THEOREMS CONCERNING CERTAIN SPECIAL TENSOR FIELDS ON RIEMANNIAN MANIFOLDS AND THEIR APPLICATIONS

Czesław Konopka

Abstract. Let M be an n-dimensional Riemannian manifold and F a symmetric (0,2)tensor field on M, which satisfies the condition $R \cdot F=0$. Let, additionally, H, A and B be symmetric (0,2)-tensor fields on M. If the tensor B commutes with F (cf. (1.3)) and H satisfies the condition $R \cdot H=Q(A, B)$, then

$$
\left(A_{j k}-\frac{\operatorname{tr}(A)}{\operatorname{tr}(B)} B_{j k}\right)\left(B_{i r} F_{m}^{r}-\frac{\operatorname{tr}(B, F)}{\operatorname{tr}(B)} B_{i m}\right)=0
$$

on the open subset of M on which $\operatorname{tr}(B) \neq 0$. It is also proved that, in certain separately Einstein manifolds, null geodesic collineation and projective collineations reduce to motions.

1. Preliminary results. Let M be an n-dimensional Riemannian manifold with not necessarily definite metric g. We denote by $g_{i j}, \Gamma_{i j}^{h}, R_{i j k}^{h}$ and $S_{i j}$ the local components of the metric g, the Levi Civita connection ∇, The Riemann-Christoffel curvature tensor R and the Ricci tensor S of M, respectively.

For ($0, p$)-tensor T with local components $T_{i_{1} \ldots i_{p}}$, we define $(0, p+2)$-tensor $R \cdot T$ by

$$
\begin{aligned}
(R \cdot T)_{i_{1} \ldots i_{p} m k} & =\left(\nabla_{k} \nabla_{m}-\nabla_{m} \nabla_{k}\right) T_{i_{1} \ldots i_{p}} \\
& =-T_{r i_{2} \ldots i_{p}} R_{i_{1} m k}^{r}-\ldots-T_{i_{1} \ldots i_{p-1} r} R_{i_{p} m k}^{r}
\end{aligned}
$$

Moreover, for $(0,2)$-tensors A and B with local components $A_{i j}$ and $B_{i j}$ respectively, define (0,4)-tensor $Q(A, B)$ by

$$
Q(A, B)_{i j k h}=A_{i h} B_{j k}+A_{j h} B_{i k}-A_{i k} B_{j h}-A_{j k} B_{i h}
$$

Lemma 1.1. Let F be a symmetric (0,2)-tensor field on M satisfying the condition

$$
\begin{equation*}
R \cdot F=0 \tag{1.1}
\end{equation*}
$$

If H, A and B are symmetric (0,2)-tensor fields on M satisfying the relations

$$
\begin{gather*}
R \cdot H=Q(A, B) \tag{1.2}\\
B \text { commutes with } F\left(\text { i.e., } B_{i r} F_{j}^{r}=B_{j r} F_{i}^{r}\right), \tag{1.3}
\end{gather*}
$$

then

$$
\begin{gather*}
\tilde{a} B_{j k}-\tilde{b} A_{j k}=a B_{j r} F_{k}^{r}-b A_{j r} F_{k}^{r} \tag{1.4}\\
\tilde{a} b=a \tilde{b} \tag{1.5}
\end{gather*}
$$

where $a=\operatorname{tr}(A)=A_{i j} g^{i j}, b=\operatorname{tr}(B)=B_{i j} g^{i j}, \tilde{a}=\operatorname{tr}(A, F)=A_{i j} F^{i j}$, $\widetilde{b}=\operatorname{tr}(B, F)=B_{i j} F^{i j}, F_{j}^{r}=F_{s j} g^{r s}$ and $F^{i j}=F_{r s} g^{r i} g^{s j}$, etc..

Proof. At first we note that by virtue of Ricci identity the relations (1.1) and (1.2) can be written in the following forms

$$
\begin{gather*}
F_{i r} R_{j m k}^{r}+F_{j r} R_{i m k}^{r}=0 \tag{1.6}\\
H_{i r} R_{j k m}^{r}+H_{j r} R_{i k m}^{r}=A_{i k} B_{j m}+A_{j k} B_{i m}-A_{i m} B_{j k}-A_{j m} B_{i k} \tag{1.7}
\end{gather*}
$$

We remark also that from (1.7) it follows

$$
\begin{equation*}
A_{r m} B_{k}^{r}=A_{r k} B_{m}^{r} \tag{1.8}
\end{equation*}
$$

Transvecting (1.6) with $H^{i j}$, we have $F^{i r} H_{i s} R_{r k m}^{s}=0$. Transvecting again (1.7) with $F^{i j}$ and applying the above equality,

$$
\begin{equation*}
A_{m r} F^{r s} B_{s k}=A_{k r} F^{r s} B_{s m} \tag{1.9}
\end{equation*}
$$

Moreover, we see from (1.1) that $R_{i j r}^{h} F_{k}^{r}$ is antisymmetric with respect to indices j, k. Therefore the following equality holds good

$$
\left(H_{i r} R_{j k s}^{r}+H_{j r} R_{i k s}^{r}\right) F_{m}^{s}=\left(H_{i r} R_{j s m}^{r}+H_{j r} R_{i s m}^{r}\right) F_{k}^{s}
$$

Hence by (1.7)

$$
\begin{align*}
& A_{i r} F_{m}^{r} B_{j k}+A_{j r} F_{m}^{r} B_{i k}-A_{i k} B_{j r} F_{m}^{r}-A_{j k} B_{i r} F_{m}^{r} \\
& =A_{i m} B_{j r} F_{k}^{r}+A_{j m} B_{i r} F_{k}^{r}-A_{i r} F_{k}^{r} B_{j m}-A_{r j} F_{k}^{r} B_{i m} \tag{1.10}
\end{align*}
$$

Transvecting this with $g^{i m}$ and using (1.3), (1.8) and (1.9), we obtain (1.4). Hence (1.5) follows, completing the proof.

Theorem 1.2. Let F be a symmetric (0,2)-tensor field on M satisfying the conditon (1.1). If H, A and B are symmetric (0,2 -tensor fields on M satisfying the conditions (1.2) and (1.3), then

$$
\left(A_{j k}-\frac{a}{b} B_{j k}\right)\left(B_{i r} F_{m}^{r}-\frac{\tilde{b}}{b} B_{i m}\right)=0
$$

on the open subset of M on which $b \neq 0$.

Proof. From (1.4) it follows that tensor A commutes with F, that is, $A_{i r} F^{r}{ }_{j}=$ $A_{r j} F_{i}^{r}$. Moreover, from (1.4) we derive $A_{j r} F^{r}{ }_{k}=\frac{1}{b}\left(a B_{j r} F^{r}{ }_{k}+\tilde{b} A_{j k}-\tilde{a} B_{j k}\right)$, which together with (1.5) substituted to (1.10) gives the equality

$$
\begin{equation*}
W_{j m} P_{i k}+W_{i m} P_{j k}+W_{j k} P_{i m}+W_{i k} P_{j m}=0 \tag{1.11}
\end{equation*}
$$

where $W_{j m}=B_{j r} F^{r}{ }_{m}-\frac{\tilde{b}}{b} B_{j m}$ and $P_{i k}=A_{i k}-\frac{a}{b} B_{i k}$. Now the antisymmetrization of (1.11) with respect to the indices m, j yields an equation which compared with (1.11) leads to

$$
W_{i m} P_{j k}+W_{j k} P_{i m}=0
$$

Hence, it follows that $W_{i m} P_{j k}=0$, completing the proof.
Theorem 1.3. Let F be a symmetric (0,2)-tensor field on M satisfying the condition $R \cdot F=0$. Let H, \tilde{H} and A be symmetric $(0,2)$-tensor fields on M satisfying the relations (a) $R \cdot H=Q(A, g)$ and (b) $R \cdot \tilde{H}=Q(A, F)$. Then $A=0$ at every point of M at which F is nonsingular and nonproportional to the metric g.

Proof. We restrict our consideration to a point of M at which F is nonsingular and nonproportional to g. As an immediate consequence of Theorem 1.2, we have by (a)

$$
\begin{equation*}
A_{i j}=\frac{a}{n} g_{i j} \tag{1.12}
\end{equation*}
$$

Moreover, from Lemma 1.1 by (a) it follows that

$$
\begin{equation*}
\tilde{a} n-a f=0 \tag{1.13}
\end{equation*}
$$

and by (b) it follows that

$$
\begin{gather*}
\tilde{a} F_{j k}-\tilde{f} A_{j k}=a F_{j r} F_{k}^{r}-f A_{j r} F_{k}^{r}, \tag{1.14}\\
\tilde{a} f-a \tilde{f}=0, \tag{1.15}
\end{gather*}
$$

where $f=\operatorname{tr}(F), \tilde{f}=\operatorname{tr}(F, F), a=\operatorname{tr}(A)$ and $\tilde{a}=\operatorname{tr}(A, F)$. Because of (1.12) to prove the theorem it is sufficient to show that $a=0$.

Consider the case $f=0$. By (1.13), we have $\tilde{a}=0$ and by (1.15) $a=0$ or $\tilde{f}=0$. If $\tilde{f}=0$, then from (1.14) and nonsingularity of F, we find $a=0$.

Let now $f \neq 0$. Comparing the relations (1.13) and (1.15), we have $a\left(f^{2}-n \tilde{f}\right)=0$. In the sequal we assume that $a \neq 0$. Then

$$
\begin{equation*}
f^{2}-n \tilde{f}=0 \tag{1.16}
\end{equation*}
$$

Next, in virtue of Theorem 1.2 by (b), we get $\left(A_{i j}-\frac{a}{f} F_{i j}\left(F_{m r} F_{n}^{r}-\frac{\tilde{f}}{f} F_{m n}\right)=0\right.$. This, because of (1.12) and because F is not proportional to g, can be written as
$a\left(F_{m r} F_{n}^{r}-\frac{\tilde{f}}{f} F_{m n}\right)=0$. Hence $F_{m r} F^{r}{ }_{n}-\frac{\tilde{f}}{f} F_{m n}=0$. So, by virtue of (1.14) and (1.15), we get $A_{j r} F^{r}{ }_{k}=\frac{\tilde{f}}{f} A_{j k}$. The last equation, together with (1.12) and (1.16) implies $a=0$. This is a contradiction. Therefore $a=0$. This completes the proof.

Remark. In the above, we have indead proved that, under our assumptions, $A=0$ at every point of M at which $F_{i r} F^{r} \neq 0$ and F is nonpropotional to g.

Theorem 1.5. Let F be a symmetric (0,2)-tensor field on M satisfying the condition $R \cdot F=0$. Let H, \tilde{H} and A be symmetric $(0,2)$-tensor field on M satisfying the relations (a) $R \cdot H=Q(A, g)$ and (b) $R \cdot \tilde{H}=Q(\tilde{A}, g)$, where $\tilde{A}_{i j}=A_{i r} F^{r}{ }_{j}$. Then $A=0$ at every point of M at which F is nonproportional to the metric g.

Proof. We restrict our considerations to a point of M at wich F is nonproportional to g. At first we note that by (a) and Theorem 1.2 it follows that

$$
\begin{equation*}
A_{i j}=\frac{a}{n} g_{i j}, \text { where } a=\operatorname{tr}(A) \tag{1.17}
\end{equation*}
$$

Transvecting now (1.17) with F_{k}^{i} we see that \tilde{A} is symmetric. Next, from Theorem 1.2 by (b), we get

$$
\begin{equation*}
A_{i r} F_{j}^{r}=\frac{a}{n} g_{i j} \tag{1.18}
\end{equation*}
$$

Substituing now (1.17) into (1.18), we get $a=0$. This, with the help of (1.17), gives our assertion.
2. Applications. In this section we apply the results obtained in the previous section. Let M be a Riemannian manifold with not necessarily definite metric g and of dimension $n>2$. For vector field v on M, denote by L_{v} the Lie derivative with respect to v.

A vector field v on M is said to be a motion if $L_{v} g=0$, and affine collineation if $L_{v} \nabla=0$ [9]. A curvature collineation on M is a vector field v which satisfies the condition $L_{v} R=0$. An investigation of this transformation was strongly motivated by the important role of the Riemannian curvature tensor in the theory of general relativity $[\mathbf{3 , 4}]$.

The assertion of the theorem below is quite obvious.
Theorem A. In a non-Ricci-flat Einstein manifold a curvature collineation is a motion.

Let M be a locally product Riemannian manifold in the sense of Tachibana [8]. Then, there exists an atlas of separating coordinate neighborhoods $\left\{\left(U,\left(x^{i}\right)\right)\right\}$ such that in each $\left(U,\left(x^{i}\right)\right)$ the metric g can be written as

$$
g=\sum_{a, b=1}^{p} g_{a b}\left(x^{c}\right) d x^{a} \otimes d x^{b}+\sum_{\alpha, \beta=1}^{q} g_{\alpha \beta}\left(x^{\gamma}\right) d x^{\alpha} \otimes d x^{\beta}, \quad p+q=n, \quad 1 \leq p \leq n-1
$$

Define an (0,2)-tensor field on M by

$$
\left[F_{i j}\right]=\left[\begin{array}{cc}
g_{a b} & 0 \\
0 & -g_{\alpha \beta}
\end{array}\right]
$$

in each $\left(U,\left(x^{i}\right)\right)$. The tensor field F is nonsingular, nonproportional to g, symmetric and parallel.

A locally product Riemannian manifold M is called to be a separately Einstein manifold if its Ricci tensor has the following form

$$
\begin{equation*}
S=c g+d F \tag{2.1}
\end{equation*}
$$

where
$c=\frac{(n s-f \tilde{s})}{\left(n^{2}-f^{2}\right)}, d=\frac{(n \tilde{s}-f s)}{\left(n^{2}-f^{2}\right)}, f=\operatorname{tr}(F)=p-q, s=\operatorname{tr}(S)$ and $\tilde{s}=\operatorname{tr}(S, F)$.
In a separately Einstein manifold $M, c=$ const and $d=$ const if $p>2$ and $q>2$ (see [8]). Note that a separately Einstein manifold is Ricci-flat if and only if $c=d=0$. In the case $d=0$, it reduces to an Einstein one.

It has been proved (cf. [5]) that
Theorem B. In a seprately Einstein manifold with $c=$ const, $d=$ const $\neq 0$ and $c^{2} \neq d^{2}$, a curvature collineation is necessarily a motion.

According to Katzin and Levine [4], a vector field v on M is said to be a null geodesic collineation (NGC) if

$$
\begin{equation*}
L_{v} \Gamma_{i j}^{h}=g^{h r} A_{r} g_{i j} \tag{2.2}
\end{equation*}
$$

where $A_{r}=\nabla_{r} p$ and p is a function. For such a transformation, we have

$$
\begin{equation*}
L_{v} R_{i j k}^{h}=A_{k}^{h} g_{i j}-A_{i}^{h} g_{j k} \tag{2.3}
\end{equation*}
$$

where $A_{h k}=\nabla_{k} \nabla_{h} p$ and $A_{k}^{h}=A_{r k} g^{h r}$. If additionaly $A_{h k}=0$, then the NGC is said to be special. Note also that a special null geodesic collineation is a curvature collineation.

Theorem 2.1. Let F be a symmetric (0,2)-tensor field on a Riemannian manifold M. Assume additionaly that F is nonproportional to the metric tensor g at every point of M and satisfies the condition $R \cdot F=0$. Then any $N G C$ on M is special.

Proof. Applying the Lie derivative to the equation $R \cdot F=0$ and making use of (2.3), we have $R \cdot \tilde{H}=Q(\tilde{A}, g)$, where $\tilde{H}=L_{v} F$ and tensor \tilde{A} have the local components $A_{i r} F_{j}^{r}$. Similary, applying the Lie derivative to the equation $R \cdot g=0$ and using (2.3) we find $R \cdot H=Q(A, g)$, where $H=L_{v} g$. In our situation, Theorem 1.5 yields $A_{i j}=0$, which completes the proof.

From Theorem 2.1, we get
Theorem 2.2. In a locally product Riemannian manifold M any $N G C$ is special.

Combining Theorems A, B and 2.2, we derive
THEOREM 2.3. In a separately Einstein manifold M with $c=$ const, $d=$ const and $c^{2} \neq d^{2}$, an NGC is necessarily a motion.

Moreover, from Theorem 2.1, for $F=S$ it follows
Theorem 2.4. If the Ricci tensor S of a Riemannian manifold M satisfies the relation $R \cdot S=0$ and if S is nonproportional to g at every point of M, then any $N G C$ on M is special.

A Riemannian manifold is called semisymmetric [7] if the condition $R \cdot R=0$ is satisfied on M.

As an immediate consequence of Theorem 2.4, we get
Theorem 2.5. In a semisymmetric manifold M with the Ricci tensor S nonproportional to g at every point, any $N G C$ is special.

A vector field v on a Riemannian manifold is said to be a projective collineation (PC) if

$$
\begin{equation*}
L_{v} \Gamma_{i j}^{h}=\delta_{j}^{h} A_{i}+\delta_{i}^{h} A_{j} \tag{2.4}
\end{equation*}
$$

where the 1-form A is defined by $A_{j}=(n+1)^{-1} \nabla_{j}\left(g^{r s} \nabla_{r} v_{s}\right)$. If $A_{j}=0$, then the PC is an affine one. It is well-known that for any PC , we have

$$
\begin{equation*}
L_{v} R_{i j k}^{h}=\delta_{j}^{h} A_{i k}-\delta_{k}^{h} A_{i j} \tag{2.5}
\end{equation*}
$$

where $A_{i k}=\nabla_{k} A_{i}$. Projective collineation is said to be special, if $A_{i j}=0$. Note also that a special projective collineation is a curvature collineation.

THEOREM 2.6. Let F be a nonsingular, nonproportional to g at every point of M and summetric (0,2 -tensor field satisfying the condition $R \cdot F=0$ on a Riemannian manifold M. Than any $P C$ on M is special.

Proof. Applying the Lie derivative to the relations $R \cdot g=0$ and $R \cdot F=0$ and using of (2.5), we see that a PC satisfies $R \cdot H=Q(A, g)$ and $R \cdot \tilde{H}=Q(A, F)$, respectively, where $H=L_{v} g$ and $\tilde{H}=L_{v} F$. In view of Theorem 1.3, we obtain $A_{i j}=0$, which gives our assertion.

From Theorem 2.6, we find
Theorem 2.7. In a locally product Riemannian manifold M any $P C$ is special.

Combining Theorems A, B and 2.7, we derive
ThEOREM 2.8. In a separately Einstein manifold M with $c=$ const, $d=$ const and $c^{2} \neq d^{2}$, any $P C$ is necessarily a motion.

Moreover, we prove
Theorem 2.9. Let the Ricci tensor S of a Riemannian manifold M be nonsingular, nonproportional to the metric g at each point and satisfy the relation $R \cdot S=0$. Then, any $P C$ on M is an affine collineation.

Proof. From Theorem 2.6, for $F=S$, we have $\nabla_{j} A_{i}=0$. This, by the Ricci identity, leads to $A_{r} R^{r}{ }_{i j k}=0$ and also $A_{r} S^{r}{ }_{k}=0$. Since S is nonsingular, $A_{i}=0$. This completes the proof.

As an immediate consequence of Theorem 2.9, we get

Corollary 2.10. Let the Ricci tensor S of a semisymmetric manifold M be nonsingular and nonproportional to the metric g at each point of M. Then, any $P C$ on M is an affine collineation.

For projective collineation in a locally symmetric or Ricci-symmetric manifolds ($\nabla R=0$ or $\nabla S=0$, respectively) see Sumitomo [6].

The next theorem can be deduced from Theorem 1.4.
Theorem 2.11. Let M be a Riemannian manifold whose Ricci tensor S satisfies the condition $R \cdot S=0$. Assume additionally that, at each point of M, the scalar curvature $s \neq 0$ and S is nonproportional to the metric g. Then, any $P C$ on M is special.

Corollary 2.12. Let the Ricci tensor S of a semisymmetric manifold M be nonproportional to the metric g and the scalar curvature $s \neq 0$ at each point of M. Then, any $P C$ on M is special.

The author wishes to express his deepest gratitude to Dr. Zbigniew Olszak for his helpful discussions during the preparation of this paper.

Added in proof: Theorem 1.2 is a generalization of Grycakś theorem from [2]. Certain other generalization of his theorem can also be found in [1].

REFERENCES

[1] R. Deszcz and M. Hotloś, Notes on pseudo-symmetric manifolds admiting special geodesic mappings, Soochow J. Math. 15(1989), 19-27.
[2] W. Grycak, Null geodesic collineations in conformally recurrent manifolds, Tensor, N.S. 34(1980), 253-259.
[3] G.H. Katzin, J. Levine and W.R. Davis, Curvature collineations a fundamental symmetry property of the space-times of general relativity defined by the vanishing Lie derivative of the Riemannian curvature tensor, J. Math. Physics 10(1969), 617-629.
[4] G. H. Katzin and J. Levine, Applications of Lie derivative to symmetries geodesic mappings and first integrals in Riemannian spaces, Collect. Math. 26(1972), 21-38.
[5] C. Konopka, Curvature collineations in separately Einstein space, Prace Naukowe Instytutu Matematyki i Fizyki Teoretycznej, Politechniki Wrocławskiej 8(1973), 33-40.
[6] T. Sumitomo, Projective and conformal transformations in compact Riemannian manifolds, Tensor 9(1959), 113-135.
[7] Z. I. Szabo, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0, I$, The local version, J. Differential Geom. 17(1982), 531-582.
[8] S. Tachibana, Some theorems on locally product Riemannian spaces, Tohoku Math. J. 12(1960), 281-292.
[9] K. Yano, The Theory of Lie Derivatives and its Applications, Nort-Holland, Amsterdam, 1957.

Institute of Mathematics
(Received 0503 1991)
Technical University
ul. Wybrzez̀e Wyspiańskiego 27
50-376 Wrocław
Poland

