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ON THE SPACE OF ANALYTIC FUNCTIONS

OF LOGARITHMIC TYPE T

G.S. Srivastava and Arvind Kumar

Abstract. We consider the space of functions analytic in a �nite disc. Using the coeÆcient
characterization of the logarithmic type we de�ne a norm and show that the space obtained is
a Frech�et space. Characterizations for continuous linear functional and proper bases are also
obtained.

1. Introduction. The study of spaces of entire functions was initiated by
Ganapathy Tyer [3]. He introduced the notion of a proper base and established
a relationship between proper bases and automorphisms of the space. Arsov [1]
considered the space of functions analytic in the �nite disc jzj < R endowed with
the topology of uniform convergence on compact sets and obtained a relationship
between proper bases and linear homeomorphisms. Srivastava [5] de�ned a norm
on the space of analytic functions with the help of growth parameters and studied
the properties of this space.

Let UR denote the class of all functions f analytic in jzj < R < 1, where
f(z) =

P1
n=0 anz

n. We set M(r; f) =M(r) = maxjzj=r jf(z)j, 0 < r < R. Then f
is said to be of order �0 if

(1.1) lim
r!R

sup
log+ log+M(r)

� log log(R=r)
= �0; 0 � �0 �1;

where log+ x = max(0; logx) for x > 0. If 0 < �0 < 1 then the type T0 of f is
de�ned by

(1.2) lim
r!R

sup
�
log+M(r)(log(R=r))�0

�
= T0; 0 � T0 �1:

Srivastava [5] used the coeÆcient characterization of the type T0 to de�ne a norm
as follows. It is known [2] that

(1.3)
lim
n!1

sup
n�

log+ (janjR
n)
��0+1o

n��0 = T0A
�0+1;

where A = (�0 + 1)�
��0=(�0+1)
0 :
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Let UR(�0; T0) denote the class of all functions f , f(z) =
P1

n=0 anz
n, analytic

in the disc jzj < R, having growth parameters not exceeding (�0; T0). Then for
f 2 UR(�0; T0), we have

(1.4) lim
n!1

supn��0
�
log+ (janjR

n)
��0+1

� A�0+1T0:

For any Æ > 0, de�ne

kf ; �0; T0 + Æk = ja0j+

1X
n=1

janjR
nP (n; �0; T0 + Æ)

where P (n; �0; T0 + Æ) = exp
�
�An�0=(�0+1)(T0 + Æ)1=(�0+1)

�
. Evidently, if �0 = 0

or �0 =1, then the type T0 can not be de�ned and consequently the norm above
can not be de�ned either. In this paper, we study the spaces of analytic functions
of slow growth, (i.e. when �0 = 0). For such functions, the logarithmic order � is
de�ned as in [4]:

(1.5) lim
r!R

sup
log+ log+M(r)

log log[R=(R� r)]
= �; 0 � � �1:

Further, if 0 < � <1, the logarithmic type T is de�ned by

lim
r!R

sup
log+M(r)

flog[R=(R� r)]g
� = T; 0 � T �1:

For 1 < � <1, the logarithmic type T is given by [4; Lemma, p. 448]

(1.7) lim
n!1

sup
�
log+ (janjR

n) (log n)��
�
= T

We denote by UR(�; T ) the class of all functions f(z) =
P1

n=o anz
n analytic in the

disc jzj < R, and of logarithmic growth (�; T ), that is, the logarithmic order of f
does not exceed � and if f is of logarithmic order �, its logarithmic type T does
not exceed T , 1 < � < 1, 0 � T <1. From (1.7), it follows that f 2 UR(�; T ) if
and only if

(1.8) lim
n!1

sup
�
log+(janjR

n)(logn)��
�
� T:

From (1.8), we have for any " > 0 and all n > n0(")

(1.9) janj < R�n exp [(T + ")(logn)�] :

For each f 2 UR(�; T ) we de�ne for Æ > 0,

(1.10) kf ; �; T + Æk = ja0j+
1X
n=1

janjR
n exp [�(T + �)(logn)�] :

In view of (1.9), (1.10) clearly de�nes a norm for any Æ > 0. We denote
by UR(�; T; Æ) the space UR(�; T ) equiped with the norm (1.10). Let UR;�(�; T )
be the space UR(�; T ) equiped with the weakest topology which is stronger than
the topologies of each UR(�; T; Æ). The equivalent metric on UR;�(�; T ) can be
expressed as

(1.11) �(f; g) =

1X
q=1

2�q
kf � gkq

1 + kf � gkq

where kf � gkq = kf � g; �; T + 1=qk, as de�ned by (1.10).
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2. Linear transformations on UR;�(�; T ). In this section we obtain char-
acterization of continuous linear transformation on UR;�(�; T ). First we prove

Theorem 1. The space UR;�(�; T ) is a Frech�et space.

Proof. We show that the space UR;�(�; T ) is complete. Let ff�g be a Cauchy
sequence in UR;�(�; T ). Then it is a Cauchy sequence in each UR(�; T; Æ), Æ > 0.

Hence if we set f�(z) =
P1

n=0 a
(�)
n zn, then for a given � > 0 and q, there exists a

positive integer m0 = m0(q; �) such that kf� � f�k < � for �; � � m0. Thus

(2.1)
���a(�)0 � a

(�)
0

���+
1X
n=1

���a(�)n � a(�)n

���Rn exp [�(T + 1=q)(logn)�] < �

for �; � � m and q a �xed positive integer. Hence for n = 0; 1; 2; . . . , we get���a(�)n � a
(�)
n

��� < � for all �; � � m0. Hence
n
a
(�)
n

o1
�=1

is a Cauchy sequence of

complex numbers for each n = 0; 1; 2; . . . . Thus there exists a sequence fang
1
n=0 of

complex numbers such that lim�!1 a
(�)
n = an, n = 0; 1; 2; . . . . Let � !1 in (2.1).

Then for � � m0 we have

(2.2)
���a(�)0 � a0

���+
1X
n=1

���a(�)n � an

���Rn exp [�(T + 1=q)(logn)�] < �:

Let k be arbitrary integer, 1 � q < k. Since fm0
2 UR;�(�; T ), we have from (1.9),

���a(m0)
n

��� < R�n exp [(T + 1=k)(logn)�]

for n � N1(k; �). Also, janj �
���a(m0)
n

���+
���a(m0)
n � an

��� for any n. Hence for n � N 0
1

janj < �R�n exp [(T + 1=q)(logn)�] +R�n exp [(T + 1=k)(logn)�] :

Since � > 0 was arbitrary and k > q, there exists a positive integer N2(q) such that
for n > N2,

janjR
n exp [�(T + 1=q)(logn)�]

< � +R�n exp [f(T + 1=k)� (T + 1=q)g (logn)�] < 1:

Hence janj < R�n exp [(T + 1=q)(logn)�], n > N2. Thus the sequence fang satis-
�es (1.9) for every �xed q = 1; 2; . . . . So, f 2 UR;�(�; T ), where f(z) =

P1
n=0 anz

n.

Now from (2.2), for any �xed q, we have kf� � fkq < �; � � m0.

Hence f� ! f as � ! 1, in each UR(�; T; 1=q). Thus f� ! f in UR;�(�; T ),
and the space UR;�(�; T ) is complete, and therefore a Frech�et space.

In the next theorem, we give a characterization of linear continuous functional
on UR;�(�; T ). We thus have
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Theorem 2. A continuous linear functional F on UR;�(�; T ) is of the form

F (f) =
P1

n=0 anCn if and only if

(2.3) jCnj � ARn exp [�(T + 1=q)(logn)�] ; n � 1; q � 1;

where A is a positive number depending on � but not on n and f(z) =
P1

n=0 anz
n.

Proof. Let F :UR;�(�; T ) ! C be a continuous linear functional, where C
is the �eld of complex numbers. Then for any sequence ffmg, fm 2 UR;�(�; T )
such that fm ! f as m ! 1 in UR;�(�; T ), we have F (fm) ! F (f). Now
let f(z) =

P1
n=0 anz

n where an's satisfy (1.9). Then f 2 UR;�(�; T ). Also, for
m = 0; 1; 2; . . . ; let us put fm(z) =

Pm
n=0 anz

n. Then fm 2 UR;�(�; T ) for each
m = 0; 1; 2; . . . . Let q be any �xed, positive integer and let 0 < " < 1=q. Then
from (1.9) we can �nd a positive integer m such that

janj < R�n exp [(T + ")(logn)�] ; n > m:

Now

kf � fmkq =







1X

n=m+1

anz
n







q

=

1X
n=m+1

janjR
n exp [�(T + 1=q)(logn)�]

<

1X
n=m+1

exp [(log n)�("� 1=q)] < ":

for suÆciently large values of m. Hence for these values of m,

�(f; fm) =

1X
q=1

2�q
kf � fmkq

1 + kf � fmkq
<

1X
q=1

2�q
�

"

1 + "

�
< ":

Hence fm ! f in UR;�(�; T ) as m ! 1. Therefore limm!1 F (fm) = F (f). Let
us put Cn = F (zn). Then

F (f) = lim
m!1

F (fm) = lim
m!1

mX
n=0

anCn =

1X
n=0

anCn:

Further, jCnj = jF (zn)j. Since F is continuous on UR;�(�; T ), it is continuous on
UR(�; T; 1=q) for each q = 1; 2; . . . . Consequently there exists a positive number A
independent of q such that

jF (zn)j = jCnj � A k�nkq ; q � 1; where �n(z) = zn:

Now, using the de�nition of the norm for �n(z), we get

jCnj � ARn exp [�(T + 1=q)(logn)�] for all n � 1, q � 1.

Hence we have

F (f) =

1X
n=0

anCn; where Cn's satisfy (2.3).
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Conversely suppose that Cn's satisfy (2.3) and for any sequence of complex num-
bers fang

1
n=0 let F (f) =

P1
n=0 anCn. Then for q � 1,

jF (f)j � A

1X
n=1

janjR
n exp [�(T + 1=q)(logn)�] + ja0C0j:

Let us put A1 = max(A; jC0j). Then we have jF (f)j � A1 kfkq , q � 1. Hence

F de�nes a continuous linear functional on UR(�; T; 1=q) for each q = 1; 2; . . . . In
view of the metric de�ned by (1.11), F is continuous linear functional on UR;�(�; T ).
This completes the proof of Theorem 2.

For f 2 UR(�; T ) and Æ > 0, let kf ; �; T + �k be de�ned by (1.10). Then we
have the following result.

Theorem 3. A necessary and suÆcient condition that there exists a con-

tinuous linear transformation F :UR;�(�; T ) ! UR;�(�; T ) with F (�n) = �n,
n = 0; 1; 2; . . . , �n = zn, �n 2 UR(�; T ), is that for every Æ > 0,

(2.4) lim
n!1

sup
(logn)�

log+
n
k�n; �; T + Æk

�1
Rn
o <

1

T

Proof. Let F be a continuous linear transformation from UR;�(�; T ) into UR;�(�; T )
with F (�n) = �n, n = 0; 1; 2; . . . . Then for any given Æ > 0 there exists a Æ1 > 0
and a constant K = K(Æ) such that

kF (�n); �; T + Æk � K k�n; �; T + Æ1k ; i.e.

k�n; �; T + Æk � KRn exp [�(T + Æ1)(logn)
�] ; i.e.

(logn)�

log+
h
k�n; �; T + Æk

�1
Rn
i < o(1) + (T + Æ1)

�1:

Hence

lim
n!1

sup
(logn)�

log+
h
k�n; �; T + Æk�1Rn

i � 1

T + Æ1
<

1

T
:

Conversely suppose that the sequence f�ng satis�es (2.4). Then for any given
�0 > 0, there exists a positive integer N0 = N0(�

0) such that

(2.5)
(log n)�

log+
h
k�n; �; T + Æk�1Rn

i < 1

T + �0

for all n > N0 and all Æ > 0. Let f 2 UR(�; T ), f(z) =
P1

n=0 anz
n, and let

0 < � < �0. Then from (1.8), there exists a positive integer N1 = N1(�) such that
for all n > N1,

(2.6) janj < R�n exp [(T + �)(logn)�] :

Let N = max(N0; N1). Then from (2.5) and (2.6), we have for n > N ,

janj k�n; �; T + Æk < exp [(� � �0)(logn)�] :
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Since 0 < � < �0, this inequality implies that the series
P1

n=0 an�n converges
absolutely in UR(�; T; Æ) for each Æ > 0. Since each UR(�; T; Æ) is complete, we
conclude that this series converges to an element of UR(�; T; Æ). Let us de�ne a
transformation F :UR;�(�; T )! UR;�(�; T ) by putting F (f) =

P1
n=0 an�n for f 2

UR;�(�; T ). We note that F is linear, F (�n) = �n and for any Æ > 0, there exists a
Æ0 > 0 such that

(log n)�

log+
h
k�n; �; T + Æk

�1
Rn
i � 1

T + Æ0
for n > N(Æ; Æ0); i.e.

k�n; �; T + Æk � KRn exp [�(T + Æ0)(logn)�]

for all n � 0, K = K(Æ) being a constant. Hence

kF (�); �; T + Æ0k �
1X
n=0

janj k�n; �; T + Æk

� ja0j+

1X
n=1

janjKRn exp [�(T + Æ0)(log n)�]

� K 0 k�n; �; T + Æ0k ; where K 0 = max(1;K�1).

Hence F is continuous on UR(�; T; Æ) for each Æ > 0. Consequently F is continuous
on UR;�(�; T ). This proves Theorem 3.

3. Proper bases. In this section, we will study the properties of bases
in UR;�(�; T ). We give some de�nitions. Let fk, k = 0; 1; . . . , be a sequence
of functions in UR(�; T ). If

P1
k=0 Ckfk = 0 ) Ck = 0 for all k = 0; 1; 2; . . .

and all sequences fCkg of complex numbers for which
P1

k=0 Ckfk converges in
UR;�(�; T ), then the sequence ffkg is said to be linearly independent. We say that
ffkg

1
k=0 spans a subspace VR;�(�; T ) of UR;�(�; T ) provided VR;�(�; T ) consists of all

linear combinations
P1

k=0 Ckfk where fCkg
1
k=0 is any sequence of complex numbers

such that
P1

k=0 Ckfk converges in UR;�(�; T ). A sequence ffkg which is linearly
independent and spans a closed subspace VR;�(�; T ) of UR;�(�; T ) is called a basis of
VR;�(�; T ). Lastly, a basis ffkg

1
k=0 of a subspace VR;�(�; T ) is said to be a proper

base if for all sequences of complex numbers fCng,
P1

k=0 Ckfk converges if and
only if

P1
k=0 Ck�k converges in VR;�(�; T ). From (1.8) we know that

P1
k=0 Ck�k

converges in UR;�(�; T ) if and only if

(3.1) lim
n!1

sup
�
log+ (jCnjR

n) (logn)��
�
� T:

Now we prove

Theorem 4. The following three conditions are equivalent:

(3.2) lim
n!1

sup
(logn)�

log+
h
k�n; �; T + Æk

�1
Rn
i < 1

T
; Æ > 0;

(3.3) for all sequences fang of complex numbers the convergence of
P1

n=0 an�n in

UR;�(�; T ) implies convergence of
P1

n=0 an�n in UR;�(�; T );
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(3.4) for all sequences fang of complex numbers, convergence of
P1

n=0 an�n in

UR;�(�; T ) implies that limn!1 an�n = 0 in UR;�(�; T ).

Proof. In proving the suÆciency part of Theorem 3 we have already shown
that (3.2)) (3.3). Further, the implication (3.3)) (3.4) is evident. Thus we have
only to show that (3.4) ) (3.2). Therefore, let (3.4) be true but for some Æ > 0,
(3.2) be not satis�ed. Then for Æ = Æ0 (say), there exists a sequence fnkg of positive
integers such that

(3.5)
(lognk)

�

log+
h
k�nk ; �; T + Æ0k

�1
Rnk

i > 1

T + k�1
; for all k = 1; 2; . . . .

We de�ne a sequence fang of real numbers as follows:

an =

�
k�n; �; T + Æ0k

�1
; n = nk

0; n 6= nk

Then for all large values of k, we have

log+ [jank jR
nk ]

(lognk)�
=

log+
h
k�nk ; �; T + Æ0k

�1
Rnk

i
(lognk)�

< T + k�1:

Hence
lim
k!1

sup
�
log+ [jank jR

nk ] (lognk)
��
	
� T:

Thus the sequence fang de�ned as above satis�es (3.1) and hence
P

an�n converges
in UR;�(�; T ). So, by (3.4), we have limn!1 an�n = 0. However

kank�nk ; �; T + Æ0k = jank j k�nk ; �; T + Æ0k = 1:

Therefore fan�ng does not converge to 0 in UR;�(�; T ). This is a contradiction.
Hence (3.2) must hold for all Æ > 0. This proves Theorem 4.

Next we prove

Theorem 5. The following three conditions are equivalent:

(a) for all sequences fang
1
n=0 of complex numbers, limn!1 an�n = 0

in UR;�(�; T ) implies that
P1

n=0 an�n converges in UR;�(�; T );

(b) for all sequences fang of complex numbers, convergence of
P1

n=0 implies thatP1
n=0 an�n converges in UR;�(�; T );

(c) lim
Æ!0

2
4 lim
n!1

inf
(log n)�

log+
h
k�n; �; T + Æk

�1
Rn
i
3
5 � 1

T
.

Proof. Obviously (a) ) (b). To prove (b) ) (c), we assume that (b) holds
but (c) does not. Then we have

lim
Æ!0

2
4 lim
n!1

inf
(logn)�

log+
h
k�n; �; T + Æk

�1
Rn
i
3
5 <

1

T
:
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Hence for any Æ > 0,

(3.6) lim
nÆ!1

inf
(logn)�

log+
h
k�n; �; T + Æk�1Rn

i < 1

T
:

Let � > 0 be any �xed number. From (3.6), we can �nd an increasing sequence fnkg
of positive integers such that

(3.7)
(lognk)

�

log+
h
k�nk ; �; T + Æk�1Rnk

i < 1

T + �
:

For �1, 0 < �1 < �, we de�ne a sequence fang as follows:

an =

�
R�n exp [(T + �1)(logn)

�] ; n = nk

0; n 6= nk:

Then for any Æ > 0 we have

(3.8)

1X
n=0

janj k�n; �; T + Æk =

1X
k=1

jank j k�nk ; �; T + Æk :

Now for any Æ > 0, we omit those terms of the series on right-hand side
for which Æ < 1=k. Then the remainder of the series in (3.8) is dominated
by

P
jank j



�nk ; �; T + k�1


. Consequently by (3.7) we obtain

1X
k=1

jank j


�nk ; �; T + k�1





�

1X
k=1

R�nk exp [(log nk)
�(T + �1)]R

nk exp [�(T + �)(lognk)
�]

=

1X
k=1

exp [(log nk)
�(�1 � �)] :

Since 0 < �1 < �, the series on the right-hand side is convergent. Since an = 0 for
n 6= nk the series

P1
n=0 an�n is convergent for the above sequence fang. Since this

is true for every Æ > 0, the series
P

an�n converges in UR;�(�; T ). On the other
hand, for this sequence fang, we also have

(3.9) lim
n!1

supflog+ [janjR
n](logn)��g = T + �1 > T;

which gives a contradiction to (3.1) and consequently to (b). So, we must have
(b) ) (c). Lastly we prove that (c) ) (a). Hence, suppose that (c) holds but
(a) does not. Then there exists a sequence fang of complex numbers for which
limn!1 an�n = 0, but

P1
n=0 an�n does not converge in UR;�(�; T ). Hence from

(3.1) we have
lim
n!1

sup
�
log+ [janjR

n] (logn)��
	
> T
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Thus there exists a positive number " and a sequence fnkg of positive integers such
that

log+
�
[jank j R

nk ] (log nk)
��
	
> T � ":

Let 0 < � < "=2. From (c) we can �nd a positive number Æ such that

lim
n!1

inf
(logn)�

log+
h
k�n; �; T + Æk

�1
Rn
i � 1

T + �
:

Hence there exists an integer N = N(�) such that for n � N ,

(logn)�

log+
h
k�n; �; T + Æk�1Rn

i � 1

T + 2�
:

Therefore

max [kan�n; �; T + Æk] = max [janj k�n; �; T + Æk]

� max [jank j k�nk ; �; T + Æk]

� exp [(lognk)
�("� 2�)] > 1

since " > 2�. Hence the sequence fan�ng does not converge to zero in UR;�(�; T ).
This is a contradiction to (c). So we must have (c) ) (a) and proof of Theorem 5
is completed.

Lastly we give a characterization of proper bases. This result follows from
the last two theorems.

Theorem 6. A base f�ng in a closed subspace VR;�(�; T ) of UR;�(�; T ) is

proper if and only if the conditions (3.2) and (c) stated above are satis�ed.
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