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ON M-BLOCH FUNCTIONS

Miroljub Jevti�c and Miroslav Pavlovi�c

Abstract. We de�ne the classM , which contains eigenfunctions of the invariant Laplacian
derivatives ofM-harmonic functions, etc. For f 2M we de�ne kfkB and derive several quantities
equivalent to kfkB. Particularly, if f isM-harmonic function, then kfkB is the usual Bloch norm.
Higher-order derivatives characterisation ofM-harmonic Bloch space is also given.

1. Introduction. Let B be the open unit ball in Cn with (normalized)
volume measure �. Let S denote the boundary of B, and let � be the usual rotation
invariant measure de�ned on S.

Let ~� be the invariant Laplacian on B. That is, ~�f(z) = �(f Æ 'z)(0);
f 2 C2(B), where � is the ordinary Laplacian and 'z the standard automorphism
of B ('z 2 Aut(B)) taking 0 to z [13].

For z 2 B and r between 0 and 1 let Er(z) = fw 2 B : j'z(w)j < r g. We
shall set jEr(z)j = �(Er(z)).

For �xed r; 0 < r < 1; 0 < p �1 and f 2 C(B), we de�ne

bf(z; r) = 1

jEr(z)j
Z

Er(z)

f(w) d�(w) ;

MOpf(z; r) =

�
1

jEr(z)j
Z

Er(z)

jf(w)� bf(z; r)jp d�(w)�1=p

; 0 < p <1 ;

MO1f(z; r) = sup
n
jf(w) � bf(z; r)j : w 2 Er(z)

o
;

MO�
pf(z; r) =

�
1

jEr(z)j
Z

Er(z)

jf(w)� f(z)jp d�(w)
�1=p

; 0 < p <1 ;

MO�
1f(z; r) = sup fjf(w)� f(z)j : w 2 Er(z)g :
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A function f 2 C2(B) is said to be of class M if there is a constant K,

0 < K <1, such that
��� ~�f(z)��� � Kr�2MO�

1f(z; r), for all z 2 B, 0 < r < 1:

To show that M contains eigenfunctions of ~�, we need the following lemma:

Lemma 1.1 [12]. If f 2 C2(B) and 0 < r < 1, then

f(0) =

Z
S

f(r�) d�(�) �
Z
rB

~�f(z)G(jzj; r) d�(z);

where d�(z) = (1� jzj2)�n�1 d�(z) and G(t; r) =
1

2n

rZ
t

�1�2n(1� �2)n�1 d�;

0 < t < r < 1:

Proposition 1.2. If f 2 X�; � 2 C; i.e. ~�f = �f , then f 2M .

Proof. By Lemma 1.1,Z
S

(f(r�)� f(0)) d�(�) = �

Z
rB

(f(z)� f(0))G(jzj; r) d�(z) + ~�f(0)

Z
rB

G(jzj; r) d�(z):

Using the de�nition of G(jzj; r) and Fubini's Theorem, we getZ
rB

G(jzj; r) d�(z) = 1

2n

rZ
0

�1�2n(1� �2)n�1 d�

Z
�B

d�(z) =
1

2n

rZ
0

�(1� �2)�1 d�:

Combining these results we obtainZ
S

(f(r�)� f(0)) d�(�) = �

Z
rB

(f(z)� f(0))G(jzj; r) d�(z) + ~�f(0)
1

4n
log

1

1� r2
:

This implies that j ~�f(0)j � Kr�2MO�
1f(0; r): If z is arbitrary, we consider

the function f Æ 'z .
Recall that a function f is M-harmonic, f 2 M, if ~�f = 0. An application

of representation theorems for derivatives of M-harmonic functions obtained in
[2], shows that if f 2 M, then all derivatives of f , which, in general, are not
M-harmonic, are in M .

For f 2 C1(B),Df = (@f=@z1; . . . ; @f=@zn) denotes the complex gradient of
f , rf = (@f=@x1; . . . ; @f=@x2n) ; zk = x2k�1 + ix2k ; k = 1; 2; . . . ; n; denotes the
real gradient of f .

For f 2 C1(B), let ~Df(z) = D(f Æ 'z)(0), z 2 B and ~rf(z) = r(f Æ 'z)(0),
z 2 B, be the invariant complex gradient of f and the invariant real gradient of
f respectively. We say that f 2 M is a M -Bloch function, and write f 2 MB, if
kfkB = supz2B j ~rf(z)j <1:
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Let �(�; �) be a Bergman metric on B. By de�nition [11, p. 45] � is the
\integrated form" of the in�nitesimal metric

Gz = (gij(z)) =
1

2

�
@2

@zi@zj
logK(z; z)

�
;

where K(z; w) = (1� hz; wi)�n�1 is the Bergman kernel for B.

For f 2 C1(B), the following quantity, depending on f , will play a special
role in

Qf(z) = sup
jwj=1

(
(j hDf(z); �wi j2 + j 
D �f(z); �w

� j2)1=2p
hGzw;wi

)
:

Let k � k� denote the Lipschitz norm, i.e. if f is a continuous function on B,
then kfk� is the smallest value A � 0 for which jf(z)�f(w)j � A�(z; w); z; w 2 B.
We say that f 2 Lip� if kfk� <1.

We are now ready to assert our �rst result. For f 2M we give several di�erent
quantities equivalent to kfkB.

Theorem 1. Let 0 < p < 1 and 0 < r < 1. If f 2 M , then the following

statements are equivalent:

(i) f 2 Lip�;

(ii) sup
z2B

Qpf(z) <1; where Qpf(z) =

�Z
B

jf Æ 'z(w)� f(z)jp d�(w)
�1=p

;

(iii) sup
z2B

MO�
1f(z; r) <1; (iv) sup

z2B
MO�

pf(z; r) <1;

(v) f 2MB; (vi) sup
z2B

Qf(z) <1;

(vii) sup
z2B

MO1f(z; r) <1; (viii) sup
z2B

MOpf(z; r) <1:

Theorem 1 was �rst proved for the class H of holomorphic functions, then for
M-harmonic functions ([4], [15], [3], [7], [8]).

Since H �M �M , a natural question is: What is the largest class for which
Theorem 1 remains valid?

For f 2 M let be @f(z) =

�
@f

@z1
; . . . ;

@f

@zn
; . . . ;

@f

@z1
; . . . ;

@f

@zn

�
and for any

positive integer m we can write

@mf(z) =
�
@�@�f(z)

�
j�j+j�j=m

and j@mf(z)j2 =
X

j�j+j�j=m

��@�@�f(z)��2 ;
where

@�@�f(z) =
@j�j+j�jf(z)

@z�11 ; . . . ; @z�nn @z1
�1 ; . . . ; @zn

�n
;
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and � and � are multi-indices.

Our second result is the following theorem which relates the Bloch norm of an
M-harmonic function with quantities involving integrals of higher order derivatives
of the function. Even though kfkB , f 2 M, is not a norm, we refer to kfkB as to
the Bloch�s norm of the function f . The quantity jf(0)j+ kfkB de�nes a norm on
the linear space M which, equipped with this norm, is a Banach space.

Theorem 2. Let 0 < p < 1; 0 < r < 1 and m 2 N . Then, for an M-

harmonic function f , the following are equivalent

(i) kfkB <1; (ii) sup
z2B

(1� jzj)j@f(z)j <1;

(iii) sup
z2B

(1� jzj)mj@mf(z)j <1;

(iv) sup
z2B

Z
Er(z)

j@mf(w)jp(1� jwj)mp�n�1 d�(w) <1:

For analytic functions this theorem was proved in [5] and [14].

In [9] it was established that (i) and (ii) are equivalent. More precisely, the
following theorem was proved:

Theorem 3. Let f 2 M. Then the following statements are equivalent:

(i) kfkB <1; (ii) sup
z2B

(1� jzj)j@f(z)j <1;

(iii) sup
z2B

(1� jzj2)(jRf(z)j+ jR �f(z)j) <1;

where, as usual, R denotes the radial derivative R =

nX
j=1

zj
@

@zj
.

2. Proof of Theorem 1. From Theorem 13 [6, p. 329] it follows that
(i))(ii),(iii). It is trivial that (iii))(iv). That (iv) implies (v) follows from the
following lemma.

Lemma 2.1 [10]. Let 0 < r < 1 and 0 < p < 1. There is a constant

C = C(p; r; n) such that if f 2M , then

j ~rf(w)jp � C

Z
Er(w)

jf(z)� f(w)jp d�(z) ; for all w 2 B :

In [10] it was proved that if f 2 C1(B), then Qf('(z)) = Q(f Æ')(z); z 2 B,
for all ' 2 Aut(B) (see also [8]).
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Since �2 = inf jwj=1 hG0w;wi > 0, it follows from the de�nition of Qf(z) that

Q(f Æ 'z)(0) � 1

�

�jD(f Æ 'z)(0)j2 + jD( �f Æ 'z)(0)j2
�1=2

=
1

�

�j ~Df(z)j2 + j ~D �f(z)j2�1=2
=

1

�
p
2
j ~rf(z)j ; (see [12]) ;

and, hence Qf(z) = Q(f Æ'z)(0) � Cj ~rf(z)j: From the preceding we conclude that
(v))(vi).

(In this paper the constant is denoted by C, which may indicate di�erent
constants from one case to the other).

Let z; w 2 B and let 
 : [0; 1] ! B be a geodesic (in the Bergman metric)
with 
(0) = z and 
(1) = w. Then

jf(z)� f(w)j =
����Z 1

0

d

dt
f(
(t)) dt

���� � Z 1

0

����DDf(
(t)); 
0(t)E+ D
D �f(
(t)); 
0(t)

E���� dt
�
p
2

Z 1

0

Qf(
(t))
q


G
(t)
0(t); 
0(t)
�
dt

�
p
2 sup
�2B

Qf(�)�(z; w) :

Thus, kfk� �
p
2 supz2B Qf(z). So we have proved that the statements (i) through

(vi) are equivalent.

The proof of Lemma 2.1 shows that if f 2M , then j ~rf(z)j � CMOpf(z; r).
Obviously, MOpf(z; r) � CMO1f(z; r). Hence, (vii))(viii))(v).

Since

jEr(z)j �= (1� jzj2)n+1 �= (1� juj2)n+1 ; u 2 Er(z);

we have

jf(w)� f̂(z; r)j � C

Z
Er(z)

jf(w) � f(u)j d�(u) �

� Cjf(w) � f(z)j+ C

Z
Er(z)

jf(u)� f(z)j d�(u):

From this we conclude that MO1f(z; r) � CMO�
1f(z; r). Thus (iii))(vii). This

completes the proof of Theorem 1.
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3. Proof of Theorem 2. We start with the following

Lemma 3.1. Let k � m be positive integers, 0 < p < 1 and 0 < r < 1.
There exists a constant C = C(k;m; p; r; n) such that if f 2M, then

j@kf(w)jp � C(1� jwj)(m�k)p
Z

Er(w)

j@mf(z)jp d�(z) ; for all w 2 B :

Proof. Let � and � are multi-indices. By equality (1.3) in [2] we have

F (�j�j;�j�j; n; r2)@�@�f(w) =
Z
S

(1�hw; r�i)�j�j(1�hr�; wi)�j�j@�@�f(r�) d�(�);

where F (a; b; c;x) denotes the usual hypergeometric function. Multiplying this
equality by 2nr2n�1(1�r2)�n�1h(r) dr, where h is a radial function which belongs to
C1(B), with compact support in B such that

R
B

F (�j�j;�j�j; n; jzj2)h(z) d�(z) = 1,

then, by integrating from 0 to 1 and using the invariance of the measure � , we obtain

@�@�f(w) =

Z
B

h('w(z))
@�@�f(z) d�(z)

(1� hw;'w(z)i)j�j(1� h'w(z); wi)j�j

=

Z
B

h('w(z))
(1� hw; zi)j�j(1� hz; wi)j�j

(1� jwj2)j�j+j�j @�@�f(z) d�(z);

(3.1)

by Theorem 2.2.2 of [13, p. 26].

Since, j1�hz; wi j �= 1� jwj2 ; z 2 Er(w); by a suitable choice of a function h,
we obtain

j@�@�f(w)j � C

Z
Er(w)

j@�@�f(z)j d�(z):

Hence,

j@mf(w)j � C

Z
Er(w)

j@mf(z)j d�(z):

By Lemma 2.4 of [12] (see also [1]) we �nd that

j@mf(w)jp � C

Z
Er(w)

j@mf(z)jp d�(z):

By di�erentiating under the integral sign in (3.1), and by using the expression
for 'z(w) [13] and using the same arguments as above, we conclude that
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jDj@
�@�f(w)j � C

1� jwj
Z

Er(w)

j@�@�f(z)j d�(z) ; w 2 B ; 1 � j � n ;

and

j �Dj@
�@�f(w)j � C

1� jwj
Z

Er(w)

j@�@�f(z)j d�(z) ; w 2 B ; 1 � j � n :

Therefore,

j@m+1f(w)j � C

1� jwj
Z

Er(w)

j@mf(z)j d�(z):

Adapting the argument given in [12, Lemma 2.4] we �nd that

j@m+1f(w)jp � C

(1� jwj)p
Z

Er(w)

j@mf(z)jp d�(z):

An argument by induction shows that

j@kf(w)jp � C

(1� jwj)(k�m)p

Z
Er(w)

j@mf(z)jp d�(z):

4. Proof of Theorem 2. If z 2 Er(w) then 1� jwj2 �= 1� jzj2. Hence,
from Lemma 3.1, we have

(1� jzj)mj@mf(z)j � C

Z
Er(z)

(1� jwj)j@f(w)j d�(w) � CkfkB �(Er(z)) ;

by Theorem 3. Since �(Er(z)) = r2n(1� r2)�n, we have that (ii))(iii).

Conversely, assuming that @�@�f(0) = 0, we have that

j@�@�f(z)j �
1Z
0

���� ddr @�@�f(rz) dr
���� � C

1Z
0

��@j�j+j�j+1f(rz)�� dr :
Hence,

j@kf(z)j � C

1Z
0

j@k+1f(tz)j dt;

for any positive integer k. The implication (iii))(ii) follows immediately.

Since �(Er(w)) is bounded by a constant independent of w, we have that
(iii))(iv).

Let k � m be a positive integer. Then by Lemma 3.1 we have

(1� jzj)kpj@kf(z)jp � C

Z
Er(z)

j@mf(w)jp(1� jwj)mp d�(w):
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Thus, (iv) implies that sup
z2B

(1 � jzj)kj@kf(z)j < 1. This completes the proof of

Theorem 2.

REFERENCES

[1] P. Ahern, J. Bruna, Maximal and area integral characterization of Hardy-Sobolev spaces in
the unit ball of Cn, Rev. Math. Iberoamericana 4 (1988), 123{153.

[2] P. Ahern, C. Cascante, Exceptional sets for Poisson integral of potentials on the unit sphere
in Cn; p � 1, Paci�c J. Math. 153 (1992), 1{15.

[3] J. Arazy, S. Fisher, S. Janson, J. Peetre, Membership of Hankel operators on the ball in
unitary ideals, J. London Math. Soc. 43 (1991), 485{508.

[4] S. Axler, The Bergman space, the Bloch space and commutators of multplication operators,
Duke Math. J. 53 (1986) , 315{332.

[5] F. Beatrus, J. Burbea, Holomorphic Sobolev spaces on the ball , Dissertationes Math. 256
(1989), 1{57.

[6] D. B�ekoll�e, C. A. Berger, L. A. Coburn, K. H. Zhu, BMO in the Bergman metric on
bounded symmetric domains, J. Funct. Anal. 93 (1990), 310{350.

[7] K.Hahn, E. Youss�,M�obius invariant Besov p-spaces and Hankel operators in the Bergman
space on the ball in Cn, Complex Variables 17 (1991), 89{104.

[8] K. Hahn, E. Youss�, M-harmonic Besov p-spaces and Hankel operators in the Bergman
space on the ball in Cn, Manuscripta Math. 71 (1991), 67{81.

[9] M. Jevti�c, M. Pavlovi�c, OnM-harmonic Bloch space, Proc. Amer. Math. Soc. (to appear).

[10] M. Jevti�c, M. Pavlovi�c, M-Besov p-clases and Hankel operators in the Bergman space on
the unit ball , (submited for publication).

[11] S. Krantz, Function Theory of Several Complex Variables, Willey, New York, 1982.

[12] M. Pavlovi�c, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in
the unit ball , Indag. Math. 2 (1991), 89{98.

[13] W. Rudin, Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980.

[14] K. Stroetho�, Besov-type characterizations for the Bloch space, Bull. Austral. Math. Soc.
39 (1989), 405{420.

[15] R. Timoney, Bloch functions in several complex variables, I , Bull. London Math. Soc. 12
(1980), 241{267.

Matemati�cki fakultet (Received 06 05 1992)
Studentski trg 16
11001 Beograd, p.p. 550
Yugoslavia


