ON M-BLOCH FUNCTIONS

Miroljub Jevtić and Miroslav Pavlović

Abstract

We define the class M, which contains eigenfunctions of the invariant Laplacian derivatives of \mathcal{M}-harmonic functions, etc. For $f \in M$ we define $\|f\|_{\mathcal{B}}$ and derive several quantities equivalent to $\|f\|_{\mathcal{B}}$. Particularly, if f is \mathcal{M}-harmonic function, then $\|f\|_{\mathcal{B}}$ is the usual Bloch norm. Higher-order derivatives characterisation of \mathcal{M}-harmonic Bloch space is also given.

1. Introduction. Let B be the open unit ball in C^{n} with (normalized) volume measure ν. Let S denote the boundary of B, and let σ be the usual rotation invariant measure defined on S.

Let $\tilde{\Delta}$ be the invariant Laplacian on B. That is, $\tilde{\Delta} f(z)=\Delta\left(f \circ \varphi_{z}\right)(0)$, $f \in C^{2}(B)$, where Δ is the ordinary Laplacian and φ_{z} the standard automorphism of $B\left(\varphi_{z} \in \operatorname{Aut}(B)\right)$ taking 0 to $z[\mathbf{1 3}]$.

For $z \in B$ and r between 0 and 1 let $E_{r}(z)=\left\{w \in B:\left|\varphi_{z}(w)\right|<r\right\}$. We shall set $\left|E_{r}(z)\right|=\nu\left(E_{r}(z)\right)$.

For fixed $r, 0<r<1,0<p \leq \infty$ and $f \in C(B)$, we define

$$
\begin{aligned}
\widehat{f}(z, r) & =\frac{1}{\left|E_{r}(z)\right|} \int_{E_{r}(z)} f(w) d \nu(w) \\
M O_{p} f(z, r) & =\left(\frac{1}{\left|E_{r}(z)\right|} \int_{E_{r}(z)}|f(w)-\widehat{f}(z, r)|^{p} d \nu(w)\right)^{1 / p}, \quad 0<p<\infty \\
M O_{\infty} f(z, r) & =\sup \left\{|f(w)-\widehat{f}(z, r)|: w \in E_{r}(z)\right\} \\
M O_{p}^{*} f(z, r) & =\left(\frac{1}{\left|E_{r}(z)\right|} \int_{E_{r}(z)}|f(w)-f(z)|^{p} d \nu(w)\right)^{1 / p}, \quad 0<p<\infty \\
M O_{\infty}^{*} f(z, r) & =\sup \left\{|f(w)-f(z)|: w \in E_{r}(z)\right\}
\end{aligned}
$$

A function $f \in C^{2}(B)$ is said to be of class M if there is a constant K, $0<K<\infty$, such that $|\tilde{\Delta} f(z)| \leq K r^{-2} M O_{\infty}^{*} f(z, r)$, for all $z \in B, 0<r<1$.

To show that M contains eigenfunctions of $\tilde{\Delta}$, we need the following lemma:
Lemma 1.1 [12]. If $f \in C^{2}(B)$ and $0<r<1$, then

$$
f(0)=\int_{S} f(r \xi) d \sigma(\xi)-\int_{r B} \tilde{\Delta} f(z) G(|z|, r) d \tau(z)
$$

where $\quad d \tau(z)=\left(1-|z|^{2}\right)^{-n-1} d \nu(z) \quad$ and $\quad G(t, r)=\frac{1}{2 n} \int_{t}^{r} \rho^{1-2 n}\left(1-\rho^{2}\right)^{n-1} d \rho$,
$0<t<r<1$.
Proposition 1.2. If $f \in X_{\lambda}, \lambda \in C$, i.e. $\tilde{\Delta} f=\lambda f$, then $f \in M$.
Proof. By Lemma 1.1,

$$
\int_{S}(f(r \xi)-f(0)) d \sigma(\xi)=\lambda \int_{r B}(f(z)-f(0)) G(|z|, r) d \tau(z)+\tilde{\Delta} f(0) \int_{r B} G(|z|, r) d \tau(z)
$$

Using the definition of $G(|z|, r)$ and Fubini's Theorem, we get

$$
\int_{r B} G(|z|, r) d \tau(z)=\frac{1}{2 n} \int_{0}^{r} \rho^{1-2 n}\left(1-\rho^{2}\right)^{n-1} d \rho \int_{\rho B} d \tau(z)=\frac{1}{2 n} \int_{0}^{r} \rho\left(1-\rho^{2}\right)^{-1} d \rho
$$

Combining these results we obtain

$$
\int_{S}(f(r \xi)-f(0)) d \sigma(\xi)=\lambda \int_{r B}(f(z)-f(0)) G(|z|, r) d \tau(z)+\tilde{\Delta} f(0) \frac{1}{4 n} \log \frac{1}{1-r^{2}}
$$

This implies that $|\tilde{\Delta} f(0)| \leq K r^{-2} M O_{\infty}^{*} f(0, r)$. If z is arbitrary, we consider the function $f \circ \varphi_{z}$.

Recall that a function f is \mathcal{M}-harmonic, $f \in \mathcal{M}$, if $\tilde{\Delta} f=0$. An application of representation theorems for derivatives of \mathcal{M}-harmonic functions obtained in [2], shows that if $f \in \mathcal{M}$, then all derivatives of f, which, in general, are not \mathcal{M}-harmonic, are in M.

For $f \in C^{1}(B), D f=\left(\partial f / \partial z_{1}, \ldots, \partial f / \partial z_{n}\right)$ denotes the complex gradient of $f, \nabla f=\left(\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{2 n}\right) ; z_{k}=x_{2 k-1}+i x_{2 k}, k=1,2, \ldots, n$, denotes the real gradient of f.

For $f \in C^{1}(B)$, let $\tilde{D} f(z)=D\left(f \circ \varphi_{z}\right)(0), z \in B$ and $\tilde{\nabla} f(z)=\nabla\left(f \circ \varphi_{z}\right)(0)$, $z \in B$, be the invariant complex gradient of f and the invariant real gradient of f respectively. We say that $f \in M$ is a M-Bloch function, and write $f \in M \mathcal{B}$, if $\|f\|_{\mathcal{B}}=\sup _{z \in B}|\tilde{\nabla} f(z)|<\infty$.

Let $\beta(\cdot, \cdot)$ be a Bergman metric on B. By definition [11, p. 45] β is the "integrated form" of the infinitesimal metric

$$
G_{z}=\left(g_{i j}(z)\right)=\frac{1}{2}\left(\frac{\partial^{2}}{\partial z_{i} \partial \overline{z_{j}}} \log K(z, z)\right)
$$

where $K(z, w)=(1-\langle z, w\rangle)^{-n-1}$ is the Bergman kernel for B.
For $f \in C^{1}(B)$, the following quantity, depending on f, will play a special role in

$$
Q f(z)=\sup _{|w|=1}\left\{\frac{\left(|\langle D f(z), \bar{w}\rangle|^{2}+|\langle D \bar{f}(z), \bar{w}\rangle|^{2}\right)^{1 / 2}}{\sqrt{\left\langle G_{z} w, w\right\rangle}}\right\} .
$$

Let $\|\cdot\|_{\beta}$ denote the Lipschitz norm, i.e. if f is a continuous function on B, then $\|f\|_{\beta}$ is the smallest value $A \geq 0$ for which $|f(z)-f(w)| \leq A \beta(z, w), z, w \in B$. We say that $f \in \operatorname{Lip} \beta$ if $\|f\|_{\beta}<\infty$.

We are now ready to assert our first result. For $f \in M$ we give several different quantities equivalent to $\|f\|_{\mathcal{B}}$.

ThEOREM 1. Let $0<p<\infty$ and $0<r<1$. If $f \in M$, then the following statements are equivalent:
(i) $f \in \operatorname{Lip} \beta$,
(ii) $\sup _{z \in B} Q_{p} f(z)<\infty, \quad$ where $\quad Q_{p} f(z)=\left(\int_{B}\left|f \circ \varphi_{z}(w)-f(z)\right|^{p} d \nu(w)\right)^{1 / p}$,
(iii) $\sup _{z \in B} M O_{\infty}^{*} f(z, r)<\infty$,
(iv) $\sup _{z \in B} M O_{p}^{*} f(z, r)<\infty$,
(v) $f \in M \mathcal{B}$,
(vi) $\sup _{z \in B} Q f(z)<\infty$,
(vii) $\sup _{z \in B} M O_{\infty} f(z, r)<\infty$,
(viii) $\sup _{z \in B} M O_{p} f(z, r)<\infty$.

Theorem 1 was first proved for the class H of holomorphic functions, then for \mathcal{M}-harmonic functions ([4], [15], [3], [7], [8]).

Since $H \subset \mathcal{M} \subset M$, a natural question is: What is the largest class for which Theorem 1 remains valid?

For $f \in \mathcal{M}$ let be $\partial f(z)=\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}, \ldots, \frac{\partial f}{\partial \overline{z_{1}}}, \ldots, \frac{\partial f}{\partial \overline{z_{n}}}\right)$ and for any positive integer m we can write

$$
\partial^{m} f(z)=\left(\partial^{\alpha} \bar{\partial}^{\beta} f(z)\right)_{|\alpha|+|\beta|=m} \quad \text { and } \quad\left|\partial^{m} f(z)\right|^{2}=\sum_{|\alpha|+|\beta|=m}\left|\partial^{\alpha} \bar{\partial}^{\beta} f(z)\right|^{2}
$$

where

$$
\partial^{\alpha} \bar{\partial}^{\beta} f(z)=\frac{\partial^{|\alpha|+|\beta|} f(z)}{\partial z_{1}^{\alpha_{1}}, \ldots, \partial z_{n}^{\alpha_{n}} \partial{\overline{z_{1}}}^{\beta_{1}}, \ldots, \partial{\overline{z_{n}}}^{\beta_{n}}}
$$

and α and β are multi-indices.
Our second result is the following theorem which relates the Bloch norm of an \mathcal{M}-harmonic function with quantities involving integrals of higher order derivatives of the function. Even though $\|f\|_{\mathcal{B}}, f \in \mathcal{M}$, is not a norm, we refer to $\|f\|_{\mathcal{B}}$ as to the Bloch's norm of the function f. The quantity $|f(0)|+\|f\|_{\mathcal{B}}$ defines a norm on the linear space \mathcal{M} which, equipped with this norm, is a Banach space.

Theorem 2. Let $0<p<\infty, 0<r<1$ and $m \in N$. Then, for an \mathcal{M} harmonic function f, the following are equivalent
(i) $\|f\|_{\mathcal{B}}<\infty$,
(ii) $\sup _{z \in B}(1-|z|)|\partial f(z)|<\infty$,
(iii) $\sup _{z \in B}(1-|z|)^{m}\left|\partial^{m} f(z)\right|<\infty$,
(iv) $\sup _{z \in B} \int_{E_{r}(z)}\left|\partial^{m} f(w)\right|^{p}(1-|w|)^{m p-n-1} d \nu(w)<\infty$.

For analytic functions this theorem was proved in [5] and [14].
In [9] it was established that (i) and (ii) are equivalent. More precisely, the following theorem was proved:

ThEOREM 3. Let $f \in \mathcal{M}$. Then the following statements are equivalent:

$$
\begin{aligned}
& \text { (i) } \quad\|f\|_{\mathcal{B}}<\infty, \quad \text { (ii) } \sup _{z \in B}(1-|z|)|\partial f(z)|<\infty, \\
& \text { (iii) } \sup _{z \in B}\left(1-|z|^{2}\right)(|R f(z)|+|R \bar{f}(z)|)<\infty,
\end{aligned}
$$

where, as usual, R denotes the radial derivative $R=\sum_{j=1}^{n} z_{j} \frac{\partial}{\partial z_{j}}$.
2. Proof of Theorem 1. From Theorem 13 [6, p. 329] it follows that $(\mathrm{i}) \Rightarrow(\mathrm{ii}) \Leftrightarrow(\mathrm{iii})$. It is trivial that (iii) $\Rightarrow(\mathrm{iv})$. That (iv) implies (v) follows from the following lemma.

Lemma 2.1 [10]. Let $0<r<1$ and $0<p<\infty$. There is a constant $C=C(p, r, n)$ such that if $f \in M$, then

$$
|\tilde{\nabla} f(w)|^{p} \leq C \int_{E_{r}(w)}|f(z)-f(w)|^{p} d \tau(z), \quad \text { for all } w \in B
$$

In [10] it was proved that if $f \in C^{1}(B)$, then $Q f(\varphi(z))=Q(f \circ \varphi)(z), z \in B$, for all $\varphi \in \operatorname{Aut}(B)$ (see also [8]).

Since $\alpha^{2}=\inf _{|w|=1}\left\langle G_{0} w, w\right\rangle>0$, it follows from the definition of $Q f(z)$ that

$$
\begin{aligned}
Q\left(f \circ \varphi_{z}\right)(0) & \leq \frac{1}{\alpha}\left(\left|D\left(f \circ \varphi_{z}\right)(0)\right|^{2}+\left|D\left(\bar{f} \circ \varphi_{z}\right)(0)\right|^{2}\right)^{1 / 2} \\
& =\frac{1}{\alpha}\left(|\tilde{D} f(z)|^{2}+|\tilde{D} \bar{f}(z)|^{2}\right)^{1 / 2} \\
& =\frac{1}{\alpha \sqrt{2}}|\tilde{\nabla} f(z)|, \quad(\text { see }[\mathbf{1 2}])
\end{aligned}
$$

and, hence $Q f(z)=Q\left(f \circ \varphi_{z}\right)(0) \leq C|\tilde{\nabla} f(z)|$. From the preceding we conclude that (v) $\Rightarrow(\mathrm{vi})$.
(In this paper the constant is denoted by C, which may indicate different constants from one case to the other).

Let $z, w \in B$ and let $\gamma:[0,1] \rightarrow B$ be a geodesic (in the Bergman metric) with $\gamma(0)=z$ and $\gamma(1)=w$. Then

$$
\begin{aligned}
|f(z)-f(w)| & =\left|\int_{0}^{1} \frac{d}{d t} f(\gamma(t)) d t\right| \leq \int_{0}^{1}\left|\left\langle D f(\gamma(t)), \overline{\gamma^{\prime}(t)}\right\rangle+\overline{\left\langle D \bar{f}(\gamma(t)), \overline{\gamma^{\prime}(t)}\right\rangle}\right| d t \\
& \leq \sqrt{2} \int_{0}^{1} Q f(\gamma(t)) \sqrt{\left\langle G_{\gamma(t)} \gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle} d t \\
& \leq \sqrt{2} \sup _{\xi \in B} Q f(\xi) \beta(z, w)
\end{aligned}
$$

Thus, $\|f\|_{\beta} \leq \sqrt{2} \sup _{z \in B} Q f(z)$. So we have proved that the statements (i) through (vi) are equivalent.

The proof of Lemma 2.1 shows that if $f \in M$, then $|\tilde{\nabla} f(z)| \leq C M O_{p} f(z, r)$. Obviously, $M O_{p} f(z, r) \leq C M O_{\infty} f(z, r)$. Hence, (vii) \Rightarrow (viii) $\Rightarrow(v)$.

Since

$$
\left|E_{r}(z)\right| \cong\left(1-|z|^{2}\right)^{n+1} \cong\left(1-|u|^{2}\right)^{n+1}, u \in E_{r}(z)
$$

we have

$$
\begin{aligned}
|f(w)-\hat{f}(z, r)| & \leq C \int_{E_{r}(z)}|f(w)-f(u)| d \tau(u) \leq \\
& \leq C|f(w)-f(z)|+C \int_{E_{r}(z)}|f(u)-f(z)| d \tau(u)
\end{aligned}
$$

From this we conclude that $M O_{\infty} f(z, r) \leq C M O_{\infty}^{*} f(z, r)$. Thus (iii) $\Rightarrow($ vii $)$. This completes the proof of Theorem 1 .
3. Proof of Theorem 2. We start with the following

Lemma 3.1. Let $k \geq m$ be positive integers, $0<p<\infty$ and $0<r<1$. There exists a constant $C=C(k, m, p, r, n)$ such that if $f \in \mathcal{M}$, then

$$
\left|\partial^{k} f(w)\right|^{p} \leq C(1-|w|)^{(m-k) p} \int_{E_{r}(w)}\left|\partial^{m} f(z)\right|^{p} d \tau(z), \quad \text { for all } w \in B
$$

Proof. Let α and β are multi-indices. By equality (1.3) in [2] we have $F\left(-|\beta|,-|\alpha|, n ; r^{2}\right) \partial^{\alpha} \bar{\partial}^{\beta} f(w)=\int_{S}(1-\langle w, r \xi\rangle)^{-|\alpha|}(1-\langle r \xi, w\rangle)^{-|\beta|} \partial^{\alpha} \bar{\partial}^{\beta} f(r \xi) d \sigma(\xi)$,
where $F(a, b, c ; x)$ denotes the usual hypergeometric function. Multiplying this equality by $2 n r^{2 n-1}\left(1-r^{2}\right)^{-n-1} h(r) d r$, where h is a radial function which belongs to $C^{\infty}(B)$, with compact support in B such that $\int_{B} F\left(-|\beta|,-|\alpha|, n ;|z|^{2}\right) h(z) d \tau(z)=1$, then, by integrating from 0 to 1 and using the invariance of the measure τ, we obtain

$$
\begin{align*}
\partial^{\alpha} \bar{\partial}^{\beta} f(w) & =\int_{B} h\left(\varphi_{w}(z)\right) \frac{\partial^{\alpha} \bar{\partial}^{\beta} f(z) d \tau(z)}{\left(1-\left\langle w, \varphi_{w}(z)\right\rangle\right)^{|\alpha|}\left(1-\left\langle\varphi_{w}(z), w\right\rangle\right)^{|\beta|}} \\
& =\int_{B} h\left(\varphi_{w}(z)\right) \frac{(1-\langle w, z\rangle)^{|\alpha|}(1-\langle z, w\rangle)^{|\beta|}}{\left(1-|w|^{2}\right)^{|\alpha|+|\beta|}} \partial^{\alpha} \bar{\partial}^{\beta} f(z) d \tau(z) \tag{3.1}
\end{align*}
$$

by Theorem 2.2.2 of [13, p. 26].
Since, $|1-\langle z, w\rangle| \cong 1-|w|^{2}, z \in E_{r}(w)$, by a suitable choice of a function h, we obtain

$$
\left|\partial^{\alpha} \bar{\partial}^{\beta} f(w)\right| \leq C \int_{E_{r}(w)}\left|\partial^{\alpha} \bar{\partial}^{\beta} f(z)\right| d \tau(z)
$$

Hence,

$$
\left|\partial^{m} f(w)\right| \leq C \int_{E_{r}(w)}\left|\partial^{m} f(z)\right| d \tau(z)
$$

By Lemma 2.4 of [12] (see also [1]) we find that

$$
\left|\partial^{m} f(w)\right|^{p} \leq C \int_{E_{r}(w)}\left|\partial^{m} f(z)\right|^{p} d \tau(z)
$$

By differentiating under the integral sign in (3.1), and by using the expression for $\varphi_{z}(w)[\mathbf{1 3}]$ and using the same arguments as above, we conclude that

$$
\left|D_{j} \partial^{\alpha} \bar{\partial}^{\beta} f(w)\right| \leq \frac{C}{1-|w|} \int_{E_{r}(w)}\left|\partial^{\alpha} \bar{\partial}^{\beta} f(z)\right| d \tau(z), \quad w \in B, 1 \leq j \leq n
$$

and

$$
\left|\bar{D}_{j} \partial^{\alpha} \bar{\partial}^{\beta} f(w)\right| \leq \frac{C}{1-|w|} \int_{E_{r}(w)}\left|\partial^{\alpha} \bar{\partial}^{\beta} f(z)\right| d \tau(z), \quad w \in B, 1 \leq j \leq n
$$

Therefore,

$$
\left|\partial^{m+1} f(w)\right| \leq \frac{C}{1-|w|} \int_{E_{r}(w)}\left|\partial^{m} f(z)\right| d \tau(z)
$$

Adapting the argument given in [12, Lemma 2.4] we find that

$$
\left|\partial^{m+1} f(w)\right|^{p} \leq \frac{C}{(1-|w|)^{p}} \int_{E_{r}(w)}\left|\partial^{m} f(z)\right|^{p} d \tau(z)
$$

An argument by induction shows that

$$
\left|\partial^{k} f(w)\right|^{p} \leq \frac{C}{(1-|w|)^{(k-m) p}} \int_{E_{r}(w)}\left|\partial^{m} f(z)\right|^{p} d \tau(z)
$$

4. Proof of Theorem 2. If $z \in E_{r}(w)$ then $1-|w|^{2} \cong 1-|z|^{2}$. Hence, from Lemma 3.1, we have

$$
(1-|z|)^{m}\left|\partial^{m} f(z)\right| \leq C \int_{E_{r}(z)}(1-|w|)|\partial f(w)| d \tau(w) \leq C\|f\|_{\mathcal{B}} \tau\left(E_{r}(z)\right)
$$

by Theorem 3. Since $\tau\left(E_{r}(z)\right)=r^{2 n}\left(1-r^{2}\right)^{-n}$, we have that (ii) \Rightarrow (iii).
Conversely, assuming that $\partial^{\alpha} \bar{\partial}^{\beta} f(0)=0$, we have that

$$
\left|\partial^{\alpha} \bar{\partial}^{\beta} f(z)\right| \leq \int_{0}^{1}\left|\frac{d}{d r} \partial^{\alpha} \bar{\partial}^{\beta} f(r z) d r\right| \leq C \int_{0}^{1}\left|\partial^{|\alpha|+|\beta|+1} f(r z)\right| d r
$$

Hence,

$$
\left|\partial^{k} f(z)\right| \leq C \int_{0}^{1}\left|\partial^{k+1} f(t z)\right| d t
$$

for any positive integer k. The implication (iii) \Rightarrow (ii) follows immediately.
Since $\tau\left(E_{r}(w)\right)$ is bounded by a constant independent of w, we have that (iii) \Rightarrow (iv).

Let $k \geq m$ be a positive integer. Then by Lemma 3.1 we have

$$
(1-|z|)^{k p}\left|\partial^{k} f(z)\right|^{p} \leq C \int_{E_{r}(z)}\left|\partial^{m} f(w)\right|^{p}(1-|w|)^{m p} d \tau(w)
$$

Thus, (iv) implies that $\sup _{z \in B}(1-|z|)^{k}\left|\partial^{k} f(z)\right|<\infty$. This completes the proof of Theorem 2.

REFERENCES

[1] P. Ahern, J. Bruna, Maximal and area integral characterization of Hardy-Sobolev spaces in the unit ball of C^{n}, Rev. Math. Iberoamericana 4 (1988), 123-153.
[2] P. Ahern, C. Cascante, Exceptional sets for Poisson integral of potentials on the unit sphere in $C^{n}, p \leq 1$, Pacific J. Math. 153 (1992), 1-15.
[3] J. Arazy, S. Fisher, S. Janson, J. Peetre, Membership of Hankel operators on the ball in unitary ideals, J. London Math. Soc. 43 (1991), 485-508.
[4] S. Axler, The Bergman space, the Bloch space and commutators of multplication operators, Duke Math. J. 53 (1986), 315-332.
[5] F. Beatrus, J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. 256 (1989), 1-57.
[6] D. Békollé, C. A. Berger, L. A. Coburn, K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350.
[7] K.Hahn, E. Youssfi, Möbius invariant Besov p-spaces and Hankel operators in the Bergman space on the ball in C^{n}, Complex Variables 17 (1991), 89-104.
[8] K. Hahn, E. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the ball in C^{n}, Manuscripta Math. 71 (1991), 67-81.
[9] M. Jevtić, M. Pavlović, On M-harmonic Bloch space, Proc. Amer. Math. Soc. (to appear).
[10] M. Jevtić, M. Pavlović, M-Besov p-clases and Hankel operators in the Bergman space on the unit ball, (submited for publication).
[11] S. Krantz, Function Theory of Several Complex Variables, Willey, New York, 1982.
[12] M. Pavlović, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball, Indag. Math. 2 (1991), 89-98.
[13] W. Rudin, Function Theory in the Unit Ball of C^{n}, Springer-Verlag, New York, 1980.
[14] K. Stroethoff, Besov-type characterizations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), 405-420.
[15] R. Timoney, Bloch functions in several complex variables, I, Bull. London Math. Soc. 12 (1980), 241-267.

Matematički fakultet
(Received 0605 1992)
Studentski $\operatorname{trg} 16$
11001 Beograd, p.p. 550
Yugoslavia

