(�x) 2 ns �Y , hence there
exists y 2 Y with f(�x) � y =: h(x). It is easy to see that h is continuous on every
set A 2 �. Since X is an �-space h is continuous on X and therefore �h is strongly
ns �X-continuous. It follows that f(x) � �h(x) for all x 2 �pts �X . By Proposition
1.5 b) ) a) f is strongly �pts �X-continuous.

Proposition 1.5 Let f; h: �X ! �Y be internal functions with f(�x) �
h(�x) for all x 2 X. If M � pnsX then the following assertions are equivalent:

a) f and h are strongly M -continuous.

b) f(x) � h(x) for all x 2M and h is strongly M -continuous.

Proof. a) ) b). Let a 2 M and V 2 V . Since f; h are strongly M -
- continuous there exists U 2 U such that (�x; a) 2 �U implies (f(�x); f(a)) 2 �V
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and (h(�x); h(a)) 2 �V . As M � pnsX there exists x 2 X with (�x; a) 2 �U .
Using (h(�x); f(�x)) 2 �V we obtain (h(a); f(a)) 2 �V �1 Æ �V Æ �V . As this holds
for every V 2 V we infer b). For the converse let a 2 M and V 2 V . Choose
U 2 U such that (�x; a) 2 �U imply (h(�x); h(a)) 2 �V . But (f(�x); h(�x)) 2 �V

and (h(�x); h(a)) 2 �V and (h(a); f(a)) 2 �V ; thus (f(�x); f(a)) 2 V Æ V Æ V for
all x 2 X with (�x; a) 2 �U .

In [8] N. Vakil has given a description of the nearstandard points of the
set C(X;Y ) of all continuous functions endowed with the topology �� of uniform
convergence on the sets A 2 �: if �X � �pts �X � ns �X then

ns ��
�C(X;Y ) = ff strongly �pts �X-cont. and f(�X) � ns �Y g: (1)

Recall that f 2 �C(X;Y ) is in�nitesimal near to g 2 C(X;Y ) with respect to �� i�
f(x) � �g(x) for all x 2 �pts �X . Combining Corollary 1.2 and Proposition 1.5 with
h := �g and M := �pts �X � ns �X one obtains a proof of formula (1). If � = k

and X is a k-space we can replace strong cpt �X-continuity by cpt �X-continuity,
cf. Theorem 1.4. We note that formula (1) is not true for the class of all families �
with �pts �X � pnsX : the validity of (1) implies that for every f 2 C(X;Y ) the
function �f : �X ! �Y is �pts �X-continuous. If X is a totally bounded space and
� = fXg then this means that every continuous function must be �X-continuous,
i.e, that f is uniformly continuous; but this statement is in general not true.

Our next proposition generalizes the well known result that every uniformly
continuous function f :X ! Y maps prenearstandard points to prenearstandard
points.

Proposition 1.6 Let M � pns �X and f : �X ! �Y be strongly M-

- continuous with f(�x) 2 pns �Y for every x 2 X. Then f(M) � pns �Y .

Proof. Let a 2 M and V 2 V . Choose V1 2 V with V1 Æ V1 � V and U 2 U
such that (f(�x); f(a)) 2 �V1 for all x 2 X with (�x; a) 2 �U . Choose x 2 X with
a 2 �U [x]. Since f(�x) 2 pnsY there exists y 2 Y with (�y; f(�x)) 2 �V1. Then
f(a) 2 �V1 Æ

�V1[y] �
�V [y]. The proof is complete.

Proposition 1.1 shows that the pns �X-continuity is equivalent to the strong
pns �X-continuity. Then Theorem 8.4.30 in [7] can be read as follows:

Theorem 1.7 A function f :X ! Y is strongly pnsX-continuous i� there

exists a continuous extension �f : �X ! �Y where �X and �Y are the completions of X

and Y .

2. Simply even continuity. It is clear by the nonstandard characteri-
zation of compactness that every description of the nearstandard points leads to
a characterization of compact sets; hence (1) implies that H � C(X;Y ) is rela-
tive compact for �� i� every f 2 �H is strongly �pts �X-continuous and satis�es
f(�X) � ns �Y , cf. [8, Theorem 3.4]. In this section we give a standard description
of the �rst property answering a question in [8]. Recall that the monad of a �lter
G is just the set monad(G) := \G2G

�G.

De�nition 2.1 Let A be a subset of X . A subset H � C(X;Y ) is called
simply A-equicontinuous if for every ultra�lter G on the product space H � A and
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every V 2 V there exists U 2 U such that for all x 2 X there exists Gx 2 G with

(8(f; a) 2 Gx)((a; x) 2 U ) (f(a); f(x)) 2 V ): (2)

If A = fx0g we call H simply equicontinuous in x0 2 X , cf. [2]. H is simply

equicontinuous if H is simply equicontinuous for every x0 2 X .

Theorem 2.2 Let � be a family of subsets of X. Then H � C(X;Y ) is

simply A-equicontinuous for every A 2 � i� every f 2 �H is strongly �pts �X-

- continuous.

Proof. Let a 2 �pts �X; f 2 �H and V 2 V . We show that f is strongly fag-
- continuous. Choose A 2 � with a 2 �A. Observe that G := fG � H�A : (f; a) 2
�Gg is an ultra�lter on H with (f; a) 2 monadG. Choose U 2 U and for every
x 2 X choose Gx as in De�nition 2.1. Then (f; a) 2 monad G � �Gx. The transfer
principle applied to (2) shows that (a; �x) 2 �U implies (f(a); f(�x)) 2 �V . For the
converse let G be an ultra�lter on H �A and V 2 V . Choose (f; a) 2 monad G �
�H � �A. It is easy to see that G = fG � H�A : (f; a) 2 �Gg. Since f is strongly
fag-continuous there exists U 2 U such that (a; �x) 2 �U implies (f(a); f(�x)) 2
�V . For x 2 X consider Gx := f(g; y) 2 H � A : (y; x) 2 U ) (g(y); g(x)) 2 V g.
Since (f; a) 2 �Gx we have Gx 2 G. By construction Gx satis�es (2).

Note that Theorem 2.2 and the above remarks yields a nonstandard proof
of the following well known result [2]: H � C(X;Y ) is relatively compact for the
pointwise topology i� H is pointwise bounded and simply equicontinuous.

Theorem 2.3 Let X be a k-space and H � C(X;Y ). Then the following

assertions are equivalent:

a) H is equicontinuous.

b) Every f 2 �H is ns �X-continuous.

c) Every f 2 �H is strongly cpt �X-continuous.

d) H is simply K-equicontinuous for every compact set K.

e) Every f 2 �H is cpt �X-continuous.

f) H is equicontinuous on compacta.

Proof. a) , b) is a well known nonstandard characterization. b) ) c) and
c), d) and c)) e) are clear by Proposition 1.1 and Theorem 2.2. The equivalence
of e) and f) is straightforward. Since we do not know a reference for e) ) b) (or f)
) a)) (unless H is pointwise bounded) we give here a short proof: consider the so-
called diagonal function �:X ! C(H;Y ) de�ned by �(x)(f) = f(x). If C(H;Y ) is
endowed with the topology of uniform convergence, then � is continuous i� every
f 2 �H is ns �X-continuous. Since X is a k-space it suÆces to show that � is
continuous on every compact set K � X . But this is equivalent to the condition
e). The proof is complete.
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