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ON THE SPACE OF ANALYTIC FUNCTIONS
OF LOGARITHMIC TYPE T

G.S. Srivastava and Arvind Kumar

Abstract. We consider the space of functions analytic in a finite disc. Using the coefficient
characterization of the logarithmic type we define a norm and show that the space obtained is
a Frechét space. Characterizations for continuous linear functional and proper bases are also
obtained.

1. Introduction. The study of spaces of entire functions was initiated by
Ganapathy Tyer [3]. He introduced the notion of a proper base and established
a relationship between proper bases and automorphisms of the space. Arsov [1]
considered the space of functions analytic in the finite disc |z| < R endowed with
the topology of uniform convergence on compact sets and obtained a relationship
between proper bases and linear homeomorphisms. Srivastava [5] defined a norm
on the space of analytic functions with the help of growth parameters and studied
the properties of this space.

Let Ug denote the class of all functions f analytic in |z| < R < oo, where
f(z) =3, g anz". Weset M(r, f) = M(r) = max.|—, | f(2)], 0 <7 < R. Then f
is said to be of order py if

log™* log* M
(1.1) lim supw

= 0<p <
r—R —loglog(R/7) po. =P0 =00

where log™ z = max(0,logz) for z > 0. If 0 < py < oo then the type Ty of f is
defined by
(1.2) lirr}%sup [log®™ M(r)(log(R/r))°] =Ty, 0<Tp < oco.

r—

Srivastava [5] used the coefficient characterization of the type Tp to define a norm
as follows. It is known [2] that

Tim sup { [log" (Ja,| B)"™ 7} nre = Ty,

1.3
( ) 0-P0/(P0+1)‘

where A = (po + 1)p
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Let Ur(po,To) denote the class of all functions f, f(z) = Yo" anz", analytic
in the disc |z| < R, having growth parameters not exceeding (po,7s). Then for
f € Ur(po, To), we have

(14) li_>m supn~?° [log™ (|an|R")]p0—’_1 < AP,
n—odo

For any ¢ > 0, define

[ee]
17590, To + 311 = laol + 3 lau| B"P(n, po, To + )
n=1
where P(n, py, Ty + &) = exp [—Aneo/ (ot 1) (Tyy 4 §)1/(po+D] . Evidently, if py = 0
or pg = oo, then the type T can not be defined and consequently the norm above
can not be defined either. In this paper, we study the spaces of analytic functions

of slow growth, (i.e. when py = 0). For such functions, the logarithmic order p is
defined as in [4]:

. log™ log™t M (r)

1.5 1 =
(15) k" logloglR/R—1)] 7
Further, if 0 < p < 00, the logarithmic type 7T is defined by

. logt M (r)
1
ro P {log[R/ (R — 1]}
For 1 < p < o0, the logarithmic type T is given by [4; Lemma, p. 448]

0<p< oo

=T, 0<T<oo.

(1.7 lim sup [log™ (Ja,| R") (logn) *] =T
n—o0
We denote by Ug(p,T') the class of all functions f(z) = > °  a,2" analytic in the

disc |z| < R, and of logarithmic growth (p,T), that is, the logarithmic order of f
does not exceed p and if f is of logarithmic order p, its logarithmic type 7' does
not exceed T, 1 < p < 00, 0 < T < co. From (1.7), it follows that f € Ug(p,T) if
and only if

(1.8) lim sup [log™ (|a,| R")(logn)™"] < T.
n—o0

From (1.8), we have for any ¢ > 0 and all n > ng(e)
(1.9) lan] < R™"exp[(T + ¢)(logn)*].
For each f € Ug(p,T) we define for § > 0,

[ee]
(110)  [fip,T+0ll = laol + 3 lan| B" exp [~ (T + p)(log n)"].

n=1
In view of (1.9), (1.10) clearly defines a norm for any § > 0. We denote
by Ur(p,T,0) the space Ur(p,T) equiped with the norm (1.10). Let Ug a(p,T)
be the space Ug(p,T) equiped with the weakest topology which is stronger than
the topologies of each Ugr(p,T,d). The equivalent metric on Ug x(p,T) can be
expressed as

&, Il

¢=1

where [|f —gll, = If —g;p,T + 1/q|, as defined by (1.10).
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2. Linear transformations on Ug \(p,T). In this section we obtain char-
acterization of continuous linear transformation on Ug (p,T). First we prove

THEOREM 1. The space Ur(p,T) is a Frechét space.

Proof. We show that the space Ur (p, T') is complete. Let {f,} be a Cauchy

sequence in Ug a(p,T). Then it is a Cauchy sequence in each Ug(p,T,d), § > 0.
Hence if we set fo(2) = > o, a%a)z”, then for a given n > 0 and ¢, there exists a

positive integer mo = mo(q,n) such that ||fo — f3|| < n for o, 3 > mg. Thus

(2.1) ‘a(()a) - agﬁ)‘ + Z ‘agf‘) - agf)‘ R"exp [—(T +1/q)(logn)’] <n
n=1

for a,8 > m and g a fixed positive integer. Hence for n = 0,1,2,..., we get
o0

‘a%a) — a%ﬁ)‘ < n for all a,3 > my. Hence {a%a)} is a Cauchy sequence of
a=1

complex numbers for each n = 0,1,2,.... Thus there exists a sequence {a,} ., of

complex numbers such that lima_e0 at®) = an, n = 0,1,2,.... Let B — oo in (2.1).

Then for o > mg we have

(2.2) ‘ag“) - ag‘ + i

n=1

al® —a,

R"exp[—(T + 1/q)(logn)’] < 1.

Let k be arbitrary integer, 1 < ¢ < k. Since fm, € Ura(p,T), we have from (1.9),

)| < R exp (7 + 1/K) log )]
for n > Ni(k,n). Also, |a,| < alm| + |alm) — g, | for any n. Hence for n > N

|an| <nR™"exp [(T' +1/q)(logn)”] + R™" exp [(T' + 1/k)(logn)"].

Since n > 0 was arbitrary and k > ¢, there exists a positive integer N2(q) such that
for n > Ns,
|an| R" exp [—(T + 1/q)(log n)”]
<n+R "exp[{(T+1/k)— (T +1/q)}(logn)’] < 1.
Hence |a,| < R™"exp[(T + 1/¢)(logn)?], n > N>. Thus the sequence {a,} satis-
fies (1.9) for every fixed ¢ = 1,2,.... So, f € Upx(p,T), where f(z) = > o anz".

Now from (2.2), for any fixed ¢, we have ||fo —fll, < 7, a > my.
Hence fo — f as a — oo, in each Ugr(p,T,1/q). Thus fo, — f in Urx(p,T),
and the space Ugr,x(p,T) is complete, and therefore a Frechét space.

In the next theorem, we give a characterization of linear continuous functional
on Ugrx(p,T). We thus have
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THEOREM 2. A continuous linear functional F on Ug x(p,T) is of the form
F(f)=3,"0anChy if and only if

(2.3) (Col < AR™exp [~(T +1/g)logn)?], n>1, q>1,
where A is a positive number depending on p but not onn and f(z) =Y >, anz".

Proof. Let F:Ugrx(p,T) — C be a continuous linear functional, where C
is the field of complex numbers. Then for any sequence {fn}, fm € Urx(p,T)
such that f, — f as m — oo in Uga(p,T), we have F(fn) — F(f). Now
let f(z) = Y7 ,anz™ where a,’s satisfy (1.9). Then f € Uga(p,T). Also, for
m =0,1,2,..., let us put f,(2) = > ;a,2" Then f, € Ura(p,T) for each
m =0,1,2,.... Let ¢ be any fixed, positive integer and let 0 < ¢ < 1/q. Then
from (1.9) we can find a positive integer m such that

lan| < R™"exp[(T 4+ ¢)(logn)?’], n>m.

Now
o0 o0
If = full, = | D2 anz”| = D laul B exp[~(T + 1/q)(log n)’]
n=m-+1 n=m-+1

q

< Y exp[logn)’(c —1/g)] <e.

n=m-+1

for sufficiently large values of m. Hence for these values of m,

N T ) M-S
M) = 27 e < D q<1—+5> <e

Hence fp, — f in Ura(p,T) as m — oo. Therefore lim,, oo F(frm) = F(f). Let
us put Cp, = F(2"). Then

F(f)= lim F(fn) :n}gnm;)ancn = Z;)anCn.

Further, |Cy| = |F(2™)|. Since F is continuous on Ug x(p,T), it is continuous on
Ur(p,T,1/q) for each ¢ = 1,2,.... Consequently there exists a positive number A
independent of ¢ such that

|F(z")| = |Cn| < Allanll,, ¢>1,  where ay(z) = 2"
Now, using the definition of the norm for a,(z), we get
|Cn| < AR exp[—(T 4+ 1/q)(logn)?] foralln>1,q>1.

Hence we have

F(f) =Y anCn, where Cy,’s satisfy (2.3).

n=0



56 Srivastava and Kumar

Conversely suppose that C),’s satisfy (2.3) and for any sequence of complex num-
bers {an}7, let F(f) = > " a,Cpn. Then for ¢ > 1,

o0
[F(f)|<A Z |an| R™ exp [—(T + 1/q)(logn)?] + |aoCo.

n=1
Let us put A; = max(4,|Cy|). Then we have |F(f)| < A|fll,, ¢ > 1. Hence
F defines a continuous linear functional on Ug(p,T,1/q) for each ¢ = 1,2,.... In
view of the metric defined by (1.11), F' is continuous linear functional on Ug x(p, T').
This completes the proof of Theorem 2.

For f € Ur(p,T) and § > 0, let || f;p,T + p|| be defined by (1.10). Then we

have the following result.

THEOREM 3. A necessary and sufficient condition that there exists a con-
tinuous linear transformation F:Ugx(p,T) — Uprx(p,T) with F(a,) = B,
n=0,1,2,..., a, = 2", B, € Ug(p,T), is that for every § >0,

(logn)?

1
(2.4) lim sup <=
=% logt {|1Bup T+l R T

Proof. Let F be a continuous linear transformation from Ug »(p,T') into Ur a(p, T')
with F(a,) = Bn, n =0,1,2,.... Then for any given § > 0 there exists a d; > 0
and a constant K = K (§) such that
1E(an); p, T+ 0| < Klan; p, T +di|, i
1Bn; s T + 0| < K R™exp [~ (T + 61)(logn)?], i.e.
(logn)”

- - <o(l)+ (T +6,)7 "
log™ [[1n: o, T + 817" R

Hence

. (logn)? 1 1
lim sup < < =.
"o ogt [Baip, Tl e T T T
Conversely suppose that the sequence {f,} satisfies (2.4). Then for any given
n' > 0, there exists a positive integer Nog = No(n') such that
(logn)? 1

(2.5) <
log" [1Bnip, T+ Rr| T+

for allm > No and all § > 0. Let f € Ur(p,T), f(2) = > panz", and let

n=

0 <n <n'. Then from (1.8), there exists a positive integer N; = N;(n) such that
for all n > Ny,

(2.6) lan| < R™"™exp [(T + n)(logn)”].
Let N = max(Np, N1). Then from (2.5) and (2.6), we have for n > N,
|an| [|Bn; p, T + 6| < exp[(n —n')(logn)’].
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Since 0 < n < 7, this inequality implies that the series Y, a,/3, converges

absolutely in Ug(p,T,0) for each § > 0. Since each Ug(p,T,d) is complete, we

conclude that this series converges to an element of Ug(p,T,d). Let us define a

transformation F:Ug x(p,T) = Ur(p,T) by putting F(f) = > 0", anfy, for f €

Ur(p,T). We note that F is linear, F'(a,,) = (B, and for any § > 0, there exists a
d' > 0 such that

(logn)” <
log* [18:p. T+ ] T THO
18n; p, T +6|| < K R™ exp [—(T' + ¢") (log n)"]

for all n > 0, K = K (d) being a constant. Hence

for n > N(§,68"), i.e.

IF(@);p, T+ 6 <> lan| 1Ba; 0, T + ]|

n=0

< lao| + 3 lan|K R™ exp[—(T + &")(log n)"]
n=1

< K'||an; p, T +6'||, where K’ = max(1, K 1).

Hence F' is continuous on Ug(p, T, d) for each § > 0. Consequently F' is continuous
on Ug a(p,T). This proves Theorem 3.

3. Proper bases. In this section, we will study the properties of bases
in Ug(p,T). We give some definitions. Let fz, k¥ = 0,1,..., be a sequence
of functions in Ug(p,T). If Y ;2 Crfr = 0= Cp = 0 for all k = 0,1,2,...
and all sequences {Cj} of complex numbers for which > .°, C} fi converges in
Ura(p,T), then the sequence {fi} is said to be linearly independent. We say that
{fr}72, spans a subspace Vg x(p,T) of Ur,x(p, T') provided Vg x(p,T) consists of all
linear combinations >~ ,—, Ci fr where {Cy }32, is any sequence of complex numbers
such that Y ;2 Ck fi, converges in Urx(p,T). A sequence {fr} which is linearly
independent and spans a closed subspace Vg x(p,T') of Ur x(p, T) is called a basis of
Vea(p,T). Lastly, a basis {fr}72, of a subspace Vg x(p,T') is said to be a proper
base if for all sequences of complex numbers {C,}, > po, Ck fr converges if and
only if 7 ) Cray converges in Vg x(p, T). From (1.8) we know that Y72/ Cray
converges in Ug x(p,T) if and only if

(3.1) lim sup [log™ (|C,| R™) (logn)™"] < T.
n—oo
Now we prove

THEOREM 4. The following three conditions are equivalent:

logn)" 1
(3.2) lim sup (logn) N <=,
% logt [Buip, T+ ol R T

4> 0;

(3.3) for all sequences {a,} of complex numbers the convergence of > oo, anay in
Ugr(p,T) implies convergence of > oo anBy in Urx(p,T);
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(3.4) for all sequences {an} of complex numbers, convergence of > .- o any in
Ura(p, T) implies that limy,_,o 6B, =0 in U (p,T).

Proof. In proving the sufficiency part of Theorem 3 we have already shown
that (3.2) = (3.3). Further, the implication (3.3) = (3.4) is evident. Thus we have
only to show that (3.4) = (3.2). Therefore, let (3.4) be true but for some 6 > 0,
(3.2) be not satisfied. Then for § = ¢’ (say), there exists a sequence {ny} of positive
integers such that

(logmy,)? S 1
= —
log* [||ﬂnk;p,T+6’|| 1Rnk] T+k

(3.5) forall k =1,2,....

We define a sequence {a,} of real numbers as follows:
_ { 1Bns 0, T+ 7", n=my
an =
0, n # ng
Then for all large values of k, we have

log [jan | B*] 108" [I1Busp T+ B ] -1
. = <T+Ek .
(logny)? (log . )?

Hence

lim sup {log" [|an, | R™] (logny) "} <T.

k—o00
Thus the sequence {a,} defined as above satisfies (3.1) and hence > ana, converges
in Ur x(p,T). So, by (3.4), we have lim,,_, a,0, = 0. However

||a’nkﬂnk Py T+ 6I|| = |a’nk| ||/6nk;p’ T+ 6I|| =1

Therefore {a,fB,} does not converge to 0 in Ug (p,T). This is a contradiction.
Hence (3.2) must hold for all 6 > 0. This proves Theorem 4.

Next we prove
THEOREM 5. The following three conditions are equivalent:

(a) for all sequences {an}>2, of complex numbers, lim,_o apBn =0
in Ugx(p,T) implies that Y, anay, converges in Up(p,T);

(b) for all sequences {a,} of complex numbers, convergence of y .-, implies that
oo o ancy, converges in Ur x(p, T);

p
(logn) 1
- T

(c) lim | lim inf —
090" log* [||ni 0, T+ 07 R

Proof. Obviously (a) = (b). To prove (b) = (c), we assume that (b) holds
but (c) does not. Then we have

1 P, 1
lim | lim inf (log ) N <
020 [mee og® |||Bnip, T + 6] R™

S|
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Hence for any § > 0,

1 P 1
(3.6) lim inf (logn) <
N R A 2 I

Let n > 0 be any fixed number. From (3.6), we can find an increasing sequence {ny}
of positive integers such that

(log ny)? < 1
tog™ [[1Bu:p. T+ 8" Bre] T+

(3.7)

For 1, 0 < m < n, we define a sequence {a,} as follows:

ap = { R™"exp[(T +m)(logn)?’], n=mny
" 1o, n # ng.

Then for any § > 0 we have

(3.8) Y lanl 18a; 2, T + 61l = D lany | 11Bns; 0, T + ]|
n=0

= k=1

Now for any 6 > 0, we omit those terms of the series on right-hand side
for which 6 < 1/k. Then the remainder of the series in (3.8) is dominated
by 3= |an,| || Briips T + k= Consequently by (3.7) we obtain

o0
S lan | | Bui o T+ K7
k=1

<> R exp [(logng)” (T + m)] R™ exp [~ (T + n)(log n)"]
k=1

= Z exp [(logng)” (m —n)] .

k=1

Since 0 < 11 < n, the series on the right-hand side is convergent. Since a,, = 0 for
n # ny, the series 220:0 an B is convergent for the above sequence {a, }. Since this
is true for every ¢ > 0, the series ) a, 08, converges in Ug (p,T). On the other
hand, for this sequence {a,}, we also have

(3.9 lim sup{log™ [|a,| R"](logn) *} =T +m > T,
n—o0

which gives a contradiction to (3.1) and consequently to (b). So, we must have
(b) = (c). Lastly we prove that (c) = (a). Hence, suppose that (c) holds but
(a) does not. Then there exists a sequence {a,} of complex numbers for which
lim, o0 anBn = 0, but ZZO:O anay, does not converge in U x(p,T). Hence from
(3.1) we have

nlLII;O sup {log™ [|a,| R"] (logn) *} > T
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Thus there exists a positive number € and a sequence {n;} of positive integers such
that
log™ {[|an,| R"™] (logny) ™} > T —e.

Let 0 < n < g/2. From (c) we can find a positive number ¢ such that

1 d 1
lim inf (logn) > .
"% logt [1Baip, T+l B2 T TN
Hence there exists an integer N = N(n) such that for n > N,
(logn)? S 1
log" [[|nip, T+ Rr| — T+ 20

Therefore

max [||anBn; p, T + 6| = max[|an| ||Bn; p, T + 0]
> max [|an, | [|Bn; 0, T + 6|l]
> exp [(logng)” (e — 2n)] > 1

since € > 2n. Hence the sequence {a,3,} does not converge to zero in Ug x(p, T).
This is a contradiction to (c). So we must have (c) = (a) and proof of Theorem 5
is completed.

Lastly we give a characterization of proper bases. This result follows from
the last two theorems.

THEOREM 6. A base {8,} in a closed subspace Vi x(p,T) of Urx(p,T) is
proper if and only if the conditions (3.2) and (c) stated above are satisfied.
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