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THEOREMS CONCERNING CERTAIN SPECIAL TENSOR
FIELDS ON RIEMANNIAN MANIFOLDS
AND THEIR APPLICATIONS

Czeslaw Konopka

Abstract. Let M be an n-dimensional Riemannian manifold and F a symmetric (0, 2)-
tensor field on M, which satisfies the condition R - F' = 0. Let, additionally, H, A and B be
symmetric (0, 2)-tensor fields on M. If the tensor B commutes with F' (cf. (1.3)) and H satisfies
the condition R- H = Q(A, B), then

tr(A)
tr(B)

tr(B, F)
tr(B)

Bji)(Bir F'py, —

(jkf

on the open subset of M on which tr(B) # 0. It is also proved that, in certain separately Einstein
manifolds, null geodesic collineation and projective collineations reduce to motions.

1. Preliminary results. Let M be an n-dimensional Riemannian manifold
with not necessarily definite metric g. We denote by g, F?j, R?]k and S;; the local
components of the metric g, the Levi Civita connection V, The Riemann-Christoffel
curvature tensor R and the Ricci tensor S of M, respectively.

For (0, p)-tensor T' with local components T, .
R-T by

we define (0, p + 2)-tensor

)

(R-T)i,...iymk = (VeVim = Vi Vi) Tiy i,

_— . . T — — . . T
- T”2~-~lpR i1mk s Tll-nlp—lf‘Ripmk'

Moreover, for (0,2)-tensors A and B with local components A;; and B;; respec-
tively, define (0,4)-tensor Q(A, B) by

Q(A, B)ijkn = AinBji + AjnBir — Air Bjn — Aji Bin.

LEmMA 1.1. Let F be a symmetric (0,2)-tensor field on M satisfying the
condition
R-F=0. (1.1)
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If H, A and B are symmetric (0,2)-tensor fields on M satisfying the relations

RH:Q(A)B)) (12)
B commutes with F' (i.e., BiF"; = Bj,. F";), (1.3)
then N
aBji, — bAj, = aBj, F'y, — bA;. F",, (1.4)
ab = ab, (1.5)

where a = tr(A) = A;jg”, b = tr(B) = Byjg¥, a = tr(A,F) = A;;F9,
b=1tr(B,F) = B;jF, F"; = Fyjg"* and F" = F,;9"'g*7, elc. .
Proof. At first we note that by virtue of Ricci identity the relations (1.1)
and (1.2) can be written in the following forms
Fi'r‘Rrjmk + FjT’Rrimk - 0, (16)
HirRTjkm + erRrikm = AikBjm + A]szm - AimBjk - AJmsz (17)
We remark also that from (1.7) it follows
ApmBT = A BT, . (1.8)

Transvecting (1.6) with H*, we have F'"H;sR®,, = 0. Transvecting again (1.7)
with F¥ and applying the above equality,

AmrF"* By = Ay F"* By (1.9)

Moreover, we see from (1.1) that R?er,: is antisymmetric with respect to indices

j, k. Therefore the following equality holds good

(Hir R jps + Hjp Ry ) Fy, = (Hip Ry, + Hjr R ) FY

jsm
Hence by (1.7)
A" Bj + Ajp B By, — Ai B F', — Ajp B F',

1.10

= AimBjTFrk + AijirFrk — AirFrkBjm — AerrkBim. ( )
Transvecting this with ¢"™ and using (1.3), (1.8) and (1.9), we obtain (1.4). Hence
(1.5) follows, completing the proof.

THEOREM 1.2. Let F be a symmetric (0,2)-tensor field on M satisfying the
conditon (1.1). If H, A and B are symmetric (0,2)-tensor fields on M satisfying
the conditions (1.2) and (1.3), then

~

a b
(Ajk = 3 Bj)(Bir 'y = 3 Bim) = 0

on the open subset of M on which b # 0.
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Proof. From (1.4) it follows that tensor A commutes with F, that is, A;F"; =

A,;F";. Moreover, from (1.4) we derive A, F", = 1(aB;, F" + b A — aBjy,), which
together with (1.5) substituted to (1.10) gives the equality

WimPir, + Wim Pj, + Wik Py + Wi Py = 0, (1.11)

where W, = Bj, F",, — %Bjm and P;; = Ajx — § Bix. Now the antisymmetrization

of (1.11) with respect to the indices m,j yields an equation which compared with
(1.11) leads to
Wim Pyt + Wi Pim = 0.
Hence, it follows that W;,, Pj;, = 0, completing the proof.
THEOREM 1.3. Let F be a symmetric (0,2)-tensor field on M satisfying

the condition R-F = 0. Let H, H and A be symmetric (0,2)-tensor fields on M

satisfying the relations (a) R-H = Q(A,g) and (b) R-H = Q(A,F). Then
A = 0 at every point of M at which F is nonsingular and nonproportional to the
metric g.

Proof. We restrict our consideration to a point of M at which F' is nonsingular
and nonproportional to g. As an immediate consequence of Theorem 1.2, we have

by (a) .
Ay = Egij- (1.12)

Moreover, from Lemma 1.1 by (a) it follows that

an —af =0, (1.13)

and by (b) it follows that
aFj, — fAj = aFj, F — fA; F", (1.14)
af —af =0, (1.15)

where f = tr(F), } =tr(F,F), a = tr(4) and @ = tr(A, F). Because of (1.12) to
prove the theorem it is sufficient to show that a = 0.

Consider the case f = 0. By (1.13), we have @ = 0 and by (1.15) a = 0 or
} =0. If } = 0, then from (1.14) and nonsingularity of F', we find a = 0.

Let now f # 0. Comparing the relations (1.13) and (1.15), we have

a(f? - n?) = 0. In the sequal we assume that a # 0. Then

2-nf=o0. (1.16)
Next, in virtue of Theorem 1.2 by (b), we get (Aij — ¢ Fij (Fmr F", — %an) = 0.
This, because of (1.12) and because F' is not proportional to g, can be written as
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a(Fpr F7, — %an) = 0. Hence F,, F", — %an = 0. So, by virtue of (1.14) and

(1.15), we get A, F", = %A]’k. The last equation, together with (1.12) and (1.16)

implies @ = 0. This is a contradiction. Therefore a = 0. This completes the proof.
Remark. In the above, we have indead proved that, under our assumptions,

A =0 at every point of M at which Fj, F"; # 0 and F' is nonpropotional to g.
THEOREM 1.5. Let F be a symmetric (0,2)-tensor field on M satisfying

the condition R-F = 0. Let H, H and A be symmetric (0,2)-tensor field on M

satisfying the relations (a) R-H = Q(A,g) and (b) R- H= Q(:l,g), where
Ay = AirFrj. Then A = 0 at every point of M at which F' is nonproportional to
the metric g.

Proof. We restrict our considerations to a point of M at wich F' is nonpro-
portional to g. At first we note that by (a) and Theorem 1.2 it follows that

Aij = %gij, where a = tr(A4). (1.17)

Transvecting now (1.17) with F} we see that As symmetric. Next, from Theorem
1.2 by (b), we get

a
ATy = gy (1.18)

Substituing now (1.17) into (1.18), we get a = 0. This, with the help of (1.17),
gives our assertion.

2. Applications. In this section we apply the results obtained in the
previous section. Let M be a Riemannian manifold with not necessarily definite
metric g and of dimension n > 2. For vector field v on M, denote by L, the Lie
derivative with respect to v.

A vector field v on M is said to be a motion if L,g = 0, and affine collineation
if L,V =0 [9]. A curvature collineation on M is a vector field v which satisfies the
condition L,R = 0. An investigation of this transformation was strongly motivated
by the important role of the Riemannian curvature tensor in the theory of general
relativity [3,4].

The assertion of the theorem below is quite obvious.

THEOREM A. In a non-Ricci-flat Einstein manifold a curvature collineation
18 a motion.

Let M be a locally product Riemannian manifold in the sense of Tachibana
[8]. Then, there exists an atlas of separating coordinate neighborhoods { (U, (z7))}
such that in each (U, (z')) the metric g can be written as

p q
9= gu(e)dr* 0da’ + Y gos(@")da® @ da’, p+g=n, 1<p<n-L.
a,b=1 a,f=1
Define an (0, 2)-tensor field on M by

[Fi] = [ggb _Saﬁ]
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in each (U, (z%)). The tensor field F'is nonsingular, nonproportional to g, symmetric
and parallel.

A locally product Riemannian manifold M is called to be a separately Einstein
manifold if its Ricci tensor has the following form

S =cg+ dF, (2.1)
where

L= 1% (E—fs)

(n? = f2)’ (n? = f?)
In a separately Einstein manifold M, ¢ = const and d = const if p > 2 and

q > 2 (see [8]). Note that a separately Einstein manifold is Ricci-flat if and only if
c=d =0. In the case d = 0, it reduces to an Einstein one.

It has been proved (cf. [5]) that

THEOREM B. In a seprately Einstein manifold with ¢ = const, d = const # 0
and ¢ # d?, a curvature collineation is necessarily a motion.

, f=tr(F)=p—gq, s=tr(S) and s = tr(S, F).

According to Katzin and Levine [4], a vector field v on M is said to be a null
geodesic collineation (NGC) if

LUF?J = ghrArgij, (22)
where A, = V,p and p is a function. For such a transformation, we have
Lthijk = Ahkgij - Ahigjk; (2.3)

where Ap, = Vi Vpp and AP = A,,¢"". If additionaly Ay, = 0, then the NGC is
said to be special. Note also that a special null geodesic collineation is a curvature
collineation.

THEOREM 2.1. Let F be a symmetric (0,2)-tensor field on a Riemannian
manifold M. Assume additionaly that F is nonproportional to the metric tensor g
at every point of M and satisfies the condition R-F = 0. Then any NGC on M is
special.

Proof. Applying the Lie derivative to the equation R - F' = 0 and making
use of (2.3), we have R- H = Q(A, g), where H = L, F and tensor A have the local
components A;.F i Similary, applying the Lie derivative to the equation R-g =0
and using (2.3) we find R-H = Q(4, g), where H = L,g. In our situation, Theorem
1.5 yields A;; = 0, which completes the proof.

From Theorem 2.1, we get

THEOREM 2.2. In a locally product Riemannian manifold M any NGC is
special.

Combining Theorems A, B and 2.2, we derive

THEOREM 2.3. In a separately FEinstein manifold M with ¢ = const,
= const and ¢ # d?, an NGC is necessarily a motion.
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Moreover, from Theorem 2.1, for F' = S it follows

THEOREM 2.4. If the Ricci tensor S of a Riemannian manifold M satisfies
the relation R-S = 0 and if S is nonproportional to g at every point of M, then
any NGC on M is special.

A Riemannian manifold is called semisymmetric [7] if the condition R-R =0
is satisfied on M.

As an immediate consequence of Theorem 2.4, we get

THEOREM 2.5. In a semisymmetric manifold M with the Ricci tensor S
nonproportional to g at every point, any NGC' is special.

A vector field v on a Riemannian manifold is said to be a projective
collineation (PC) if
LI} =60 A; + 61 A;, (2.4)
where the 1-form A is defined by 4; = (n +1)7'V;(9"*V,v,). If A; =0, then the
PC is an affine one. It is well-known that for any PC, we have

LyR" = 07 Ay — 61 Ay, (2.5)
where A;; = Vi A;. Projective collineation is said to be special, if A;; = 0. Note

also that a special projective collineation is a curvature collineation.

THEOREM 2.6. Let F' be a nonsingular, nonproportional to g at every point
of M and summetric (0,2)-tensor field satisfying the condition R-F = 0 on a
Riemannian manifold M. Than any PC on M is special.

Proof. Applying the Lie derivative to the relations R-g=0and R-F =0
and using of (2.5), we see that a PC satisfies R-H = Q(A4,g) and R-H = Q(A, F),

respectively, where H = L,g and H = L,F. In view of Theorem 1.3, we obtain
A;; =0, which gives our assertion.

From Theorem 2.6, we find

THEOREM 2.7. In a locally product Riemannian manifold M any PC is
special.

Combining Theorems A, B and 2.7, we derive

THEOREM 2.8. In a separately FEinstein manifold M with ¢ = const,
= const and ¢ # d?, any PC is necessarily a motion.

Moreover, we prove

THEOREM 2.9. Let the Ricci tensor S of a Riemannian manifold M be
nonsingular, nonproportional to the metric g at each point and satisfy the relation
R-S=0. Then, any PC on M is an affine collineation.

Proof. From Theorem 2.6, for F' = S, we have V;A; = 0. This, by the Ricci
identity, leads to A,,Rrijk =0 and also A,S", = 0. Since S is nonsingular, 4; = 0.
This completes the proof.

As an immediate consequence of Theorem 2.9, we get
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COROLLARY 2.10. Let the Ricci tensor S of a semisymmetric manifold M
be nonsingular and nonproportional to the metric g at each point of M. Then, any
PC on M is an affine collineation.

For projective collineation in a locally symmetric or Ricci-symmetric mani-
folds (VR =0 or V.S = 0, respectively) see Sumitomo [6].

The next theorem can be deduced from Theorem 1.4.

THEOREM 2.11. Let M be a Riemannian manifold whose Ricci tensor S
satisfies the condition R-S = 0. Assume additionally that, at each point of M, the
scalar curvature s # 0 and S is nonproportional to the metric g. Then, any PC on
M is special.

COROLLARY 2.12. Let the Ricci tensor S of a semisymmetric manifold M

be nonproportional to the metric g and the scalar curvature s # 0 at each point of
M. Then, any PC on M is special.

The author wishes to express his deepest gratitude to Dr. Zbigniew Olszak
for his helpful discussions during the preparation of this paper.

Added in proof: Theorem 1.2 is a generalization of Grycaks theorem from [2]. Certain
other generalization of his theorem can also be found in [1].
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