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VARIATIONAL INEQUALITIES OF STRONGLY NONLINEAR

ELLIPTIC OPERATORS OF INFINITE ORDER

A.T. El-dessouky

Abstract. We study the solvability of variational inequalities for strongly nonlinear elliptic
operators of in�nite order with liberal growth on their coeÆcients.

1. Introduction. In a number of papers Dubinski�� [cf. [3], [4]) has con-
sidered the nontriviality of Sobolev spaces of in�nite order corresponding to the
boundary value problems for linear di�erential equations of in�nite order and ob-
tained the solvability of those problems in the case when the coeÆcients of the
equation grow polynomially with respect to the derivatives.

Chan Dyk Van [2], extended the results of Dubinski�� to include the case of
operators with rapidly (slowly) increasing coeÆcients.

We generalize the results above to cover the solvability of variational inequali-
ties for strongly nonlinear operators of the form

Au(x) +Bu(x); x 2 
 (1.1)

where

Au(x) =
1X

j�j=0

(�1)j�jD�A�(x;D

u(x)); j
j � j�j; (1.2)

Bu(x) =
X
j�j�M

(�1)j�jD�B�(x;D
�u(x)); M �xed; (1.3)

with more liberal growth on the coeÆcients. Here 
 is a bounded domain in Rn.

2. Preliminaries. Let 
 be a bounded domain in Rn (n � 2) for which
the cone and the strong local lipschitz properties hold [1].

An N -function is any continuous map � : R �! R which is even, convex
and satis�es �(t)=t ! 0 (resp. +1) as t ! 0 (resp. +1). The conjugate or

AMS Subject Classi�cation (1990): Primary 35G30, 46E 35



82 A.T. El-dessouky

complementary N -function of � and its nonnegative reciprocal will be denoted by
�� and ��1, respectively [1].

When � and 	 are two N -functions we shall write 	� � if for any " > 0

Limt!1	(t)=�("t) = 0

The Orlicz space L��
(
) corresponding to N -functions �� is de�ned as the set of

all measurable functions u : 
! R such that

kuk��
= inf

n
� > 0;

Z



��(
u

�
) � 1

o
<1

Let E��
(
) be the (norm) closure in L��

(
) of L1(
)-functions with compact
support in �
.

The Sobolev-Orlicz spaces of functions u such that u and its distributional
derivatives D�u; j�j � m, lie in L��

(
) (resp. E��
(
)). These are Banach spaces

for the norm

kukm;��
=

0
@ X
j�j�m

kD�uk2��

1
A
1=2

and they are identi�ed to subspaces of the productY
j�j�m

L��
(
) =

Y
L��

Denote by C1(
) the space of in�nitely di�erentiable functions on 
, D(
) the
space C1(
) with compact support in 
 and by D0(
) the space of distributions
on 
.

We de�ne Wm
0 L��

(
) as the �(�L��
;�E���

) closure of D(
) in WmL��
(
)

and Wm
0 E��

(
) as the norm closure of D(
) in WmL��
(
). The Sobolev-Orlicz

spaces of in�nite order is de�ned by:

W1L��
(
) =

�
u 2 C1(
) :

1X
j�j=0

Z



��
�
D�u(n)

�
dx <1

�
;

and

W1
0 L��

(
) =

�
u 2 D(
) : kuk1;��

=

1X
j�j=0

kD�uk��
<1

�

They are Banach spaces with the norm k � k1;��
. Similar de�nition of W1

0 E��
(
)

is obvious. The dual of W1
0 L��

(
) (resp. W1
0 E��

(
)) will be denoted by
W�1E���

(
) (resp. W�1L���
(
)); where

W�1E���
(
) (resp. W�1L���

(
)) =�
h 2 D0(
) : h(x) =

1X
j1j=0

(�1)j�jD�h�; h� 2 E���
(
) (resp. L���

(
))

�
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These spaces are Banach spaces with the norm

khk�1;���
=

1X
j�j=0

kh�k���
<1

The duality of W1
0 L��

(
) and W�1E���
(
) is de�ned by

hh; ui =

1X
j�j=0

Z



h�(x)D
�u(x) dx:

Let 1 � p <1. The Sobolev spaces of in�nite order are de�ned by

W1
0 (a�; p)(
) =

�
u 2 D(
) : kukp1;p =

1X
j�j=0

a�

Z



jD�u(x)jpdx <1

�
;

where a� � 0 is a sequence of numbers. We formally de�ne the spaces dual to
W1

0 (a�; p)(
) via:

W�1(a�; p
0)(
) =

�
h : h =

1X
j�j=0

(�1)j�ja�D
�h�; h� 2 Lp

0

(
) :

khkp
0

�1;p0 =

1X
j�j=0

a�kh�k
p0

Lp0 (
)
<1

�
; p0 = p=p� 1:

For more details we may refer to [1-3].

Let l;M 2 N;M be �xed. By �1 and �2 we denote the number of multi-
indices � with j�j � l, j�j �M , respectively.

3. Conditions on the coeÆcients. To de�ne the operator (1.2) more
precisely we introduce either the following set of hypotheses:

A1) For all l 2 N and j
j � j�j, each A�(x; �
) is a Caratheodory function, i.e.,

A�(x; �
) is measurable in x 2 
 for all �xed �
 2 R�1 , and continuous in �

for almost all (a.a.) �xed x 2 
. Moreover there exists a function h1 2 L1(
),
independent of l, and a sequence of positive numbers (Sl)l2N with

P
l �1Sl < 1

such that

sup
j�
 j�S

�1

l

jA�(x; �
)j � h1(x)Sl:

A2) There exists a constant C0 > 0 and a function h2 2 L1(
), both independent
of l, such that

lX
j�j=0

A�(x; �
)�� � C0

lX
j�j=0

a�j��j
P � h2(x)

for all x 2 
, �
 2 R
�1 .
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A3) For all l 2 N, a.a. x 2 
 and all distinct �
 , �
�

 2 R

�1

lX
j�j=0

(A�(x; �
)�A�(x; �
�

))(�� � ���) > 0;

or the following one:

A1)
� For all l 2 N, each A�(x; �
) is a real-valued Caratheodory function de�ned

on 
�R�1 . There exist two N -functions ��;	� with 	� � ��; functions a�(x)
in E���

(
) for j�j = l, in L���
(
) for j�j < l; and positive constants c1; c2, both

independent of l, such that

if j�j = l, then

jA�(x; �
)j � a�(x) + c1
X
j�j=l

���1� ��(c2��) + c1
X
j�j<l

�	�1� ��(c2��);

if j�j < l, then

jA�(x; �
)j � a�(x) + c1
X
j�j<l

���1� 	�(c2��) + c1
X
j�j<l

���1� ��(c2��)

for a.a. x 2 
 and all �
 2 R
�1 .

A2)
� There exist functions b� in E ���(
) for j�j = l, in L���

(
) for j�j < l; function

h3 2 L1(
) and positive constants d1; d2, independent of l, such that

lX
j�j=0

A�(x; �
)�� � d1

lX
j�j=0

��(d2��)�

lX
j�j=0

b�(x)�� � h3(x)

for a.a. x 2 
 and all �
 2 R
�1 .

A3)
� As in A3).

For the operator (1.3) we impose the following assumption:

B1) B�(x; ��) is a Caratheodory function de�ned on 
 � R�2 . There exists a
function h4 in L1(
) such that: jB�(x; ��)j � h4(x)P�(��) for some continuous

function P� : R�2 �! R and B�(x; ��)�� � 0; x 2 
; j�j �M:

4. Main results. Theorem 1. Let K be a closed convex subset of

W1
0 (a�; p)(
) containing the origin. Suppose that A1) � A3) and B1) hold. Let

f 2W�1(a�; p
0)(
) be given. Then there exists at least one solution u 2 K of

hA(u); v � ui+ hB(u); v � ui � hf; v � ui 8v 2 K (4.1)

Proof. Consider a partial sum of order 2l of the series (4.1):

hA2l(ul); v � uli+ hB(ul); v � uli � hf l; v � uli 8v 2 K (4.2)
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where

A2l(ul)(x) =

lX
j�j=0

(�1)j�jD�A�(x;D

ul); j
j � j�j;

B(ul)(x) =
X

j�j�M<l

(�1)j�jD�B�(x;D
�ul);

and

f l =

lX
j�j=0

(�1)j�ja�D
�f� 2 W�l(a�; p

0)(
):

For solvability of (4.2), in view of A1) � A3) and B1), we refer to [5] and [6]. Set
v = 0 in (4.2), and use A3) and B1); we obtain an a priori bound

kulkW l
0
(a�;p)(
) � const.

Since ul 2 W l(a�; p)(
) implies ul 2 W 1(a�; p)(
) we get from compactness of
W 1(a�; p)(
) �! C(�
); the uniform convergence of ul(x) �! u(x) on �
 as l !1.
Similarly, by compactness of W l(a�; p)(
) �! Cl�m(�
), for large enough l and
m 2 N, we obtain,

D�ul(x) �! D�u(x) uniformly on �
 as l !1 (4.3)

Using the de�nition of W1
0 (a�; p)(
) we get u 2 W1

0 (a�; p)(
) and by closedness
of K;u 2 K.

It remains to show that u is a solution of (4.1). For this purpose it suÆces to
prove the assertions:

Liml hA2l(ul); zi = hA(u); zi (4:4)

Liml hB(ul); zi = hB(u); zi (4:5)

Liml infhA2l(ul); uli � hA(u); ui (4:6)

and

Liml infhB(ul); uli � hB(u); ui (4:7)

for all z 2 K. To prove (4.4) we use the inequality:

jA�(x;D

ul)j � sup

j�
 j�S
�1

l

jA�(x; �
)j+ SlA�(x;D

ul)D

�ul

as well as the uniform boundedness of fhA2lul; ulig in L
1(
), to obtain the uniform

equi-integrability of fA�(x;D

ul)g in L

1(
) provided that
P

Sl�1(:; l) <1. Now,
in view of Vitali's convergence theorem, (4.7) follows.

To prove (4.5) we have

X
j�j�M

Z



jB�(x;D
�ul)j �

Z



jh4(x)P�(D
�ul)j �

kh4kL1(
)
X
j�j�M

kP�(D
�ul)kL1(
) � const.;
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and (4.5) follows from the dominated convergence theorem.

The assertions (4.6) and (4.7) are direct consequences of Fatou's lemma in
view of the uniform convergence (4.3), and the proof is completed.

The result above enables us to state the following theorem.

Theorem 2. Let K be a convex �(W1L��
(
), W�1E���

(
)) sequen-

tially closed subset of W1L��
(
) such that K \ W1

0 E��
(
) is �(W1L��

(
),
W�1L���

(
)) dense in K and 0 2 K. Let f 2 W�1E���
(
) be given, and let the

hypotheses A1)
� � A3)

� hold. Then there exists at least one solution u 2 K such

that:

hAu; v � ui � hf; v � ui � 0 8v 2 K (4.8)

Outline of proof. As in Theoerem 1, we may consider the auxiliary variational
inequality

hA2m(um); v � umi � hfm; v � umi � 0 8v 2 K (4.9)

The solvability of (4.9) is a consequence of [7]. Thus, there exists um 2 K solving
(4.9). Put v = 0 in (4.9) and make use of A2)

�; we have
Z



��(c2D
�um) � c3; where c3 = c3(kfkW�1L���

(
))

Hence, there exists a subsequence of um such that um �! u in C1(
). By the def-
inition of W1L��

(
) and the �(W1L��
(
), W�1E��(
)) sequential closedness

of K, we get u 2 K. To show that u solves (4.8) it remains to prove the assertions
(4.4) and (4.6) of Theorem 1. A similar argument as in the proof of Theorem 1,
may be used to �nish the proof.

Example. As a particular example which can be treated by Theorem 1,
outside the scope of [3], one may consider the nonlinear Dirichlet boundary-value
problem

1X
l=0

X
j�j=l

(�1)j�jD�(a�S
P
l jD

�ujP�2D�u) + jujejuj = f(x)

where (Sl)l2N is a sequence described in A1). In fact

A�(x;D

u) := a�S

p
l jD

�ujP�2D�u; j
j = j�j

B�(x;D
�u) := jujejuj

By the Sobolev's embedding theorem, for u 2 W l(a�; p)(
) (lp > n), the
functions D�u are bounded for all j�j � l. Therefore A�(x; �
) and B�(x; �
) are
L1(
) - functions and hence A1) and B1) follow. Condition A2) is obvious, while
A3) follows in view of the inequality

jxjP + jyjP � xy(jxjP�2 + jyjP�2) > 0 for x 6= y

Thus the hypotheses of Theorem 1 are satis�ed.
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Our example falls outside the scope of [3] beacause the term juj ejuj does not
verify the polynomial growth condition of [3].
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