PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 53 (67), 1993, 45–51

IDEMPOTENT SEPARATING CONGRUENCES ON AN ORTHODOX SEMIGROUP VIA THE LEAST INVERSE CONGRUENCE

Dragica N. Krgović

Dedicated to Professor M. Yamada on his 60-th birthday

Abstract. The least inverse congruence Y on an orthodox semigroup S was considered by Yamada [14] for the case where the band of idempotents of S is normal. It was considered in the general orthodox case by Schein [12] and Hall [4]. An explicit construction for idempotent separating congruences on an orthodox semigroup S in terms of idempotent separating congruences on S/Y was given by McAlister [8]. In this paper we describe these congruences by inverse congruences contained in $\mu \circ Y$, where μ is the greatest idempotent separating congruence on S. Also, we obtain some mutually inverse complete lattice isomorphisms of intervals $[Y, \mu \circ Y]$ and $[\varepsilon, \mu]$, where ε is the identity relation on S.

1. Preliminaries. In the following we shall use the notation and terminology of [3], [5] and [10]. This will be suplemented with the following.

Let S be a regular semigroup. A congruence ρ on S is uniquely determined by its kernel ker $\rho = \{x \in S \mid x\rho e \text{ for some } e \in E\}$ and trace tr $\rho = \rho \mid_E$, where E is the set of idempotents of S [2].

RESULT 1. (Lemma 1.3 of [6], Lemma 2.5 of [9]) For any family F of congruences on a regular semigroup S, $\ker \cap_{\rho \in F} \rho = \cap_{\rho \in F} \ker \rho$.

A congruence ρ on S is idempotent separating if tr $\rho = \varepsilon \mid_E$. The greatest idempotent separating congruence on S is denoted by μ .

Let \mathcal{C} be a class of semigroups and let ρ be a congruence on S. Then ρ is a \mathcal{C} -congruence if $S/\rho \in \mathcal{C}$. The least inverse congruence on a regular semigroup is denoted by Y.

RESULT 2. [1, Lemma 3.1] Let ρ and ξ be any congruences on an orthodox semigroup S. Then

$$(\rho \subseteq \mu \text{ and } \xi \subseteq Y) \Rightarrow \rho \lor \xi = \rho \circ \xi.$$

AMS Subject Classification (1985): Primary 20 M 19

Research supported by Science Fund of Serbia, Grant 0401A, through Matematički institut.

If S is a regular semigroup and $a \in S$, then V(a) denotes the set of all inverses of a in S.

RESULT 3. [7, Lemma 1] Let ρ be an inverse congruence on a regular semigroup S. Then

$$(\forall a, b \in S)(a\rho b \Rightarrow (\forall a' \in V(a))(\forall b' \in V(b))a'\rho b').$$

RESULT 4. ([4],[12], [5, Theorem VI.1.12]) If S is an orthodox semigroup, then the relation Y defined by $aYb \Leftrightarrow V(a) = V(b)$ $(a, b \in S)$ is the least inverse congruence on S.

RESULT 5. [3] If f is an order isomorphism of a lattice L onto a lattice L', then f is a lattice isomorphism.

LEMMA 1. Let ρ be an idempotent separating congruence on a regular semigroup S and $a, b \in S$. The following conditions are equivalent:

(i) $a\rho b$,

(ii) $a\mathcal{H}b$ and $(\forall a' \in V(a))(\exists b' \in V(b))a'\rho b',$

(iii) $a\mathcal{H}b$ and $(\exists a' \in V(a))(\exists b' \in V(b))a'\rho b'$.

Proof. (i) \Rightarrow (ii) Let $a\rho b$ and $a' \in V(a)$. Then $a\mathcal{H}b$ that is a'a = b'b and aa' = bb' for some $b' \in V(b)$ (by [5, Proposition 4.1]). Therefore

 $a' = a'aa' = b'ba'\rho$ b'aa' = b'bb' = b'.

 $(ii) \Rightarrow (iii)$ This is trivial.

(iii) \Rightarrow (i) Let $a\mathcal{H}b$ and $a'\rho b'$ for some $a' \in V(a)$ and $b' \in V(b)$. Then $a\mathcal{H}b$ implies a'a = b''b and bb' = aa'' for some $a'' \in V(a)$ and $b'' \in V(b)$ (by [5, Proposition 4.1]). So we have $a = aa''a = bb'a\rho \ ba'a = bb''b = b$.

The implication (iii) \Rightarrow (i) is valid for any semigroup S and any congruence ρ on S [8, Lemma 2.1].

2. The congruence $\rho \circ Y$. In the remainder of the paper, S will denote an orthodox semigroup with the band of idempotents E.

Let $a \in S$, $a' \in V(a)$ and $e \in E$. Then by Result 4 we have $aYe \Leftrightarrow V(a) = V(e)$ which yields $a' \in V(e)$. According to [11] (see also Theorem VI.1.1 of [5]) we have $a' \in E$. Since $a \in V(a')$, by the same argument we get $a \in E$. Therefore, ker Y = E.

LEMMA 2. Let ρ be an idempotent separating congruence on S and let ξ be a congruence on S such that $\xi \subseteq Y$. Then

(1) $\operatorname{tr}(\rho \circ \xi) = \operatorname{tr} \xi$, (2) $\operatorname{ker}(\rho \circ \xi) = \operatorname{ker} \rho$.

Proof. According to Result 2, we have $\rho \lor \xi = \rho \circ \xi$.

(1) For $e, f \in E$ we obtain

$$e(\rho \circ \xi)f \Rightarrow e\rho a \text{ and } a\xi f \text{ for some } a \in E \qquad (\text{since } \ker \xi = E)$$
$$\Rightarrow e = a \text{ and } a\xi f \qquad (\text{since } \operatorname{tr} \rho = \varepsilon)$$
$$\Rightarrow e\xi f.$$

46

Therefore tr $(\rho \circ \xi) \subseteq$ tr ξ and thus tr $(\rho \circ \xi) =$ tr ξ . (2) For $a \in S$ and $e \in E$, we get

$$a(\rho \circ \xi)e \Rightarrow a\rho b$$
 and $b\xi e$ for some $b \in E$ (since ker $\xi = E$)
 $\Rightarrow a \in \ker \rho$.

Therefore $\ker(\rho \circ \xi) \subseteq \ker \rho$ and hence $\ker(\rho \circ \xi) = \ker \rho$.

Notice that (1) is a consequence of Proposition of [13], and (2) is a special case of Lemma 2.1 of [1].

If ρ and ξ are congruences on S such that $\rho \subseteq \xi$, then the relation ξ/ρ on S/ρ defined by $(a\rho)\xi/\rho(b\rho) \Leftrightarrow a\xi b \ (a, b \in S)$ is a congruence.

According to Lemma 2 we have that for any idempotent separating congruence ρ on S, $(\rho \circ Y)/Y$ is an idempotent separating congruence on S/Y. In particular, $(\mu \circ Y)/Y$ is an idempotent separating congruence on S/Y [8, Lemma 2.2].

The next theorem describes the inverse congruence $\rho \circ Y$, where ρ is an idempotent separating congruence on S.

THEOREM 1. Let ρ be an idempotent separating congruence on S and $a, b \in S$. Then the following conditions are equivalent:

(i)
$$a(\rho \circ Y)b$$
,

- (ii) $(\exists a' \in V(a))(\exists b' \in V(b))aa' = ab'ba', bb' = ba'ab', ab' \in \ker \rho,$
- (iii) $(\forall a' \in V(a))(\exists b' \in V(b))a'\rho b',$
- (iv) $(\exists a' \in V(a))(\exists b' \in V(b))a'\rho b'.$

Proof. (i) \Leftrightarrow (ii) Since $\rho \circ Y$ is an inverse congruence on S, we have

$$\begin{split} a(\rho \circ Y)b \Leftrightarrow (\exists a' \in V(a))(\exists b' \in V(b))a'a(\rho \circ Y)b'b, \ ab' \in \ker \rho \\ & (by \text{ Theorem 1 of } [7]) \\ \Leftrightarrow (\exists a' \in V(a))(\exists b' \in V(b))a'aYb'b, \ ab' \in \ker \rho \\ & (by \text{ Lemma 2}) \\ \Leftrightarrow (\exists a' \in V(a))(\exists b' \in V(b))a'a = a'ab'ba'a, \ b'b = b'ba'ab'b, \\ & ab' \in \ker \rho \\ \Leftrightarrow (\exists a' \in V(a))(\exists b' \in V(b))aa' = ab'ba', \ bb' = ba'ab', \ ab' \in \ker \rho \end{split}$$

(i) \Rightarrow (iii) Let $a, b \in S$ and $a' \in V(a)$. Then

$$\begin{split} a(\rho \circ Y)b &\Rightarrow a\rho c \text{ and } cYb \text{ for some } c \in S \\ &\Rightarrow (\exists c' \in V(c))a'\rho c' \text{ and } V(c) = V(b) \quad (\text{by Lemma 1 and Result 4}) \\ &\Rightarrow (\exists b' \in V(b))a'\rho b'. \end{split}$$

 $(iii) \Rightarrow (iv)$ This is trivial.

 $(iv) \Rightarrow (i)$ Let $a' \in V(a)$ and $b' \in V(b)$. Then

$$\begin{aligned} a'\rho b' \Rightarrow a'(\rho \circ Y)b' \\ \Rightarrow a(\rho \circ Y)b \qquad \text{(by Result 3).} \end{aligned}$$

Let ρ be an idempotent separating congruence on S and let ξ be a congruence on S such that $\xi \subseteq Y$. Let $a, b \in S$. The proof of Theorem 1 shows that $a(\rho \circ \xi)b \Rightarrow$ (iii) \Rightarrow (iv). But (iv) \Rightarrow (i) follows from the fact that $\rho \circ Y$ is an inverse congruence on S. In this context, the following result is of interest.

PROPOSITION 1. Let ρ be an idempotent separating congruence on S and let ξ be a congruence on S such that $\xi \subseteq Y$. Then

(1) $Y \subseteq \rho \circ \xi \Leftrightarrow \xi = Y$, (2) $\mu \subseteq \rho \circ \xi \Leftrightarrow \rho = \mu$.

Proof. It is evident that $\xi = Y$ implies $Y \subseteq \rho \circ \xi$ and $\rho = \mu$ implies $\mu \subseteq \rho \circ \xi$.

$$Y \subseteq \rho \circ \xi \Rightarrow \operatorname{tr} Y \subseteq \operatorname{tr} (\rho \circ \xi)$$

$$\Rightarrow \operatorname{tr} Y \subseteq \operatorname{tr} \xi \qquad (by \text{ Lemma 2}) \qquad (1)$$

$$\Rightarrow \operatorname{tr} Y = \operatorname{tr} \xi \qquad (since \xi \subseteq Y).$$

Also, $\xi \subseteq Y \Rightarrow \ker \xi \subseteq \ker Y \Rightarrow \ker \xi = E$ (since $\ker Y = E$). Therefore tr $Y = \operatorname{tr} \xi$ and $\ker Y = \ker \xi$, so by [2] we have $Y = \xi$.

$$\mu \subseteq \rho \circ \xi \Rightarrow \ker \mu \subseteq \ker(\rho \circ \xi)$$

$$\Rightarrow \ker \mu \subseteq \ker \rho \qquad (by \text{ Lemma } 2) \qquad (2)$$

$$\Rightarrow \ker \mu = \ker \rho \qquad (\operatorname{since} \rho \subseteq \mu).$$

Since tr $\rho = \text{tr } \mu$, by [2] we have $\rho = \mu$.

LEMMA 3. Let ρ be an idempotent separating congruence on S.

- (1) Then $\rho = (\rho \circ Y) \cap \mathcal{H} = (\rho \circ Y) \cap \mu$. In particular, $Y \cap \mathcal{H} = Y \cap \mu = \varepsilon$.
- (2) If ξ is a congruence on S such that $\xi \subseteq \rho \circ Y$, then $\xi \cap \rho = \xi \cap \mathcal{H} = \xi \cap \mu$.

Proof. (1) From Lemma 1 and Theorem 1 we have $\rho = (\rho \circ Y) \cap \mathcal{H}$. Hence $\mu = (\mu \circ Y) \cap \mathcal{H}$. So we have $(\rho \circ Y) \cap \mu = (\rho \circ Y) \cap (\mu \circ Y) \cap \mathcal{H} = (\rho \circ Y) \cap \mathcal{H}$. From the preceding equalities for $\rho = \varepsilon$ we get $Y \cap \mathcal{H} = Y \cap \mu = \varepsilon$.

(2) Let $\xi \subseteq \rho \circ Y$. By (1) we get $\xi \cap \rho = \xi \cap (\rho \circ Y) \cap \mathcal{H} = \xi \cap \mathcal{H}$, and also $\xi \cap \rho = \xi \cap (\rho \circ Y) \cap \mu = \xi \cap \mu$.

The equality $Y \cap \mathcal{H} = \varepsilon$ can be found in [5] and [8].

3. Description of $[Y, \mu \circ Y]$. In this section we describe inverse congruences on S contained in $\mu \circ Y$. This leads to a characterization of idempotent separating congruences on S (Theorem 2).

48

LEMMA 4. Let ξ be a congruence on S such that $\xi \in [Y, \mu \circ Y]$. Then $\xi = (\xi \cap \mu) \circ Y$.

$$\begin{array}{ll} \textit{Proof.} \ Y \subseteq \xi \subseteq \mu \circ Y \Rightarrow \operatorname{tr} Y \subseteq \operatorname{tr} \xi \subseteq \operatorname{tr} (\mu \circ Y) \\ \Rightarrow \operatorname{tr} Y \subseteq \operatorname{tr} \xi \subseteq \operatorname{tr} Y & \text{(by Lemma 2)} \\ \Leftrightarrow \operatorname{tr} Y = \operatorname{tr} \xi \\ \Leftrightarrow \operatorname{tr} ((\xi \cap \mu) \circ Y) = \operatorname{tr} \xi & \text{(by Lemma 2).} \end{array}$$

Also,

$$\begin{split} \xi \subseteq \mu \circ Y \Rightarrow \ker \xi \subseteq \ker(\mu \circ Y) \\ \Rightarrow \ker \xi \subseteq \ker \mu & \text{(by Lemma 2)} \\ \Leftrightarrow \ker(\xi \cap \mu) = \ker \xi & \text{(by Result 1)} \\ \Leftrightarrow \ker((\xi \cap \mu) \circ Y) = \ker \xi & \text{(by Lemma 2)}. \end{split}$$

Hence, by [2] we get $\xi = (\xi \cap \mu) \circ Y$.

PROPOSITION 2. Let $\xi \in [Y, \mu \circ Y]$ and let ζ be any inverse congruence on S. Then $\xi \cap \mu \subseteq \zeta \cap \mu \Rightarrow \xi \subseteq \zeta$.

Proof. Let $a, b \in S$ and let $\xi \cap \mu \subseteq \zeta \cap \mu$. Then

$$\begin{aligned} a\xi b \Rightarrow a'\xi b' \text{ and } a'\mu b' \text{ for some } a' \in V(a), \ b' \in V(b) \\ & \text{(by Result 3 and Theorem 1)} \\ \Rightarrow a'(\xi \cap \mu)b' \text{ for some } a' \in V(a), \ b' \in V(b) \\ \Rightarrow a'(\zeta \cap \mu)b' \text{ for some } a' \in V(a), \ b' \in V(b) \\ \Rightarrow a'\zeta b' \Rightarrow a\zeta b \end{aligned}$$

The following theorem describes idempotent separating congruences on S by means of inverse congruences contained in $\mu \circ Y$.

THEOREM 2. Let ρ be an idempotent separating congruence on S. Then $\xi = \rho \circ Y$ is the unique inverse congruence on S contained in $\mu \circ Y$ and for which $\rho = \mathcal{H} \cap \xi$. Conversely, if ξ is a congruence on S such that $\xi \subseteq \mu \circ Y$, then $\mathcal{H} \cap \xi$ is an idempotent separating congruence on S.

Proof. Let ρ be an idempotent separating congruence on S and let $\xi = \rho \circ Y$. Then by Lemma 3, $\rho = \mathcal{H} \cap \xi$. Clearly, ξ is an inverse congruence on S contained in $\mu \circ Y$. Let $\zeta \in [Y, \mu \circ Y]$ such that $\mathcal{H} \cap \xi = \mathcal{H} \cap \zeta$. Then by Lemma 3 we have $\mu \cap \xi = \mu \cap \zeta$. According to Lemma 4 we have $\zeta = (\zeta \cap \mu) \circ Y = (\xi \cap \mu) \circ Y = \xi$.

Now suppose that ξ is a congruence on S such that $\xi \subseteq \mu \circ Y$. Then by Lemma 3 we have $\mathcal{H} \cap \xi = \mu \cap \xi$. Hence $\mathcal{H} \cap \xi$ is an idempotent separating congruence on S.

If ρ is a congruence on S and α is a congruence on S/ρ , then the relation $\bar{\alpha}$ on S defined by $a\bar{\alpha}b \Leftrightarrow (a\rho)\alpha(b\rho)$, $(a, b \in S)$ is a congruence.

COROLLARY 1. [8, Theorem 2.4] Let ρ be an idempotent separating congruence on S. Then $\alpha = (\rho \circ Y)/Y$ is the unique congruence on S/Y contained in $(\mu \circ Y)/Y$ and for which $\rho = \mathcal{H} \cap \bar{\alpha}$. Conversely, if α is a congruence on S/Y such that $\alpha \subseteq (\mu \circ Y)/Y$, then $\mathcal{H} \cap \bar{\alpha}$ is an idempotent separating congruence on S. *Proof.* Let ρ be an idempotent separating congruence on S and let $\alpha = (\rho \circ Y)/Y$. Then $\alpha \subseteq (\mu \circ Y)/Y$ and $\bar{\alpha} = \rho \circ Y$. By Theorem 2 we have $\rho = \mathcal{H} \cap \bar{\alpha}$. Let γ be a congruence on S/Y such that $\gamma \subseteq (\mu \circ Y)/Y$ and $\rho = \mathcal{H} \cap \bar{\gamma}$. It is clear that $Y \subseteq \bar{\gamma} \subseteq \mu \circ Y$. According to Theorem 2 we have $\bar{\alpha} = \bar{\gamma}$, that is $\alpha = \gamma$.

Conversely, let α be a congruence on S/Y such that $\alpha \subseteq (\mu \circ Y)/Y$. Then $\bar{\alpha} \subseteq \mu \circ Y$. By Theorem 2, $\mathcal{H} \cap \bar{\alpha}$ is an idempotent separating congruence on S.

4. An isomorphism theorem. The preceding characterizations lead to the following theorem.

THEOREM 3. For S, the mappings φ and ψ defined by

$$\begin{split} \varphi &: \rho \longmapsto \rho \circ Y \qquad (\rho \in [\varepsilon, \mu]), \\ \psi &: \xi \longmapsto \xi \cap \mu \qquad (\xi \in [Y, \mu \circ Y]) \end{split}$$

are mutually inverse complete lattice isomorphisms between $[\varepsilon, \mu]$ and $[Y, \mu \circ Y]$.

Proof. Let $\rho \in [\varepsilon, \mu]$ and $\xi \in [Y, \mu \circ Y]$. Then

 $\rho(\varphi\psi) = (\rho\varphi)\psi = (\rho \circ Y)\psi = (\rho \circ Y) \cap \mu = \rho \qquad \text{(by Lemma 3), and}$

 $\xi(\psi\varphi) = (\xi\psi)\varphi = (\xi\cap\mu)\varphi = (\xi\cap\mu)\circ Y = \xi \qquad \text{(by Lemma 4)}.$

So we have $\varphi \psi = I_{[\varepsilon,\mu]}$ and $\psi \varphi = I_{[Y,\mu \circ Y]}$. Since $[\varepsilon,\mu]$ and $[Y,\mu \circ Y]$ are complete lattices, and φ and ψ are order preserving, they are both complete lattice isomorphisms [3].

COROLLARY 2. (1)
$$(\cap_{\rho \in F} \rho) \lor Y = \cap_{\rho \in F} (\rho \lor Y)$$
 $(F \subseteq [\varepsilon, \mu]),$
(2) $(\lor_{\rho \in F} \rho) \cap \mu = \lor_{\rho \in F} (\rho \cap \mu)$ $(F \subseteq [Y, \mu \circ Y]).$

Notice that the first part of Corollary 2 is a special case of Theorem 2.4 of [1].

Acknowledgement. The results of this paper were presented at the International Symposium on The Semigroup Theory and Its Related Fields, Ritsumeikan University Kyoto, Japan, August 30.-September 1. 1990.

I wish to express my thanks to Professors M. Yamada and T. Imaoka for inviting me to participate.

REFERENCES

- C. Eberhart, and W. Williams, Congruences on an orthodox semigroup via the minimum inverse semigroup congruence, Glasgow Math. J. 18 (1977), 181-192.
- [2] R. Feigenbaum, Regular semigroup congruences, Semigroup Forum 17 (1979), 373-377.
- [3] G. Grätzer, General Lattice Theory, Academic Press, New York, 1978.
- [4] T.E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208.
- [5] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [6] P.R. Jones, Joins and meets of congruences on a regular semigroup, Semigroup Forum 30 (1984), 1-16.
- [7] D.N. Krgović, Inverse congruences on orthodox semigroups, Proc. Conf. Alg. Log, Zagreb '84, Institut za Matematiku. Novi Sad, (1985), 75-82.
- [8] D.B. McAlister, A note on congruences on orthodox semigroups, Glasgow Math. J. 26 (1985), 25-30.

Idempotent separating congruences on an orthodox semigroup ...

- [9] F. Pastijn, and M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc. 295 (1986), 607-633.
- [10] M. Petrich, Inverse Semigroups, Wiley, New York, 1984.
- [11] N.R. Reilly, and K.E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967),349-461.
- [12] B.M. Schein, On the theory of generalized groups and generalized heaps, in: Semigroup Theory and its Applications, Saratov University 1 (1965), 286-324 (in Russian); Amer. Math. Soc. Transl. (2) 113 (1979), 89-122.
- [13] P.G. Trotter, On a problem of Pastijn and Petrich, Semigroup Forum 34 (1986), 249-252.
- M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371-392.

Matematički institut Kneza Mihaila 35 11001 Beograd, p.p. 367 Yugoslavia (Received 27 10 1992)