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ON M-BLOCH FUNCTIONS

Miroljub Jevtié¢ and Miroslav Pavlovié

Abstract. We define the class M, which contains eigenfunctions of the invariant Laplacian
derivatives of M-harmonic functions, etc. For f € M we define || f||s and derive several quantities
equivalent to || f||s. Particularly, if f is M-harmonic function, then ||f||s is the usual Bloch norm.
Higher-order derivatives characterisation of M-harmonic Bloch space is also given.

1. Introduction. Let B be the open unit ball in C" with (normalized)
volume measure v. Let S denote the boundary of B, and let o be the usual rotation
invariant measure defined on S.

Let A be the invariant Laplacian on B. That is, Af(z) = A(f o ¢.)(0),
f € C%(B), where A is the ordinary Laplacian and ¢. the standard automorphism
of B (¢, € Aut(B)) taking 0 to z [13].

For z € B and r between 0 and 1 let E,(z) = {w € B : |p,(w)| < r}. We
shall set |E,.(2)| = v(E,(z)).

For fixed 7,0 <r < 1,0 < p < o0 and f € C(B), we define

f(z, T) / fw) dv(w

MOpf(z,r):< / |f(w) = f(z,7)|? dv(w ))1/1’, 0<p< oo,

MOu f(2,7) :sup{|f(w) —f(z,r)| L we Er(z)} ,

M0 = (i [ 17w - s avta ))1/,,’ 0<p<oo,
E,, (2)

MO f(z,r) =sup{|f(w) — f(2)| : w e E.(2)}.
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A function f € C*(B) is said to be of class M if there is a constant K,
0 < K < oo, such that ‘Af(z) < Kr=>MO*_f(z,r), forall z € B, 0 < r < 1.

To show that M contains eigenfunctions of A, we need the following lemma:

LeEMMA 1.1 [12]. If f € C*(B) and 0 <r < 1, then

£(0) = / F(r€) do(€) - / Af(2)G(j2].r) dr(2),
S rB

”
1
where dr(z) = (1—|2]*) " tdv(z) and G(t,r) = o /plfzn(l —p*)" tdp,
n
O0<t<r<L t

PROPOSITION 1.2. Iffe X\,A€C, i.e. Af =\f, then f € M.

Proor. By Lemma 1.1,

/ (f(r€) — £(0)) dor(€) = A / ((2) = F(0)G (2], ) dr(z) + AF(0) / G(j2),r) dr(2).
rB

S rB

Using the definition of G(|z|,7) and Fubini’s Theorem, we get

[t are) = o [0 =g ap [ are) = o [o0-0)ap
rB 0 pB 0

Combining these results we obtain
[0 = 1) dr(©) =X [ (£(2) = FO)IG(2],r) dr(e) + BF(O0) - Tog 1.
S rB

This implies that |Af(0)] < Kr=2MO?*_ f(0,r). If z is arbitrary, we consider
the function f o ,.

Recall that a function f is M-harmonic, f € M, if Af = 0. An application
of representation theorems for derivatives of M-harmonic functions obtained in
[2], shows that if f € M, then all derivatives of f, which, in general, are not
M-harmonic, are in M.

For f € CY(B),Df = (0f/0z1,...,0f/0z,) denotes the complex gradient of
£, Vf =(0f)0xy1,...,0f]0x2) ; 2k = Tag—1 + ix2r ,k = 1,2,...,n, denotes the
real gradient of f.

For f € C'(B), let ﬁf(z) = D(f op.)(0), z € B and @f(z) = V(f 0,)(0),
z € B, be the invariant complex gradient of f and the invariant real gradient of
[ respectively. We say that f € M is a M-Bloch function, and write f € MB, if
1fllz = sup.ep |V f(2)] < oo.



On M-Bloch functions 63

Let ((-,-) be a Bergman metric on B. By definition [11, p. 45] 3 is the
“integrated form” of the infinitesimal metric

2

G = i) = 5 (55

th@zO

where K (z,w) = (1 — {z,w))™""! is the Bergman kernel for B.
For f € C'(B), the following quantity, depending on f, will play a special

role in ,
D 2 +|{D 1/2
050 = sup { WD) P+ 1(DFe). ) )12 )
Jw|=1 <sz; U))
Let || - ||g denote the Lipschitz norm, i.e. if f is a continuous function on B,

then || f|| is the smallest value A > 0 for which |f(z) — f(w)| < AB(z,w), z,w € B.
We say that f € Lip 8 if || f]|g < oo.

We are now ready to assert our first result. For f € M we give several different
quantities equivalent to || f||s-

THEOREM 1. Let0<p<ooand 0 <r < 1. If f € M, then the following
statements are equivalent:

(i) felLipp,
1/p
(i) sup@Qpf(z) < oo, where Qpf(z </|f o (w) — f(2)P dV(M)) ,

z€EB

(iii) sup MOL f(z,1) < 00, (iv) sup MO;f(z,r) < o0,
zEB z2€B
(v) feMB, (vi) sup Qf(z) < o0
zEB
(vii) sup MO f(z,7) < o0, (viii) sup MO, f(z,r) < 0.
zEB z2€B

Theorem 1 was first proved for the class H of holomorphic functions, then for
M-harmonic functions ([4], [15], [3], [7], [8]).

Since H C M C M, a natural question is: What is the largest class for which
Theorem 1 remains valid?

For f € M let be 0f(z) = (aazf ""g""’%""’%) and for any

positive integer m we can write

O"f(2) = (00 () i @d 0" = > 0707 f(2)]

[a|+]B|=m

where

dlal+181 £ ()

929" ,
1) = 020, ..., 020070, 07
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and a and # are multi-indices.

Our second result is the following theorem which relates the Bloch norm of an
M-harmonic function with quantities involving integrals of higher order derivatives
of the function. Even though ||f||z , f € M, is not a norm, we refer to || f||sz as to
the Bloch’s norm of the function f. The quantity |f(0)| + || f||z defines a norm on
the linear space M which, equipped with this norm, is a Banach space.

THEOREM 2. Let0 < p < 00,0 <r <1 and m € N. Then, for an M-
harmonic function f, the following are equivalent

©) lflls < oo, (i) jlelg(l = 12DI0f ()| < o0,
(iif) jlelg(l — [2])™0™ f(2)] < oo,

z€EB
E,.(z

) s [ 107 @ o) dvw) < oo,
)

For analytic functions this theorem was proved in [5] and [14].
In [9] it was established that (i) and (ii) are equivalent. More precisely, the
following theorem was proved:

THEOREM 3. Let f € M. Then the following statements are equivalent:
@ Nflls < oo, (i) Slelg(l = 2D|9f(2)] < o0,
(iii) sgg(l — 2 (IRf(2)| + |Rf (2)]) < o0,

0

n
where, as usual, R denotes the radial derivative R = Z zja—.
Zj

j=1

2. Proof of Theorem 1. From Theorem 13 [6, p.329] it follows that
(i)=(ii)<(iii). It is trivial that (iii)=(iv). That (iv) implies (v) follows from the
following lemma.

LEMMA 2.1 [10]. Let 0 < r < 1 and 0 < p < oo. There is a constant
C = C(p,r,n) such that if f € M, then

¥ f )P < C / £(2) = f(w)Pdr(z), for allw e B.

E.(w)

In [10] it was proved that if f € C1(B), then Qf(p(z)) = Q(fop)(z),z € B,
for all ¢ € Aut(B) (see also [8]).
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Since a? = inf|,, =1 (Gow,w) > 0, it follows from the definition of Q f(z) that

1/2

ID(f 0 0:2)(0)]* +D(f 0 9:)(0))

1/2

IN
RQl—Qlr

Q(f 02)(0)

IDf(2))* +[Df(2))

Il
‘H

P
~

(), (see [12]),

5

and, hence Qf(2) = Q(fo.)(0) < C|V f(2)]. From the preceding we conclude that
(v)=(vi).

(In this paper the constant is denoted by C, which may indicate different
constants from one case to the other).

Let z,w € B and let v : [0,1] = B be a geodesic (in the Bergman metric)
with v(0) = z and (1) = w. Then

(p16:0).7) + (D16:0). 70| a

- st =| [ & reenal < [

<V [ QOG0 0) dr
< VEsup QF(E)B(zw).

£EB

Thus, || f|lg < V2sup,cp Qf(2). So we have proved that the statements (i) through
(vi) are equivalent.

The proof of Lemma 2.1 shows that if f € M, then [V f(z)| < C MO, f(z,r).
Obviously, MO, f(z,r) < C MOs f(z,7). Hence, (vii)=(viii)=(v).

Since
B (2)] = (1= [2)" T 2= (1= [u)"" ,u € E.(2),

we have

From this we conclude that MO f(z,r) < C MO% f(z,r). Thus (iii)=(vii). This
completes the proof of Theorem 1.
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3. Proof of Theorem 2. We start with the following
LEMMA 3.1. Let k > m be positive integers, 0 < p < 0o and 0 < r < 1.
There ezists a constant C = C(k,m,p,r,n) such that if f € M, then

8% f(w)|P < C(1 — |w])(m—P / |0™ f(2)|P dr(z), forallwe B.

E,.(w)

Proof. Let a and 8 are multi-indices. By equality (1.3) in [2] we have

F(=1B],~|al,n;r*)0%0" f (w) = /(1—(w,7“€>)_‘”"(1— (ré, w))~%19%9% £ (r€) do(€),

S

where F'(a,b,c;x) denotes the usual hypergeometric function. Multiplying this

equality by 2nr?"~1(1—r2)~"=L1h(r) dr, where h is a radial function which belongs to

C*(B), with compact support in B such that [ F(—|8|, —|a|,n;|z|*)h(z) dr(z) = 1,
B

then, by integrating from 0 to 1 and using the invariance of the measure 7, we obtain

9°9° f(2) dr(2)
(1= (w, pu ()11 = (pu(2), w))I?!

8°5° f(w) = / h(pu(2))
(3.1)

B

w1 — (B

= [ meuo) G S 0 ) (o)
B

by Theorem 2.2.2 of [13, p. 26].

Since, |1 — (2,w) | =2 1—|w|?, 2 € E.(w), by a suitable choice of a function h,
we obtain

10°9° f(w)| < C / 10°9° £ (=) dr(2).

E,.(w)
Hence,

o™ f(w)| < C / O™ £ (2)] dr(2).

E,.(w)

By Lemma 2.4 of [12] (see also [1]) we find that

0™ fw)[" < C / 0™ f(2)[P dr(2).

E.(w)

By differentiating under the integral sign in (3.1), and by using the expression
for ¢, (w) [13] and using the same arguments as above, we conclude that
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DT ) < o [ 10T art), weB 1<i<n,
E.(w)
and
|D;0%9° f (w)| < 1 _C|w| |00 f(2)|dr(z), weB,1<j<n.
E,.(w)
Therefore,
C
m—+1 < m
ol < 2 [ Tl

E;(w)

Adapting the argument given in [12, Lemma 2.4] we find that

c
3m+1pr<7/ O™ f(2)|P dr(2).
0" fW) < s [P ()
E,.(w)
An argument by induction shows that
c
k D m p
|0F f(w) P < A= wpE=mr / 0™ f(2)|P dr(2).
E,.(w)

4. Proof of Theorem 2. If z € E.(w) then 1 — |w|*> 2 1 — |2|2. Hence,
from Lemma 3.1, we have

(1=lz)™o"f(2)| < C / (1 = |wD|of (w)| dr(w) < C|fl|5 7(Er(2)),
E.(z)
by Theorem 3. Since 7(E,(z)) = r?*(1

—7r?)7" we have that (ii)=(iii).
Conversely, assuming that 8“8[’) f(0) =

0 we have that

107 1(2)] < / ‘d%aaéﬁf(m) dr
0

< C’/|8‘D‘|+‘B|+1f(rz)| dr .
0

Hence,
1
0 £(2)) < C / 94 £ (t2)] dt,

for any positive integer k. The implication (iii)=-(ii) follows immediately.

Since 7(E,(w)) is bounded by a constant independent of w, we have that
(iil) = (iv).

Let & > m be a positive integer. Then by Lemma 3.1 we have

(1= lD*lo" f(2)lP < © / 0™ f(w)[P(1 = |w])™ dr(w).

E.(z)
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Thus, (iv) implies that sup(1 — |2])*¥|0¥ f(2)| < co. This completes the proof of
zeEB

Theorem 2.

(1]

=
&
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