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THEOREMS CONCERNING CERTAIN SPECIAL TENSOR

FIELDS ON RIEMANNIAN MANIFOLDS

AND THEIR APPLICATIONS

Czes law Konopka

Abstract. Let M be an n-dimensional Riemannian manifold and F a symmetric (0; 2)-
tensor �eld on M , which satis�es the condition R � F = 0. Let, additionally, H, A and B be
symmetric (0; 2)-tensor �elds on M . If the tensor B commutes with F (cf. (1.3)) and H satis�es
the condition R �H = Q(A;B), then

(Ajk �
tr(A)

tr(B)
Bjk)(BirF

r
m �

tr(B; F )

tr(B)
Bim) = 0

on the open subset of M on which tr(B) 6= 0. It is also proved that, in certain separately Einstein
manifolds, null geodesic collineation and projective collineations reduce to motions.

1. Preliminary results. LetM be an n-dimensional Riemannian manifold
with not necessarily de�nite metric g. We denote by gij ; �

h
ij ; R

h
ijk and Sij the local

components of the metric g, the Levi Civita connectionr, The Riemann-Christo�el
curvature tensor R and the Ricci tensor S of M , respectively.

For (0; p)-tensor T with local components Ti1...ip , we de�ne (0; p + 2)-tensor
R � T by

(R � T )i1...ipmk = (rkrm �rmrk)Ti1...ip

= �Tri2...ipR
r
i1mk � . . .� Ti1...ip�1rR

r
ipmk:

Moreover, for (0; 2)-tensors A and B with local components Aij and Bij respec-
tively, de�ne (0; 4)-tensor Q(A;B) by

Q(A;B)ijkh = AihBjk +AjhBik �AikBjh �AjkBih:

Lemma 1.1. Let F be a symmetric (0; 2)-tensor �eld on M satisfying the

condition

R � F = 0: (1.1)
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If H, A and B are symmetric (0; 2)-tensor �elds on M satisfying the relations

R �H = Q(A;B); (1.2)

B commutes with F (i.e.; BirF
r
j = BjrF

r
i); (1.3)

then
�

aBjk �
�

bAjk = aBjrF
r
k � bAjrF

r
k; (1.4)

�

ab = a
�

b; (1.5)

where a = tr(A) = Aijg
ij , b = tr(B) = Bijg

ij ,
�

a = tr(A;F ) = AijF
ij ,

�

b = tr(B;F ) = BijF
ij , F r

j = Fsjg
rs and F ij = Frsg

rigsj , etc. .

Proof. At �rst we note that by virtue of Ricci identity the relations (1.1)
and (1.2) can be written in the following forms

FirR
r
jmk + FjrR

r
imk = 0; (1.6)

HirR
r
jkm +HjrR

r
ikm = AikBjm +AjkBim �AimBjk �AjmBik: (1.7)

We remark also that from (1.7) it follows

ArmB
r
k = ArkB

r
m: (1.8)

Transvecting (1.6) with H ij , we have F irHisR
s
rkm = 0. Transvecting again (1.7)

with F ij and applying the above equality,

AmrF
rsBsk = AkrF

rsBsm: (1.9)

Moreover, we see from (1.1) that Rh
ijrF

r
k is antisymmetric with respect to indices

j; k. Therefore the following equality holds good

(HirR
r
jks +HjrR

r
iks)F

s
m = (HirR

r
jsm +HjrR

r
ism)F

s
k :

Hence by (1.7)

AirF
r
mBjk +AjrF

r
mBik �AikBjrF

r
m �AjkBirF

r
m

= AimBjrF
r
k +AjmBirF

r
k �AirF

r
kBjm �ArjF

r
kBim:

(1.10)

Transvecting this with gim and using (1.3), (1.8) and (1.9), we obtain (1.4). Hence
(1.5) follows, completing the proof.

Theorem 1.2. Let F be a symmetric (0; 2)-tensor �eld on M satisfying the

conditon (1.1). If H, A and B are symmetric (0; 2)-tensor �elds on M satisfying

the conditions (1.2) and (1.3), then

(Ajk �
a

b
Bjk)(BirF

r
m �

�

b

b
Bim) = 0

on the open subset of M on which b 6= 0.
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Proof. From (1.4) it follows that tensor A commutes with F , that is, AirF
r
j =

ArjF
r
i. Moreover, from (1.4) we derive AjrF

r
k =

1
b
(aBjrF

r
k+

�

bAjk�
�

aBjk), which
together with (1.5) substituted to (1.10) gives the equality

WjmPik +WimPjk +WjkPim +WikPjm = 0; (1.11)

whereWjm = BjrF
r
m�

�

b
b
Bjm and Pik = Aik�

a
b
Bik. Now the antisymmetrization

of (1.11) with respect to the indices m; j yields an equation which compared with
(1.11) leads to

WimPjk +WjkPim = 0:

Hence, it follows that WimPjk = 0, completing the proof.

Theorem 1.3. Let F be a symmetric (0; 2)-tensor �eld on M satisfying

the condition R � F = 0. Let H,
�

H and A be symmetric (0; 2)-tensor �elds on M

satisfying the relations (a) R �H = Q(A; g) and (b) R �
�

H = Q(A;F ). Then

A = 0 at every point of M at which F is nonsingular and nonproportional to the

metric g.

Proof. We restrict our consideration to a point ofM at which F is nonsingular
and nonproportional to g. As an immediate consequence of Theorem 1.2, we have
by (a)

Aij =
a

n
gij : (1.12)

Moreover, from Lemma 1.1 by (a) it follows that

�

an� af = 0; (1.13)

and by (b) it follows that

�

aFjk �
�

fAjk = aFjrF
r
k � fAjrF

r
k; (1.14)

�

af � a
�

f = 0; (1.15)

where f = tr(F ),
�

f = tr(F; F ), a = tr(A) and
�

a = tr(A;F ). Because of (1.12) to
prove the theorem it is suÆcient to show that a = 0.

Consider the case f = 0. By (1.13), we have
�

a = 0 and by (1.15) a = 0 or
�

f = 0. If
�

f = 0, then from (1.14) and nonsingularity of F , we �nd a = 0.

Let now f 6= 0. Comparing the relations (1.13) and (1.15), we have

a(f2 � n
�

f ) = 0. In the sequal we assume that a 6= 0. Then

f2 � n
�

f = 0: (1.16)

Next, in virtue of Theorem 1.2 by (b), we get (Aij �
a
f
Fij(FmrF

r
n �

�

f
f
Fmn) = 0.

This, because of (1.12) and because F is not proportional to g, can be written as
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a(FmrF
r
n �

�

f
f
Fmn) = 0. Hence FmrF

r
n �

�

f
f
Fmn = 0. So, by virtue of (1.14) and

(1.15), we get AjrF
r
k =

�

f
f
Ajk. The last equation, together with (1.12) and (1.16)

implies a = 0. This is a contradiction. Therefore a = 0. This completes the proof.

Remark. In the above, we have indead proved that, under our assumptions,
A = 0 at every point of M at which FirF

r
j 6= 0 and F is nonpropotional to g.

Theorem 1.5. Let F be a symmetric (0; 2)-tensor �eld on M satisfying

the condition R � F = 0. Let H,
�

H and A be symmetric (0; 2)-tensor �eld on M

satisfying the relations (a) R � H = Q(A; g) and (b) R �
�

H = Q(
�

A; g), where
�

Aij = AirF
r
j . Then A = 0 at every point of M at which F is nonproportional to

the metric g.

Proof. We restrict our considerations to a point of M at wich F is nonpro-
portional to g. At �rst we note that by (a) and Theorem 1.2 it follows that

Aij =
a

n
gij ; where a = tr(A): (1.17)

Transvecting now (1.17) with F i
k we see that

�

A is symmetric. Next, from Theorem
1.2 by (b), we get

AirF
r
j =

a

n
gij : (1.18)

Substituing now (1.17) into (1.18), we get a = 0. This, with the help of (1.17),
gives our assertion.

2. Applications. In this section we apply the results obtained in the
previous section. Let M be a Riemannian manifold with not necessarily de�nite
metric g and of dimension n > 2. For vector �eld v on M , denote by Lv the Lie
derivative with respect to v.

A vector �eld v onM is said to be a motion if Lvg = 0, and aÆne collineation
if Lvr = 0 [9]. A curvature collineation onM is a vector �eld v which satis�es the
condition LvR = 0. An investigation of this transformation was strongly motivated
by the important role of the Riemannian curvature tensor in the theory of general
relativity [3,4].

The assertion of the theorem below is quite obvious.

Theorem A. In a non-Ricci-
at Einstein manifold a curvature collineation

is a motion.

Let M be a locally product Riemannian manifold in the sense of Tachibana
[8]. Then, there exists an atlas of separating coordinate neighborhoods

�
(U; (xi))

	
such that in each (U; (xi)) the metric g can be written as

g =

pX
a;b=1

gab(x
c)dxa 
 dxb +

qX
�;�=1

g��(x

)dx� 
 dx� ; p+ q = n; 1 � p � n� 1:

De�ne an (0; 2)-tensor �eld on M by

[Fij ] =

�
gab 0
0 �g��

�
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in each (U; (xi)). The tensor �eld F is nonsingular, nonproportional to g, symmetric
and parallel.

A locally product Riemannian manifoldM is called to be a separately Einstein
manifold if its Ricci tensor has the following form

S = cg + dF; (2.1)

where

c =
(ns� f

�

s)

(n2 � f2)
; d =

(n
�

s � fs)

(n2 � f2)
; f = tr(F ) = p� q; s = tr(S) and

�

s = tr(S; F ):

In a separately Einstein manifold M , c = const and d = const if p > 2 and
q > 2 (see [8]). Note that a separately Einstein manifold is Ricci-
at if and only if
c = d = 0. In the case d = 0, it reduces to an Einstein one.

It has been proved (cf. [5]) that

Theorem B. In a seprately Einstein manifold with c = const, d = const 6= 0
and c2 6= d2, a curvature collineation is necessarily a motion.

According to Katzin and Levine [4], a vector �eld v on M is said to be a null
geodesic collineation (NGC) if

Lv�
h
ij = ghrArgij ; (2.2)

where Ar = rrp and p is a function. For such a transformation, we have

LvR
h
ijk = Ah

kgij �Ah
igjk ; (2.3)

where Ahk = rkrhp and Ah
k = Arkg

hr. If additionaly Ahk = 0, then the NGC is
said to be special. Note also that a special null geodesic collineation is a curvature
collineation.

Theorem 2.1. Let F be a symmetric (0; 2)-tensor �eld on a Riemannian

manifold M . Assume additionaly that F is nonproportional to the metric tensor g

at every point of M and satis�es the condition R �F = 0. Then any NGC on M is

special.

Proof. Applying the Lie derivative to the equation R � F = 0 and making

use of (2.3), we have R �
�

H = Q(
�

A; g), where
�

H = LvF and tensor
�

A have the local
components AirF

r
j . Similary, applying the Lie derivative to the equation R � g = 0

and using (2.3) we �nd R �H = Q(A; g), where H = Lvg. In our situation, Theorem
1.5 yields Aij = 0, which completes the proof.

From Theorem 2.1, we get

Theorem 2.2. In a locally product Riemannian manifold M any NGC is

special.

Combining Theorems A, B and 2.2, we derive

Theorem 2.3. In a separately Einstein manifold M with c = const,

d = const and c2 6= d2, an NGC is necessarily a motion.
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Moreover, from Theorem 2.1, for F = S it follows

Theorem 2.4. If the Ricci tensor S of a Riemannian manifold M satis�es

the relation R � S = 0 and if S is nonproportional to g at every point of M , then

any NGC on M is special.

A Riemannian manifold is called semisymmetric [7] if the condition R �R = 0
is satis�ed on M .

As an immediate consequence of Theorem 2.4, we get

Theorem 2.5. In a semisymmetric manifold M with the Ricci tensor S

nonproportional to g at every point, any NGC is special.

A vector �eld v on a Riemannian manifold is said to be a projective
collineation (PC) if

Lv�
h
ij = Æhj Ai + Æhi Aj ; (2.4)

where the 1-form A is de�ned by Aj = (n+ 1)�1rj(g
rsrrvs). If Aj = 0, then the

PC is an aÆne one. It is well-known that for any PC, we have

LvR
h
ijk = Æhj Aik � ÆhkAij ; (2.5)

where Aik = rkAi. Projective collineation is said to be special, if Aij = 0. Note
also that a special projective collineation is a curvature collineation.

Theorem 2.6. Let F be a nonsingular, nonproportional to g at every point

of M and summetric (0; 2)-tensor �eld satisfying the condition R � F = 0 on a

Riemannian manifold M . Than any PC on M is special.

Proof. Applying the Lie derivative to the relations R � g = 0 and R � F = 0

and using of (2.5), we see that a PC satis�es R �H = Q(A; g) and R �
�

H = Q(A;F ),

respectively, where H = Lvg and
�

H = LvF . In view of Theorem 1.3, we obtain
Aij = 0, which gives our assertion.

From Theorem 2.6, we �nd

Theorem 2.7. In a locally product Riemannian manifold M any PC is

special.

Combining Theorems A, B and 2.7, we derive

Theorem 2.8. In a separately Einstein manifold M with c = const,

d = const and c2 6= d2, any PC is necessarily a motion.

Moreover, we prove

Theorem 2.9. Let the Ricci tensor S of a Riemannian manifold M be

nonsingular, nonproportional to the metric g at each point and satisfy the relation

R � S = 0. Then, any PC on M is an aÆne collineation.

Proof. From Theorem 2.6, for F = S, we have rjAi = 0. This, by the Ricci
identity, leads to ArR

r
ijk = 0 and also ArS

r
k = 0. Since S is nonsingular, Ai = 0.

This completes the proof.

As an immediate consequence of Theorem 2.9, we get
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Corollary 2.10. Let the Ricci tensor S of a semisymmetric manifold M

be nonsingular and nonproportional to the metric g at each point of M . Then, any

PC on M is an aÆne collineation.

For projective collineation in a locally symmetric or Ricci-symmetric mani-
folds (rR = 0 or rS = 0, respectively) see Sumitomo [6].

The next theorem can be deduced from Theorem 1.4.

Theorem 2.11. Let M be a Riemannian manifold whose Ricci tensor S

satis�es the condition R �S = 0. Assume additionally that, at each point of M , the

scalar curvature s 6= 0 and S is nonproportional to the metric g. Then, any PC on

M is special.

Corollary 2.12. Let the Ricci tensor S of a semisymmetric manifold M

be nonproportional to the metric g and the scalar curvature s 6= 0 at each point of

M . Then, any PC on M is special.

The author wishes to express his deepest gratitude to Dr. Zbigniew Olszak
for his helpful discussions during the preparation of this paper.

Added in proof: Theorem 1.2 is a generalization of Grycak�s theorem from [2]. Certain
other generalization of his theorem can also be found in [1].
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