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GENERALIZED HERMITE POLYNOMIALS

Gospava B. -Dor -devi�c

Abstract. We consider a new generalization of the classical Hermite polynomials and
prove the basic characteristics of such polynomials h�n;m(x) (the generating function, an explicit

representation, some recurrence relations, and the corresponding di�erential equation). Form = 2,
the polynomial h�n;m(x) reduces to Hn(x; �)=n!, where Hn(x; �) is the Hermite polynomial with

a parameter. For � = 1; hln;2(x) = Hn(x)=n!, where Hn(x) is the classical Hermite polynomial.

Taking � = 1 and n = mN+q, where N = [n=m] and 0 � q � m�1, we introduce the polynomials

P
(m;q)
N

(t) by hln;m(x) = (2x)qP
(m;q)
N

((2x)m), and prove that they satisfy an (m + 1)-term linear
recurrence relation.

1. Polynomials h�n;m(x). At the beginning, we de�ne polynomials h�n;m(x)
in the following manner.

De�nition 1.1. The polynomials h�n;m(x); � 2 R+; n;m 2 N , are de�ned by
the generating function

F (x; t) = e�(2xt�t
m) =

1X
n=0

h�n;m(x)tn: (1.1)

From above we get

F (x; t) = e�(2xt�t
m) =

1X
n=0

0
@[n=m]X

k=0

(�1)k
�n(2x)n�mk

�(m�1)kk!(n�mk)!

1
A tn:

Thus, we obtain the following explicit representation

h�n;m(x) = �n
[n=m]X
k=0

(�1)k
(2x)n�mk

�(m�1)kk!(n�mk)!
: (1.2)

Starting from (1.1) we can prove the following theorem.
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Theorem 1.1. The polynomials h�n;m(x) satisfy the three-term recurrence

relation

nh�n;m(x) = �(2xh�n�1;m(x) �mh�n�m;m(x)); n � m (1.3)

with initial values : h�n;m(x) = (2�x)n=n!; 0 � n � m� 1.

Now, we prove the following theorem :

Theorem 1.2. The polynomials h�n;m(x) satisfy the following relations:

2nh�n;m(x) = (2x)Dh�n;m(x)�mDh�n+1�m;m(x); (1.4)

Dkh�n;m(x) = (2�)kh�n�k;m(x); (1.5)

(2x)n

n!
=

[n=m]X
k=0

1

k!
hln�mk;m(x) (m � 2); (1.6)

unhln;m

�x
u

�
=

[n=m]X
k=0

(1� um)k

k!
hln�mk;m(x); (1.7)

hln;m(x+ y) =

nX
k=0

(2y)k

k!
hln�k;m(x); (1.8)

where D = d=dx is the di�erentiation operator.

Proof. Di�erentiating (1.1) with respect to x and t we �nd the next equalities:

(i) @F (x; t)=@x = 2�te�(2xt�t
m), (ii) @F (x; t)=@t = �(2x�mtm�1)e�(2xt�t

m).

Combining these equalities we obtain (1.4).

Di�erentiating the polynomials h�n;m(x) given by (1.2) k-times we get (1.5).

The generating function (1.1) for � = 1 reduces to

e2xt�t
m

=

1X
n=0

hln;m(x)tn; i.e. to e2xt = et
m

1X
n=0

h�n;m(x)tn:

Developing both sides of the last equality in t, we obtain

1X
n=0

(2x)n

n!
tn =

 
1X
n=0

tmn

n!

! 
1X
n=0

hln;m(x)tn

!

=

1X
n=0

0
@[n=m]X

k=0

1

k!
hln�mk;m(x)

1
A tn:

Now, comparing coeÆcients of tn in the last equality we get (1.6).

Starting from e2xt�t
mum = e2xt�t

m

Æ et
m

�umtm , we get (1.7).

Finally, from the equality e2(x+y)t�t
m

= e2xt�t
m

Æ e2yt, we get

1X
n=0

tn
[n=m]X
k=0

(�1)k
(2x+ 2y)n�mk

k!(n�mk)!
=
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1X
n=0

tn
nX

k=0

(�1)k
(2x)n�kt(m�1)k

k!(n� k)!

! 
1X
n=0

tn(2y)n

n!

!
;

wherefrom, after some calculations, we obtain (1.8).

Corollary 1.1. For m = 2 and � = 1 the equalities (1.4){(1.8) reduce to

the corresponding relations for the classical Hermite polynomials.

At the end of this section we prove that the polynomials h�n;m(x) have an
interesting property.

Theorem 1.3. The polynomial h�n;m(x) is a particular solution of linear

homogeneous equation of m-th order given by

Ln(y) = y(m) � 2mm�1�m�1(xy � ny) = 0: (1.9)

Proof. Using (1.5) and the recurrence relation (1.3) we get

Ln[h
�
n;m(x)] = (2�)mh�n�m;m(x)� 2mm�1�m�1x(2�)h�n�1;m(x)

+ 2mm�1�m�1nh�n;m(x)

= 2mm�1�m�1(nh�n;m(x)� 2�xh�n�1;m(x) +m�h�n�m;m(x)) = 0:

2. Polynomials Pm;q
N (t). In this section we introduce a class of polynomials�

Pm;q
N (t)

	
1

N=0
. Let us suppose that n = mN + q, where N = [n=m] and 0 � q �

m� 1. Starting from (1.2) and taking � = 1, we have

hln;m(x) = (2x)q
NX
k=0

(�1)k
(2x)mN�mk

k!(mN + q �mk)!

= (2x)q
NX
k=0

(�1)k
((2x)m)N�k

k!(q +m(N � k))!

= (2x)qP
(m;q
N )(t); where t = (2x)m:

In this way we come to

Pm;q
N (t) =

NX
k=0

(�1)k
tN�k

k!(q +m(k + 1))!
: (2.1)

In fact, the polynomials Pm;q
N (t) depend on two parameters: m 2 N and

q 2 f0; 1; . . . ;m� 1g.

Using (1.3) for � = 1, i.e., nhln;m(x) = 2xhln�1;m(x) � mhln�m;m(x), where
n � m � 1, we can prove the folloving theorem:

Theorem 2.1 The polynomials Pm;q
N (t) satisfy the next recurrence relations:

(mN + q)P
(m;q)
N (t) = P

(m;q�1)
N (t)�mP

(m;q)
N�1 (t); for 1 � q � m� 1;

mNP
(m;0)
N (t) = tP

(m;m�1)
N�1 (t)�mP

(m;0)
N�1 (t); for q = 0:
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It is interesting to �nd a recurrence relation for the polynomials P
(m;q)
N (t)

where the parameters m and q are �xed.

Using the same method as in [3] we can prove the following result:

Theorem 2.2. The polynomials P
(m;q)
N (t) satisfy an (m+1)-term recurrence

relation of the form

mX
i=0

Ai;N;qP
(m;q)
N+1�i(t) = BN;qtP

(m;q)
N (t);

where BN;q and Ai;N;q (i = 0; 1; . . . ;m) are constants depending only on N , m
and q.

According to the explicit representation of polynomials P
(m;q)
N (t) given by

(2.1), we get:

Proposition 2.3 The polynomials P
(m;q)
N (t) have no negative real zeros.
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