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GENERALIZED HERMITE POLYNOMIALS

Gospava B. Dordevic

Abstract. We consider a new generalization of the classical Hermite polynomials and
prove the basic characteristics of such polynomials hf‘hm(a:) (the generating function, an explicit
representation, some recurrence relations, and the corresponding differential equation). For m = 2,
the polynomial hf‘hm(m) reduces to Hy(z,A)/n!, where Hy(z,)) is the Hermite polynomial with
a parameter. For A = 1, him(a:) = Hp(z)/n!, where Hy(z) is the classical Hermite polynomial.
Taking A = 1 and n = mN +¢, where N = [n/m] and 0 < ¢ < m—1, we introduce the polynomials
PI(Vm’q)(t) by hl, . (2) = (Zx)qP](Vm’Q)((Zx)m), and prove that they satisfy an (m + 1)-term linear
recurrence relation.

1. Polynomials h), ,,(x). At the beginning, we define polynomials h;, ,,, (x)
in the following manner.

Definition 1.1. The polynomials hi‘hm (r), A € RT, n,m € N, are defined by
the generating function

o0
F(z,t) = X = N"ph ()t (1.1)
n=0

From above we get

oo [[n/m]

. n(9 n—mk
Fz,t) = Memt—t") — Z Z (_l)k)\( A" (2x) .

m—1)k L. — |
=\ = kKl (n — mk)!

Thus, we obtain the following explicit representation

[n/m] (2m)n7mk

hy () = A" kz_% (_1)k)\(m—1)kk!(n et (1.2)

Starting from (1.1) we can prove the following theorem.
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THEOREM 1.1. The polynomials h?l,m(a:) satisfy the three-term recurrence

relation

with initial values : hi‘l’m(m) = (2/\33) /nl, 0<n S m — 1.

Now, we prove the following theorem :

THEOREM 1.2. The polynomials h m(T) satisfy the following relations:
2nhi\z,m(m) = (21’)Dh>\ (1‘) mD n+17m,m(x); (14)
DFhpy (@) = (2N Ry (2); (1.5)

[n/m]
2x)" 1
B2 N B @) (m>2); (16
k=0
[n/m] myk
npl LAY (I—u™)* .
u hn,m (U) - ];) k! hn—mk,m(m)’ (17)
2y
Moo+ =3 B0, @), (19
k=0

where D = d/dx is the differentiation operator.

Proof. Differentiating (1.1) with respect to « and ¢ we find the next equalities:
(i) OF(z,t)/0x = 2xter22t=t™) (i) OF(x,t)/0t = A\(2z —m

tm—l)e)\(2act—tm) )

Combining these equalities we obtain (1.4).
Differentiating the polynomials hj . (x) given by (1.2) k-times we get (1.5).
The generating function (1.1) for A = 1 reduces to

e2et=t" Zh z)t", ie. to e*” Zh

Developing both sides of the last equality in ¢, we obtaln

S e (55) (S

n=0 n=0
oo [[n/m] 1
= Z Eh%—mk,m(m) t"
n=0 \ k=0

Now, comparing coefficients of " in the last equality we get (1.6).
Starting from e2#!—t" 4" = g2el—t" o " U e et (1.7).

Finally, from the equality e2(#T9)t—t" = g22t—t" ¢ o220 o get

il e

Ztn Z El(n — mk)!

k=0
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0 N 2% nfkt(mfl)k > " (29)"
(Zt Z(_l)k(k)!(n——k)!> (Z o )

n=0 k=0

wherefrom, after some calculations, we obtain (1.8).

COROLLARY 1.1. Form =2 and X\ = 1 the equalities (1.4)—(1.8) reduce to
the corresponding relations for the classical Hermite polynomials.

At the end of this section we prove that the polynomials hﬁ;m(m) have an
interesting property.

THEOREM 1.3. The polynomial h?‘Lm(a:) is a particular solution of linear
homogeneous equation of m-th order given by

Ln(y) = y'"™ — 2mm= A" (zy — ny) = 0. (1.9)
Proof. Using (1.5) and the recurrence relation (1.3) we get
L[l (@)] = @A) hiy (@) = 27m T AT (20 Ry (2)
+ Qmm_l)\m_lnhf‘hm(w)

= Qmmfl)\mfl(nh?‘hm(w) — 2\zh)) (x) + m)\h?;_mm(g;)) =0.

n—1,m

2. Polynomials P"?(t). In this section we introduce a class of polynomials
{P](,n’q(t)}]ovozo. Let us suppose that n = mN + ¢, where N = [n/m] and 0 < ¢ <
m — 1. Starting from (1.2) and taking A = 1, we have

N

By (@) = (22)7 Y (=D
k=0
T ((22)™)N—+

= @Y (D e Ty !

k=0

(Qx)mN—mk
(mN + g —mk)!

= (22)"P{™")(t), where t = (22)™.
In this way we come to

N _k
tN k

> (D T I

k=0

P () =

(2.1)

In fact, the polynomials Py"?(t) depend on two parameters: m € N and
qge{0,1,...,m—1}

Using (1.3) for A = 1, i.e., nhl,,, (z) = 2zhl,_, . (z) — mhl,_,, . (z), where
n > m > 1, we can prove the folloving theorem:

THEOREM 2.1 The polynomials P\ (t) satisfy the next recurrence relations:
(mN + )Py (8) = Py (0) = mPY™ (1), for1<q<m—1,
mN PO () = P () — mPUO(8),  for g = 0.
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It is interesting to find a recurrence relation for the polynomials P](Vm’q) (t)

where the parameters m and ¢ are fixed.
Using the same method as in [3] we can prove the following result:

P(m7q)

THEOREM 2.2. The polynomials Py " (t) satisfy an (m+1)-term recurrence

relation of the form
m
Z Ai,N,qPJ(vri’f)—i(t) = BN,thJ(vmm (t)7
i=0

where By g and A;ng (i = 0,1,...,m) are constants depending only on N, m
and q.

According to the explicit representation of polynomials PI(Vm"I) (t) given by
(2.1), we get:

PROPOSITION 2.3 The polynomials P](meQ) (t) have no negative real zeros.
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