ON THE CONTINUITY OF INTERNAL FUNCTIONS

Hermann Render

Abstract. A modification of the S-continuity is studied. Our concept clarifies the relationship between S-continuity and almost S-continuity introduced by N. Vakil. Moreover we give a standard description of almost S-continuity of a standard family of internal functions solving a problem posed by N. Vakil.

Introduction and Terminology. Let (X, \mathcal{U}) and (Y, \mathcal{V}) be uniform spaces and let x, y be elements in the nonstandard model *X. As usual, $y \approx x$ is defined to mean that $(x, y) \in {}^*U$ for every $U \in \mathcal{U}$ and $\mu[x] := \{y \in {}^*X : y \approx x\}$ is called the monad of $x \in {}^{*}X$. The union of all monads $\mu[{}^{*}x]$ with $x \in X$ is the set ns ${}^{*}X$ of all nearstandard points. Let $f: X \to Y$ be an internal function. Recall that f is S-continuous at $x \in {}^{*}X$ if for every $y \in {}^{*}X$ with $y \approx x$ we have $f(y) \approx f(x)$. It is a matter of fact that this concept is too restrictive for non-locally compact spaces. We discuss the following modified notion: let M be an arbitrary subset of *X. Call f to be *M*-continuous if $y \approx x$ with $y, x \in M$ implies $f(y) \approx f(x)$. Obviously f is $\mu[x]$ -continuous [ns *X-continuous resp.] if and only if f is S-continuous at $x \in {}^{*}X$ [at each $x \in X$ resp.]. We call f strongly M-continuous if for every $a \in M, V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $(*x, a) \in *U$ implies $(f(*x), f(a)) \in *V$ for all $x \in X$. The last definition is due to N. Vakil who called f to be almost S-continuous on M. The reason for adopting a new notion is the simple result that strong Mcontinuity implies *M*-continuity. The first section contains general results about the relationship between the M-continuity and the strong M-continuity. In the second section we prove the main result characterizing almost S-continuity of a standard family. We always assume that the nonstandard model is polysaturated.

1. Strong *M*-continuity. Recall that $\operatorname{pns} X := \bigcap_{U \in \mathcal{U}} \bigcup_{x \in X} {}^*U[x]$ is the set of all *prenearstandard points* of *X*. It is obvious that the condition of strong continuity is trivially satisfied for each $a \in {}^*X \setminus \operatorname{pns} {}^*X$. Hence we should restrict ourselves to the case that $M \subset \operatorname{pns} {}^*X$. By ${}^{\sigma}X$ we denote the set $\{{}^*x : x \in X\}$.

PROPOSITION 1.1 Let $M \subset \text{pns } X$. If $f: *X \to *Y$ is strongly M-continuous, then it is M-continuous. If M is closed under the operation \approx , then the converse is also true.

AMS Subject Classification (1985): Primary 54J05; Secondary 03H05

Proof. Let $y_1, y_2 \in M$ with $y_1 \approx y_2$ and let $V \in \mathcal{V}$. Choose V_1 symmetric with $V_1 \circ V_1 \subset V$. Then there exists $U \in \mathcal{U}$ such that $(*x, y_i) \in *U$ implies $(f(*x), f(y_i)) \in *V_1$ for all $x \in X$. Choose $x_1, x_2 \in X$ with $y_i \in *U[x_i]$. Then $(f(y_2), f(y_1)) \in *V_1 \circ *V_1 \subset *V$. For the converse let $a \in M$ and $V \in \mathcal{V}$. Since M is closed under \approx the following statement is true: $(\forall x \in *X)(x \approx a \Rightarrow (f(a), f(x)) \in *V)$. Then $I := \{x \in *X : (f(a), f(x)) \in *V\}$ and $U_a := \{x \in *X : (a, x) \in *U\}$ are internal sets satisfying the relation $\cap_{U \in \mathcal{U}} U_a \subset I$. By a saturation argument there exists U_a with $U_a \subset I$. Hence there exists $U \in \mathcal{U}$ such that $(a, x) \in *U$ implies $(f(a), f(x)) \in *V$.

COROLLARY 1.2 Let $g: X \to Y$ be a function. Then the following assertions are equivalent:

- a) g is continuous. b) *g is ns *X-continuous.
- c) *g is strongly ns *X-continuous. d) *g is strongly σX -continuous.

Proof. a) \Rightarrow b) follows from the nonstandard characterization of continuity, Proposition 1.1 yields b \Rightarrow c), and c) \Rightarrow d) is trivial. d) \Rightarrow a) is an immediate consequence of the definition of strong continuity and the transfer principle.

In general the converse in Proposition 1.1 is not true as the example 2.4 in [8] (with $M := {}^{\sigma}X$) or the example after Proposition 2.3 in [6] shows where M is equal to the set cpt ${}^{*}X$ of all *compact points*, i.e. the union of all ${}^{*}K$ with $K \subset X$ compact. Nonetheless there exists a topological property defined in [3] assuring a converse in Proposition 1.1.

Definition 1.3 Let X be a topological space and α be a family of subsets of X. Define $\alpha pts^*X := \bigcup_{A \in \alpha} A$. We call X an α -space if a set $U \subset X$ is open if and only if $U \cap A$ is open in every subspace $A \in \alpha$ endowed with the relative topology.

If k is the family of all compact subsets we obtain in 1.3 the well known definition of a k-space or compactly generated space. Every locally compact and every metric space is a k-space, cf. [9, p. 285].

THEOREM 1.4 Let X be an α -space and $\alpha pts^*X \subset ns^*X$. Then an internal function $f:^*X \to ^*Y$ with $f(^{\sigma}X) \subset ns^*Y$ is strongly αpts^*X -continuous if and only if f is αpts^*X -continuous.

Proof. For every $x \in X$ we have by assumption $f(*x) \in \operatorname{ns} *Y$, hence there exists $y \in Y$ with $f(*x) \approx y =: h(x)$. It is easy to see that h is continuous on every set $A \in \alpha$. Since X is an α -space h is continuous on X and therefore *h is strongly ns *X-continuous. It follows that $f(x) \approx *h(x)$ for all $x \in \alpha$ pts *X. By Proposition 1.5 b) \Rightarrow a) f is strongly α pts *X-continuous.

PROPOSITION 1.5 Let $f, h: X \to Y$ be internal functions with $f(x) \approx h(x)$ for all $x \in X$. If $M \subset pns X$ then the following assertions are equivalent:

- a) f and h are strongly M-continuous.
- b) $f(x) \approx h(x)$ for all $x \in M$ and h is strongly M-continuous.

Proof. a) \Rightarrow b). Let $a \in M$ and $V \in \mathcal{V}$. Since f, h are strongly M-continuous there exists $U \in \mathcal{U}$ such that $(*x, a) \in *U$ implies $(f(*x), f(a)) \in *V$

and $(h(*x), h(a)) \in *V$. As $M \subset \text{pns } X$ there exists $x \in X$ with $(*x, a) \in *U$. Using $(h(*x), f(*x)) \in *V$ we obtain $(h(a), f(a)) \in *V^{-1} \circ *V \circ *V$. As this holds for every $V \in \mathcal{V}$ we infer b). For the converse let $a \in M$ and $V \in \mathcal{V}$. Choose $U \in \mathcal{U}$ such that $(*x, a) \in *U$ imply $(h(*x), h(a)) \in *V$. But $(f(*x), h(*x)) \in *V$ and $(h(*x), h(a)) \in *V$ and $(h(a), f(a)) \in *V$; thus $(f(*x), f(a)) \in V \circ V \circ V$ for all $x \in X$ with $(*x, a) \in *U$.

In [8] N. Vakil has given a description of the nearstandard points of the set C(X, Y) of all continuous functions endowed with the topology τ_{α} of uniform convergence on the sets $A \in \alpha$: if $\sigma X \subset \alpha \text{pts }^*X \subset \text{ns }^*X$ then

$$\operatorname{ns}_{\tau_{\alpha}}^{*}C(X,Y) = \{ f \text{ strongly } \alpha \operatorname{pts}^{*}X \text{-cont. and } f(^{\sigma}X) \subset \operatorname{ns}^{*}Y \}.$$
(1)

Recall that $f \in {}^{*}C(X, Y)$ is infinitesimal near to $g \in C(X, Y)$ with respect to τ_{α} iff $f(x) \approx {}^{*}g(x)$ for all $x \in \alpha pts {}^{*}X$. Combining Corollary 1.2 and Proposition 1.5 with $h := {}^{*}g$ and $M := \alpha pts {}^{*}X \subset ns {}^{*}X$ one obtains a proof of formula (1). If $\alpha = k$ and X is a k-space we can replace strong $cpt {}^{*}X$ -continuity by $cpt {}^{*}X$ -continuity, cf. Theorem 1.4. We note that formula (1) is not true for the class of all families α with $\alpha pts {}^{*}X \subset pns X$: the validity of (1) implies that for every $f \in C(X, Y)$ the function ${}^{*}f: {}^{*}X \to {}^{*}Y$ is $\alpha pts {}^{*}X$ -continuous. If X is a totally bounded space and $\alpha = \{X\}$ then this means that every continuous function must be ${}^{*}X$ -continuous, i.e., that f is uniformly continuous; but this statement is in general not true.

Our next proposition generalizes the well known result that every uniformly continuous function $f: X \to Y$ maps prenearstandard points to prenearstandard points.

PROPOSITION 1.6 Let $M \subset pns^*X$ and $f:^*X \to {}^*Y$ be strongly M--continuous with $f({}^*x) \in pns^*Y$ for every $x \in X$. Then $f(M) \subset pns^*Y$.

Proof. Let $a \in M$ and $V \in \mathcal{V}$. Choose $V_1 \in \mathcal{V}$ with $V_1 \circ V_1 \subset V$ and $U \in \mathcal{U}$ such that $(f(*x), f(a)) \in *V_1$ for all $x \in X$ with $(*x, a) \in *U$. Choose $x \in X$ with $a \in *U[x]$. Since $f(*x) \in pns Y$ there exists $y \in Y$ with $(*y, f(*x)) \in *V_1$. Then $f(a) \in *V_1 \circ *V_1[y] \subset *V[y]$. The proof is complete.

Proposition 1.1 shows that the pns X-continuity is equivalent to the strong pns X-continuity. Then Theorem 8.4.30 in [7] can be read as follows:

THEOREM 1.7 A function $f: X \to Y$ is strongly pns X-continuous iff there exists a continuous extension $\overline{f}: \overline{X} \to \overline{Y}$ where \overline{X} and \overline{Y} are the completions of X and Y.

2. Simply even continuity. It is clear by the nonstandard characterization of compactness that every description of the nearstandard points leads to a characterization of compact sets; hence (1) implies that $H \subset C(X,Y)$ is relative compact for τ_{α} iff every $f \in {}^{*}H$ is strongly α pts ${}^{*}X$ -continuous and satisfies $f({}^{\sigma}X) \subset ns^{*}Y$, cf. [8, Theorem 3.4]. In this section we give a standard description of the first property answering a question in [8]. Recall that the monad of a filter \mathcal{G} is just the set monad $(\mathcal{G}) := \cap_{\mathcal{G} \in \mathcal{G}} {}^{*}G$.

Definition 2.1 Let A be a subset of X. A subset $H \subset C(X,Y)$ is called simply A-equicontinuous if for every ultrafilter \mathcal{G} on the product space $H \times A$ and every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that for all $x \in X$ there exists $G_x \in \mathcal{G}$ with

$$(\forall (f,a) \in G_x)((a,x) \in U \Rightarrow (f(a), f(x)) \in V).$$
(2)

If $A = \{x_0\}$ we call *H* simply equicontinuous in $x_0 \in X$, cf. [2]. *H* is simply equicontinuous if *H* is simply equicontinuous for every $x_0 \in X$.

THEOREM 2.2 Let α be a family of subsets of X. Then $H \subset C(X,Y)$ is simply A-equicontinuous for every $A \in \alpha$ iff every $f \in {}^{*}H$ is strongly $\alpha pts {}^{*}X$ continuous.

Proof. Let $a \in \alpha \text{pts}^* X$, $f \in {}^*H$ and $V \in \mathcal{V}$. We show that f is strongly $\{a\}$ -continuous. Choose $A \in \alpha$ with $a \in {}^*A$. Observe that $\mathcal{G} := \{G \subset H \times A : (f, a) \in {}^*G\}$ is an ultrafilter on H with $(f, a) \in \text{monad } \mathcal{G}$. Choose $U \in \mathcal{U}$ and for every $x \in X$ choose G_x as in Definition 2.1. Then $(f, a) \in \text{monad } \mathcal{G} \subset {}^*G_x$. The transfer principle applied to (2) shows that $(a, {}^*x) \in {}^*U$ implies $(f(a), f({}^*x)) \in {}^*V$. For the converse let \mathcal{G} be an ultrafilter on $H \times A$ and $V \in \mathcal{V}$. Choose $(f, a) \in \text{monad } \mathcal{G} \subset {}^*H \times {}^*A$. It is easy to see that $\mathcal{G} = \{G \subset H \times A : (f, a) \in {}^*G\}$. Since f is strongly $\{a\}$ -continuous there exists $U \in \mathcal{U}$ such that $(a, {}^*x) \in {}^*U$ implies $(f(a), f({}^*x)) \in {}^*V$. For $x \in X$ consider $G_x := \{(g, y) \in H \times A : (y, x) \in U \Rightarrow (g(y), g(x)) \in V\}$. Since $(f, a) \in {}^*G_x$ we have $G_x \in \mathcal{G}$. By construction G_x satisfies (2).

Note that Theorem 2.2 and the above remarks yields a nonstandard proof of the following well known result [2]: $H \subset C(X, Y)$ is relatively compact for the pointwise topology iff H is pointwise bounded and simply equicontinuous.

THEOREM 2.3 Let X be a k-space and $H \subset C(X,Y)$. Then the following assertions are equivalent:

- a) *H* is equicontinuous.
- b) Every $f \in {}^{*}H$ is ns ${}^{*}X$ -continuous.
- c) Every $f \in {}^{*}H$ is strongly cpt ${}^{*}X$ -continuous.
- d) H is simply K-equicontinuous for every compact set K.
- e) Every $f \in {}^{*}H$ is cpt ${}^{*}X$ -continuous.
- f) H is equicontinuous on compacta.

Proof. a) \Leftrightarrow b) is a well known nonstandard characterization. b) \Rightarrow c) and c) \Leftrightarrow d) and c) \Rightarrow e) are clear by Proposition 1.1 and Theorem 2.2. The equivalence of e) and f) is straightforward. Since we do not know a reference for e) \Rightarrow b) (or f) \Rightarrow a)) (unless H is pointwise bounded) we give here a short proof: consider the so-called diagonal function $\Delta: X \to C(H, Y)$ defined by $\Delta(x)(f) = f(x)$. If C(H, Y) is endowed with the topology of uniform convergence, then Δ is continuous iff every $f \in {}^{*}H$ is ns ${}^{*}X$ -continuous. Since X is a k-space it suffices to show that Δ is continuous on every compact set $K \subset X$. But this is equivalent to the condition e). The proof is complete.

REFERENCES

- R.G. Bartle, On compactness in Functional Analysis, Trans. Amer. Math. Soc. 79 (1955), 37-57.
- [2] J.W. Brace, Convergence on filters and simple equicontinuity, Ill. J. Math. 9 (1965), 286-296.
- [3] R. Brown, Ten topologies for $X \times Y$, Quart. J. Math. Oxford Ser. 2 14 (1963), 303-314.
- [4] I. Glicksberg, The representations of functionals by integrals, Duke Math. J. 19 (1952), 253-262.
- [5] D. Landers and L. Rogge, Pointwise measurability in nonstandard models, Math. Scand. 67 (1990), 255-258.
- [6] H. Render, Nonstandard topology on function spaces and applications to hyperspaces, to appear in Trans. Amer. Math. Soc.
- [7] K.D. Stroyan and W.A.J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press, New York 1976.
- [8] N. Vakil, A nonstandard compactness condition for sets of continuous functions, Math. Japonica 35 (1990), 897-907.
- [9] S. Willard, General Topology, Addison Wesley, Reading, 1970.

Universität-GH Duisburg, FB 11 Lotharstr. 65 D-4100 Duisburg 1 Federal Republic of Germany (Received 18 02 1992) (Revised 29 10 1992)