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CURVATURE PINCHING FOR ODD-DIMENSIONAL
MINIMAL SUBMANIFOLDS IN A SPHERE

Li Haizhong

Abstract. Using Gauchman’s method, we have improved Simons’ pinching constant (for
codimension p > 3 —2/(n — 1)) and Ejiri’s Ricci curvature pinching constant for odd-dimensional
minimal submanifolds in a sphere.

0. Introduction Let M™ be an n-dimensional compact minimal sub-
man ifold in an (n + p)-dimensional Riemannian manifold N"*?. Let h be the
second fundamental form of M™ and f(u) = ||h(u,u)||* for any v € UM. In
[2,4,5], Gauchman developed a method which is different from that of Ros [10,11],
but influenced by Ros’ method. By use of this method, Gauchman studied the
f(u)-pinching problems for minimal submanifolds in S™*? [4], totally real minimal
submanifolds in CP"™"*?(c) [5], and totally real minimal submanifolds in HP"*?(1)
[2], respectively. In this paper, we find that Gauchman’s method can be used
for a study of curvature pinching problems of minimal submanifolds. We apply
Gauchman’s method and some other techniques to curvature pinching problems of
minimal submanifolds in a sphere S™*P. For odd-dimensional minimal submani-
folds in a sphere, we have improved Simons’ pinching constant (for codimension
p > 3—2/(n—1)) (Theorem 2.2) and we have improved Ejiri’s Ricci curvature
pinching constant (Theorem 3.2). We also obtained a Ricci curvature pinching
theorem which generalizes Shen’s result for 3-dimensional minimal submanifolds in
a sphere (Theorem 3.3). This paper is a part of my Ph.D. thesis (see [9]), which
includes various results on curvature pinching theorems for minimal submanifolds
in a sphere S"*P, totally real minimal submanifolds in a complex projective space
CP"?(c) and totally real minimal submanifolds in a quaternion projective space
HP"*tP(1), respectively (see also [7,8]).
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1. Preliminaries Let M be an n-dimensional compact Riemannian mani-
fold which is immersed isometrically in an (n+p)-dimensional Riemannian manifold
N™tP We choose a local field of orthonormal frames e, ... , €,4, in N7 in such a
way that, when restricted to M, vectors ey, ... , e, are tangent to M. The following
conventions for the range of indices will be used

1<AB,C,...<n+p; 1<i,5,k,... <nm;

n+1 Sa,ﬁ,% Sn+p
Let w4 be the field of dual frames with respect to the frame field of N™+?

chosen above. Then, if they are restricted to M, we have

— —_ (o3 [0 2N (e
wo =0, wqi= E hiwi,  hi; = hj;.
J

The second fundamental form of M in N?*P is
h(X,Y) = hiwi(X)w;(Y)ea, for X,Y € TM. (1.1)
a,i,j
Let UM = J,epy UMy and UM, = [u € TM, ¢ ||u|| = 1]. Thus UM — M is

the unit tangent bundle over M. We define f(u) = ||h(u,u)||* for u € UM. Setting
u=1Y,u'e;, from (1.1) we have

fu)y=>" Zhg;.uiuj . (1.2)

«

f(u) may be considered as a measure of the degree at which an immersion fails to
be totally geodesic.

Let © € M, suppose that v € UM, satisfies f(v) = max,cunm, f(u). We
shall call v a maximal direction at = (see [4,5]). Assume that e; = v is a maximal

direction; we have at the point z, for any ¢,zs2,... ,z, € R
2 2
‘ h(er + tZwkek, e1+ tZwkek) < {1 +t* Z(m’”)z] Rt ]2 (1.3)
k#1 k#1 k#1

Expanding this in term of ¢, we obtain
4t > 2Fhgihg, + 0(t?) < 0.
a,k#1
It follows that
Y hfhg =0, (k#1)
(e

which implies that v = e; is an eigenvector of the (n x n)-matrix (3_, h{ih$;) at .
Hence, we can choose e, ... , e such that the matrix (3, hi, hg;) is diagonalized
at z. Therefore we have

D BShY =0, (i # ). (14)
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Once more expanding (1.3) in terms of ¢, we obtain

2t2[ S ((h)? — By — 20h80)%) ()2
a,k#1
’ (1.5)

-2 Z & f‘jmiwj} +0(%) > 0.
a,i#J, 171, j#1

Since (1.5) must hold for any real z, we obtain the following variational
inequality

> O[(h$)? = Bk — 2(h$)%] >0, (k #1). (1.6)

«

Let M be a Riemannian manifold and L be a covariant tensor field on M
of the type (0,k). At any © € M, L can be considered as a multilinear mapping
L: T,Mx...xT,M — R. Suppose that v € UM, satisfies L(v,...,v) =
maxy,eunm, L(u, ... ,u). We shall call v a maximal direction at z with respect to
L. For any z € M, we set fr(z) = L(v,...,v), where v is a maximal direction at
x with respect to L. We have the following generalized Bochner’s lemma.

LeMMA 1.1 (Proposition 3.1 of [5]). Let M be a compact Riemannian mani-
fold and L be a covariant tensor field on M of the type (0,k). If (AL)(v,...,v) > 0
for any maximal direction v with respect to L, where A denotes the Laplace oper-
ator, then fr, = constant on M and (AL)(v,...,v) = 0 for any mazimal direc-
tion v.

Let M be an n-dimensional compact submanifold in N**P. For any point
x € M,lete,...,enyp be aframe chosen above at x such that e; = v is a maximal
direction at z, and )_ , h{ihi; = 0 for i # j. Let us define a 4-covariant tensor field
L on M by the formula

L(X,Y, Z,W) = (h(X,Y), h(Z,W)), (L.7)
where X, Y, Z W € T,(M), € M. 1t is clear that f(u) = L(u,u,u,u) =
|h(u, u)||* for any u € UM. We shall write (AL);jx = (AL)(e;,€ej, ex, er).

Therefore we have proved the following lemma ensuing from (1.2), (1.4), (1.6),
(1.7) and Lemma 1.1.

LEMMA 1.2 Let M be a compact n-dimensional submanifold in an (n + p)-
-dimensional Riemannian manifold N"*P. Let bjj = 3 h$hi;. With respect to
the frame field chosen above, we have at any point x € M

fw)=bi = (b))’ = ufen(jiﬁm[ﬂh(u,u)ﬂz], (1.8)
1
5(AL)un = > () + ) B s (1.9)
a,k a,k

bij =0 (i # ), (1.10)
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23 (h)? + b — f(0) <O, (k#1), (L.11)
(e

If (AL)1111 > 0 for any mazimal direction e; = v, then f(v) = bi; = constant on
M and (AL)1111 = 0 for any mazimal direction e; = v.

2. Scalar curvature pinching for odd-dimensional minimal subman-
ifolds in S"™?, Now we let ambient space NP be a unit sphere S"*? of dimen-
sion n + p. Let M™ be an n-dimensional compact minimal submanifold in S™*?.
Gauss-Codazzi-Ricci equations of M™ are

Rijr = (6051 — 6udjn) + Z( kP — hihfy), (2.1)
Rapij = p_(hihj, = hSihi), (2.3)
%

where R;ji; and R,p;; are the respective curvature tensors for tangent connection
and the normal connection of M™ and h;’]k is the covariant derivative of h%

By (2.1) the Ricci curvature and scalar curvature of M™ are

Rij = (n—1)d;; — »_ hjhi, 24
a,k
R=n(n—-1)— |0l 25)
where ||o||* = 3=, ; (b))

It is well known [1,13] that if the lenght square ||o||? of the second funda-

mental form on M™ satisfies n

2—1/p
everywhere, then either ||o||?> = 0 (i.e. M™ is totally geodesic) or

2 n

In the latter case M" is either a Clifford hypersurface or a Veronese surface in S*.
In [8], we have improved Simons’ pinching constant for higher codimension. In
fact, we have established

lo]* <

THEOREM 2.1 [8]. Let M™ be an n-dimensional (n > 2) compact minimal

submanifold in S™tP. If
5 _n(3n—2)
< W4
o < 2822

then M™ is either a totally geodesic submanifold or a Veronese surface in S*.

(2.6)

In this section, we will improve the theorem above for odd-dimensional min-
imal subamnifolds in S”*tP. We will prove
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THEOREM 2.2. Let M™ be a compact n-dimensional (n > 3) minimal sub-
manifold in S™*P, and let n be odd. If

5 _ n(3n—>5)

< — 2.7

o < 22229, (2.7
then M™ is either a totally geodesic submanifold or n = 3 and ||o||*> = 2 on M?

and the second fundamental form is given by

V2. 0 0 0 1/vV2 0
=1 0o -1v2 o), GH=|1/v2 0 0],
0 0 0 0 0 0 (2.8)

(hi;) =0, a >6.

Remark 2.1. For odd-dimensional minimal submanifolds in S™*?, our pinch-
ing constant n(3n — 5)/(5n — 9) is independent of the codimension p of M™ and is
not smaller than Simons’ pinching constant n/(2—1/p) in case of p > 3—2/(n—1)
(ie. n=3and p>2; n>5and p > 3).

Remark 2.2. Theorem 2.2 improves Theorem 2.1 for odd-dimensional mini-
mal submanifolds in a sphere S™*P,

COROLLARY 2.1 [12]. Let M3 be a compact 3-dimensional minimal subman-
ifold in S3tP. If
lo|” < 2, (2.9)

then M? is a totally geodesic submanifold.

Remark 2.3. In [4], Gauchman obtained results (Theorem 3 and Theorem 4
of [4]) of kind described in Theorem 2.1 and Theorem 2.2 in which f(u) was used
instead of ||o||? for minimal submanifolds in a sphere, where f(u) = ||h(u,u)||? for
any u € UM.

Proof of Theorem 2.2. We begin with Lemma 1.2. All the calculations below
will be made at a point € M, unless otherwise stated. By Ricci identities, (2.2)
and (1.10), from (1.9) we get

1 o o
5 (AL > > B,
o (2.10)
=Y (W hgRinyi + (h§y)*Ruiis) + Y, h§y b Raani.
a,i a,B,i

Making use of (2.1), (1.10) and (2.3), one easily sees that

Z(hﬁh%Rini + (h$1)?Ruti)

a,i

(2.11)
=nf©) + Y bek(h)” =Y (brr)® = f(0) D (B,
a,k
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> ik Rear = D bix(hiy)® = £(0) D_(hi)*.
a,B,i o,k o,k
Substituting (2.11) and (2.12) into (2.10), we obtain

(AL)llll >nf +2 Z bkk hlk)
a,k#1

= > (bwk)® = 2f () Y (h§%)* = f(0) D (hi)*.

k#1 a,k#1 o

(2.13)

From (1.8) and (1.11) it follows that

23" (h8)” < () — bk < F(0) + \/mea 1237 (hg)? < 2f (o

[e%

ie. Y (h$)? < f(v). Combining this with an elementary inequality, we find

2 > bri(hiy)? >——Z (brr)? —aZ(Z >2

o, k#1 k#1 k#1 o (2_14)
1
> ——f(v) > (b))’ —afw) > (b5,
a,k#1 a,k#1
where a > 0 is an arbitrary real number. On the other hand (bgx,)? < f(v) >, (h$,)?

< f()?,  (f(v) + bgr)(f(v) — brk) > 0. Combining this with ( .11), we have
brr > —f(v), therefore we get the following estimate

2 3 buhf)? > —2f(0) 3 (1)), (2.15)

a,k#1 a,k#1

Combining (2.14) with (2.15), we obtain the following estimate

2 ) bek(hi)® =0 Y bk(h$)* +(2=b) Y brk(hiy)’

a,k#1 a,k#1 a,k#1 (2 ]_6)
bf (v ab o )
> YOS gy b Dyp) Y 0,
a,k#1 a,k#1
where a > 0 and 2 > b > 0 are arbitrary real numbers.
By (2.13) and (2.16), we have
1 ab
§(AL)1111 >nf(v) —(4-b+ 5 - ) f(v) Z (hi)?
ok (2.17)

o f@) YD () = Y we)? - )%

a,k#1 k#1
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We can write by = brr, = >, h{hiy,- By (1.8) and minimality of the immer-
sion, we have

CF@) <he < f), (k£ (2.18)
n n
Zbk = Zbkk = —f(v). (2.19)
k=2 k=2
Because we assume that n is an odd number, it can easily be seen that the
convex function f(ba,...,by) = > p_5(bg)? of (n — 1) variables by,... , by, subject
to the linear constraints (2.18) and (2.19) attains its maximal value when (after
suitable renumbering of ey, ... ,e,) (see [5])
bg =... :bm = _bm—H =...= —b2m :f(U); b2m+1 :0,
where n = 2m + 1. Therefore, we have
> (bex)” < (n—2)f(v)*. (2-20)
k#£1

We also know, by the Cauchy inequality, that

D i)’ < fv) Y (A (2.21)

k#£1 o, kA1

Combining (2.20) with (2.21), we have

=Y (bre)* = —(1- 2(n7ﬁl)a) > (bre)* - 2(n7ﬁl)a > (bre)?
kL kA1 kA1 (2.22)
b o \2 (’TL — 2)b 2
>—(1- m)f(v) a%:ﬂ( k) mf(v) :
Substituing (2.22) into (2.17), we obtain
%(AL)IIII .
" . 2.23
> f)[n - -0+ G X 05 - (14 ) S kg7
a,k#1 a,k
bet b1+ (n—2)b A(n—1)
a +(n — . n—1)a
A = T M T T o e

NOting that ||O-||2 = Za,i,j (h%)2 Z Za(hgk)Q + 22&,]6751 (h?k)27 ChOOSng a = 17
we obtain from (2.23)

on —9
3n—5

AL > f0)[n - 2o (@), (2.24)
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By (27), (AL)1111 Z 0. We obtain (AL)1111 = 0 from Lemma 1.2. Thus,
if f(v) =0, then ||h(u,u)||? = 0 for any u € UM, so that M" is totally geodesic.
If f(v) # 0, then ||o]|*(z) = n(3n — 5)/(5n — 9), so that (2.13) - (2.24) all are
equalities with a =1 and b = 4(n — 1)/(3n — 5). We easily get n = 3, and we have
hiy = —h$y, hi3 =0, hf3 = h3; =0, 3, (h{,)* = f(v) and ||o||* = 2 on M?. By
(1.10), we can choose eg = h(e1,e1)/+/f(v) and es = h(e1,ez)/+/ f(v). Therefore
we have (2.8) and that completes the proof.

3. Ricci curvature pinching for odd-dimensional minimal submani-
folds in S™*?. Ejiri [3] obtained the following well known Ricci curvature pinching
theorem

THEOREM 3.1. Let M™ be a compact n-dimensional (n > 4) minimal sub-
manifold in S*tP. If the Ricci curvature of M" satisfies
Ric(M™) > n — 2, (3.1)
then M™ is totally geodesic, or n = 2m and M™ = S™(/1/2) x S™(\/1/2) or
n =4 and M* = CP?*(4/3) — S".
It is generally considered that the above theorem is the best possible re-
sult, but, in fact, Ejiri’s theorem above is only the possible best result for even-
dimensional minimal submanifolds in S™*?. In this section we establish the follow-

ing best possible Ricci curvature pinching theorem for odd-dimensional minimal
submanifolds in S"™*?

THEOREM 3.2. Let M"™ be a compact n-dimensional (n > 5) minimal sub-

manifold in S™P. Assume that n is odd. If the Ricci curvature of M™ satisfies
Ric((M™)>n—-2-1/(n—-1), (3.2)

then M™ is either a totally geodesic submanifold or n =5 and Ri1 = Ros = R33z =
Ris =3—1/4, Rs5s =4 and ||o]|> =5 on M>.

Remark 3.1. Our Ricci curvature pinching constant (n — 2 — 1/(n — 1)) is
better than Ejiri’s (n — 2) for odd-dimensional minimal submanifold M" in S"*?.

Proof of Theorem 3.2 By (2.13), (2.15) and (2.20), we get

%(AL)MH >nf(v) —4f() Y (hiy)* = (n = 1)f(v)*. (3.3)
a,k#1

From (2.4), our assumption (3.2) and from: Ry = (n — 1) — f(v) —
> kz1(hfy)?, we have

3 (h§)? < 2 — f(v). (3.4)

n—1
a,k#1

Substituting (3.4) into (3.3), we get
SO 2 i) — 40 (=1~ 7)) — (= 1))’

= (n=5)f(0) (5 — F)).

n—1
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By (3.4) we know that n/(n —1) — f(v) > 0. Thus (AL);111 > 0. By Lemma
1.2, (AL)1111 = 0 and f(v) = constant on M"™. Therefore it follows that f(v) =0,
or f(v) =n/(n—1),orn=>=5.

(1) Case f(v) =0. M™ is totally geodesic.

(2) Case f(v) =n/(n —1). In this case (2.20) is an equality. Thus for all a
we get (after suitable renumbering of e, ... ,e,)

hty =...=hym==hymit mi1 == —h3 om» hnp = 0. (3.6)

On the other hand, by (3.4), we have h{), =0, k#1, a=n+1,... ,n+p.
Since by (3.6), directions ey, ... , e all are maximal, it follows that

hi; =0, i#n, j#i, a=n+1,...,n+p. (3.7)
This implies h{; =0, i # j, a =n+1,... ,n+p,ie, M" is a submanifold with a

flat normal connection. From (3.6) and (3.7), we have

lol* =Y (h)* = (hix)* = n. (3.8)

a,t,] a,k

By Kenmotsu’s theorem [6], we have M"™ = S*(\/k/n) S *(\/(n — k)/n) and
p = 1. But it contradicts the following

h11 =...= hmm = —hm+1 m+1l — . = —h2m 2m — \/n/(n— 1), hnn =0. (39)
Thus f(v) =n/(n —1) is false. We have f(v) =0, i.e. M™ is totally geodesic.

(3) Casen =5and f(v) #n/(n—1). By Lemma 1.2, f(v) = constant on M?
and (3.5) is an equality. Thus, (2.13), (2.15), (2.20), (3.3) - (3.5) all are identities
and Ry; =3 —1/4. By (2.20), we have for all «

h?l = hgz = —h§3 = —hZ‘4, h?s) =0. (3-10)

By (2.4) (in this case), for all & we have h$; = 0. Because (3.10) implies that the
directions ej, ez, e3 and e4 are all maximal, we have hf; = 0 and

Ri1 = Ros = R33 = Ryy =3 — 1/4, Ry = 4. (311)
Thus R = 15 and ||o]|> = 5 on M®. By (1.11) and (3.4), we find that 5/12 < f(v) <
5/4. From (2.15), we also know that h{, = h$, = 0 and the proof is completed.

Neither Theorem 3.1 nor Theorem 3.2 yields any results for 3-dimensional
minimal submanifolds in a sphere. For that case we establish the following theorem

THEOREM 3.3. Let M? be a 3-dimensional compact minimal submanifold in
S3+P_ If the Ricci curvature of M3 satisfies

Ric(M3) > 1, (3.12)

then M? is either totally geodesic, or Riy = Raz = 1, R3z = 2 and ||o]|> = 2 on
M3 and the second fundamental form is given by (2.8).



Curvature pinching for odd-dimensional minimal submanifolds in a sphere 131

COROLLARY 3.1 [12]. Let M? be a 3-dimensional compact minimal subman-
ifold in S3tP. If the Ricci curvature of M?® satisfies

Ric(M?) > 1, (3.13)

then M? is totally geodesic.

Proof of Theorem 3.3. By bgr > —f(v) and the 3-dimensional minimality,
we can see that

baa <0, bss <0, D (bew)® < | D bax | = (bu)”. (3.14)
k#1 k#1
By the definition of b;; (see Lemma 1.2), we have from (2.4)

- Z (h§)? = Ri1 — 2+ biy.

a,k#1
From (3.14) and (1.11), we get
o (pa 1 1
Z bk (hf3,)* > > Zbkk(bll —bx) = ~3 Z(bkk)z. (3.16)
a,k#1 k#1 k

Substituting (3.15) into (2.13) in case of n = 3 and using (3.14), we come to

%(AL)IHI > —f(v) +2 zk;ﬂ bik (h§y)? + 2f (v) Ras . (3.17)

Applying (2.15) and (3.16) on (3.17), by (3.14)

1 . ?
§(AL)1111 > 2f(v)Ri1 — f(v) + f(v)(Ri1 — 2+ biy) — 5 zk:(bkk) (3.18)

> 3f(v)(Ri1 = 1).

By Lemma 1.2, (3.12) and (3.18) imply that either f(v) = 0, i.e. M? is
totally geodesic, or Ry; = 1. In the latter case, (3.14) - (3.18) all are identities. By
a similar argument as in the proof of Theorem 3.2, we have

Ri1 = Ry = 1, R33 =2. (319)

Thus ||o]]2 = 6 — R = 2 on M?. So, we complete the proof of Theorem 3.3 from
Theorem 2.2.
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