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VARIATIONAL INEQUALITIES OF STRONGLY NONLINEAR
ELLIPTIC OPERATORS OF INFINITE ORDER

A.T. El-dessouky

Abstract. We study the solvability of variational inequalities for strongly nonlinear elliptic
operators of infinite order with liberal growth on their coefficients.

1. Introduction. In a number of papers Dubinskii [cf. [3], [4]) has con-
sidered the nontriviality of Sobolev spaces of infinite order corresponding to the
boundary value problems for linear differential equations of infinite order and ob-
tained the solvability of those problems in the case when the coefficients of the
equation grow polynomially with respect to the derivatives.

Chan Dyk Van [2], extended the results of Dubinskil to include the case of
operators with rapidly (slowly) increasing coefficients.

We generalize the results above to cover the solvability of variational inequali-
ties for strongly nonlinear operators of the form

Au(z) + Bu(z), z € (L.1)
where -
Au(z) = > (=) D* A (2, D7u(@)), | < el (1.2)
|a|=0
Bu(z) = Y (-1)D*Bqa(x,D%u(x)), M fixed, (1.3)
la|<M

with more liberal growth on the coefficients. Here Q is a bounded domain in R".

2. Preliminaries. Let 2 be a bounded domain in R™ (n > 2) for which
the cone and the strong local lipschitz properties hold [1].

An N-function is any continuous map ® : R — R which is even, convex
and satisfies ®(¢)/t — 0 (resp. +o00) as t — 0 (resp. +o00). The conjugate or
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complementary N-function of ® and its nonnegative reciprocal will be denoted by
® and &1, respectively [1].
When ® and ¥ are two N-functions we shall write ¥ <« & if for any € > 0

Limmy_ o0 ¥ (£)/®(ct) = 0

The Orlicz space Lg, (€2) corresponding to N-functions @, is defined as the set of
all measurable functions u : @ — R such that

lulle, = int{x> 0 /Qcpa(%) <1} <o

Let Eg,(2) be the (norm) closure in Lg_ (2) of L*°(Q)-functions with compact

support in 2.

The Sobolev-Orlicz spaces of functions u such that v and its distributional
derivatives D%u, |a| < m,liein Lg_ () (resp. Es_(2)). These are Banach spaces

for the norm
1/2

ullma, = | Y ID%ull3,
lov|<m
and they are identified to subspaces of the product

H Lo, (22) = H Le,

lo|<m

Denote by C*°(Q) the space of infinitely differentiable functions on €, D(Q) the
space C*° () with compact support in Q and by D'(Q2) the space of distributions
on (.

We define Wi Lg,, () as the o(IlLs, ,I1Eg_) closure of D(Q2) in W™ Lg,, (£2)
and Wi Eg_ () as the norm closure of D(2) in W™ Lg_(€2). The Sobolev-Orlicz
spaces of infinite order is defined by:

W Le. (Q) = {u € C™(Q) :
|

f: /Q(I>Q(Dau(n)) de < oo},

a|=0
and -
W Lo, () = {u eD@): fullos. = 3 ID%ula, < oo}
|ar]=0

They are Banach spaces with the norm || - ||co,®, - Similar definition of W§* Es_ ()
is obvious. The dual of W§°Lg, () (resp. W§°Eg, () will be denoted by
W~®Eg_() (resp. W™>°Lg_(f)), where

W~*Eg_(9) (resp. W > Lg_(Q)) =

{h €D'(Q): hx)= > (~1)I*IDhq,,h, € By (Q) (resp. L, (Q))}

|oo[=0
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These spaces are Banach spaces with the norm

oo
Il @, = D lIhalls, < oo

|ex|=0

The duality of W§°Lg, () and W= Eg_(Q) is defined by

(hyu)y = ) / ho(z)D%u(z) dz.

Let 1 < p < co. The Sobolev spaces of infinite order are defined by
W (a0, p)(Q) = {u eD(Q) : [Jull%, Z aa/ |D%u(z)|Pdx < oo}
|a|=0

where a, > 0 is a sequence of numbers. We formally define the spaces dual to
W5 (aa, p)() via:

W0 = {hs h= Y (DaaDei o€ 27(0)
|ar]=0
P, =S aallhal?, <oo} P =p/p—1.
|ar]=0

For more details we may refer to [1-3].

Let I,M € N, M be fixed. By A; and Ay we denote the number of multi-
indices a with |a| <, |a| < M, respectively.

3. Conditions on the coefficients. To define the operator (1.2) more
precisely we introduce either the following set of hypotheses:

Ay) For all I € N and |y| < |a|, each Ay(z,&,) is a Caratheodory function, i.e.,
Ay(z,€) is measurable in z € Q for all fixed &, € RM, and continuous in &
for almost all (a.a.) fixed # € Q. Moreover there exists a function hy € L'(Q),
independent of [, and a sequence of positive numbers (S;)ien with >°, A1) < oo
such that

sup |Aa(z,&)| < hi(x)S;.
l&y1<8; !

As) There exists a constant Cp > 0 and a function hy € L'(f2), both independent

of [, such that
l

l
Z Aa(w,fy)fa > Cy Z aa|§a|P — ha()

|a|=0 |a|=0

for all z € Q, &, € RM.
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A3z) For alll € N, a.a. ¢ € Q and all distinct &, &€ RM

!
Y (Aal@, &) = Aa(,6)) (60 — &) > 0;
|ar]=0

or the following one:

Ay)* For alll € N, each A,(z,&,) is a real-valued Caratheodory function defined
on Q x R*. There exist two N-functions ®,, ¥, with ¥, <« ®,; functions aq(x)
in Ez_(Q) for |a| =1, in Lg_(Q2) for |a| < [; and positive constants c;,cz, both
independent of [, such that

if || =1, then

|Aa(m:£v)| < ao(z) + e Z (i);l(ba(ﬁfﬁ) +c Z ‘i’;l‘I’a(szﬁ),
|B|=t |Bl<t

if |a| < I, then

[4a(@,6)] S aal2) +er Y 2" Waleab) + e Y B, Baleatp)
18]<t 18]<t
for a.a. « € Q and all &, € RM.
Ay)* There exist functions b, in E®, () for |a| =1, in Lg_(f) for |a| < I; function
hs € L*(Q) and positive constants dy, ds, independent of [, such that

! ! !
> Aa(@, &) 2 di > Paldabe) = Y ba(2)éa — ha(x)
|a|=0 |ar]=0 |ar]=0
fora.a. x € Qandall & € RM.
Ag)* Asin A3)
For the operator (1.3) we impose the following assumption:

Bi) Ba(z,&,) is a Caratheodory function defined on © x R*2. There exists a
function hy in L*(Q) such that: |Ba(z,&)| < ha(x)Py(€s) for some continuous
function P, : R — R and B, (z,£,)6 >0, € Q, |a| < M.

4. Main results. THEOREM 1. Let K be a closed conver subset of
W§°(aq,p)(Q) containing the origin. Suppose that A1) — As) and By) hold. Let
feW(aq,p")(Q) be given. Then there exists at least one solution u € K of

(A(u),v —u) + (B(u),v —u) > (f,v —u) Yo e K (4.1)

Proof. Consider a partial sum of order 2 of the series (4.1):

(Agi(wr),v —w) + (B(w),v —w) > (f', 0 —w) Yve K (4.2)
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where
l
Agi(u)(x) = D (=DI*ID* Ay (, Dwy), |y < e,
| |=0
B(u)(x)= Y (~1I*D*B,(x,Dw),
la|<M<I
and

!
=3 ()"aaD*fo € W (aa,p') ().
|a|=0
For solvability of (4.2), in view of A4;) — As) and By), we refer to [5] and [6]. Set
v =0 in (4.2), and use A3) and B;); we obtain an a priori bound

lwellwi(an py(@) < const.

Since u; € Wl(aq,p)(Q) implies u; € W'(aq,p)(2) we get from compactness of
W(aq,p)(Q) — C(Q), the uniform convergence of u;(r) — u(x) on Q asl — oc.
Similarly, by compactness of W'(aq,p)(Q) — C'=™(Q), for large enough [ and
m € N, we obtain,

D%uy(z) — D%u(z) uniformly on Q as [ — oo (4.3)

Using the definition of W§° (aq, p)(2) we get u € W§°(aq, p)(2) and by closedness
of K,u € K.

It remains to show that « is a solution of (4.1). For this purpose it suffices to
prove the assertions:

Limy (A (w), z) = (A(u), 2) (4.4)
Lim; (B(w), z) = (B(u), 2) (4.5)
Lim; inf(Ag(ur),u) > (A(u),u) (4.6)
and
Lim; inf(B(u;),w;) > (B(u),u) (4.7)

for all z € K. To prove (4.4) we use the inequality:

|Aa(x, D7u;)| < sup 1 |[Aq(z, &) + SiAa(z, D7) D wy
ley1<s,

as well as the uniform boundedness of {(Axu,u;)} in L'(Q), to obtain the uniform
equi-integrability of { A4 (z, DY)} in L'(Q) provided that Y~ S;Ai(.,1) < oo. Now,
in view of Vitali’s convergence theorem, (4.7) follows.

To prove (4.5) we have

|ZM / |Ba (&, Du)| < / s () Po (D% 1) <

hallzie) Y I[Pa(D%u)|[po(e) < const.,
la|<M
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and (4.5) follows from the dominated convergence theorem.

The assertions (4.6) and (4.7) are direct consequences of Fatou’s lemma in
view of the uniform convergence (4.3), and the proof is completed.

The result above enables us to state the following theorem.

THEOREM 2. Let K be a convex o(W>Lg, (), W™ Es_(Q)) sequen-
tially closed subset of W Lg_ () such that K N W°Es_ () is o(W>®Lg_ (),
W=>*Lg_(Q)) dense in K and 0 € K. Let f € W~*Eg_(2) be given, and let the
hypotheses A1)* — A3)* hold. Then there exists at least one solution u € K such
that:

(Au,v —u) — (f,v—u) >0 Yve K (4.8)

Outline of proof. Asin Theoerem 1, we may consider the auxiliary variational
inequality
(Ao (Um), v — um) — (f™, 0 —up) >0 Yve K (4.9)

The solvability of (4.9) is a consequence of [7]. Thus, there exists u,, € K solving
(4.9). Put v =0 in (4.9) and make use of 4,)*; we have

/ Bo(c2D%i) < 3, where ez = c3([[fllw-~r4, (2)
Q

Hence, there exists a subsequence of u,, such that u,, — u in C*°(Q). By the def-
inition of W Lg_(Q2) and the o(W>Lg_(Q), W~>°E(Q2)) sequential closedness
of K, we get u € K. To show that u solves (4.8) it remains to prove the assertions
(4.4) and (4.6) of Theorem 1. A similar argument as in the proof of Theorem 1,
may be used to finish the proof.

Ezxample. As a particular example which can be treated by Theorem 1,
outside the scope of [3], one may consider the nonlinear Dirichlet boundary-value
problem

> 3 (-)ID%(aaSF 1D "2 D u) + fulel = f()
=0 |a|=L
where (S;)ien is a sequence described in A4;). In fact
Aq (2, D) := aoSY| Dl "2 D"u, 7] = |
B, (z, D%u) := |u]e!"!
By the Sobolev’s embedding theorem, for u € W'(a,,p)(Q) (Ip > n), the
functions D%u are bounded for all |a| < I. Therefore A,(x,&) and By (z,&,) are

L>(9Q) - functions and hence A;) and By) follow. Condition As) is obvious, while
Aj) follows in view of the inequality

2|7+ |y|” —zy(z|" 2+ yP ) >0 forzfy

Thus the hypotheses of Theorem 1 are satisfied.
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Our example falls outside the scope of [3] beacause the term |u| e/*! does not

verify the polynomial growth condition of [3].

(1]
2]
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