COMPLETELY REGULAR AND ORTHODOX CONGRUENCES ON REGULAR SEMIGROUPS

Branka P. Alimpić and Dragica N. Krgović

Abstract. Let S be a regular semigroup and E(S) the set of all idempotents of S. Let ConS be the congruence lattice of S, and let T, K, U and V be equivalences on ConS defined by $\rho T \xi \Leftrightarrow \text{tr } \rho = \text{tr } \xi$, $\rho K \xi \Leftrightarrow \text{ker } \rho = \text{ker } \xi$, $\rho U \xi \Leftrightarrow \rho \cap \leq = \xi \cap \leq \text{ and } V = U \cap K$, where $\text{tr } \rho = \rho |_{E(S)}$, $\text{ker } \rho = E(S)\rho$, and \leq is the natural partial order on E(S). It is known that T, U and V are complete congruences on ConS and T-, K-, U- and V-classes are intervals $[\rho_T, \rho^T]$, $[\rho_K, \rho^K]$, $[\rho_U, \rho^U]$, and $[\rho_V, \rho^V]$, respectively ([13], [10], [9]). In this paper U-classes for which ρ^U is a semilattice congruence, and V-classes for which ρ^V is an inverse congruence are considered. It turns out that the union of all such U-classes is the lattice CRConS of all completely regular congruences on S, and the union of all such V-classes is the lattice OConS of all orthodox congruences on S. Also, some complete epimorphisms of the form $\rho \to \rho^U$ and $\rho \to \rho^V$ are obtained.

1. Preliminaries. In the following we shall use the terminology and notation of [4] and [11]. Throughout the paper, S stands for a regular semigroup. If $\rho \in \text{Con } S$, and α is an equivalence on S/ρ , then the equivalence $\bar{\alpha}$ on S is defined by $a\bar{\alpha}b \Leftrightarrow (a\rho)\alpha(b\rho)$, $(a, b \in S)$. If α is a relation on S then α^* denotes the congruence on S generated by α . If α is an equivalence on S, then α° denotes the greatest congruence on S contained in α , and if $T \subseteq S$, then $T\alpha$ denotes the union of α -classes of all elements of T. If $\rho, \xi \in \text{Con } S$ and $\rho \subseteq \xi$, then the relation ξ/ρ on S/ρ defined by $(a\rho)\xi/\rho(b\rho) \Leftrightarrow a\xi b$ $(a, b \in S)$ is a congruence. If $\rho, \xi, \zeta \in \text{Con } S$, $\rho \subseteq \xi$ and $\rho \subseteq \zeta$, then $(\xi \vee \zeta)/\rho = (\xi/\rho) \vee (\zeta/\rho)$ and $(\xi \circ \zeta)/\rho = (\xi/\rho) \circ (\zeta/\rho)$.

Let \mathcal{C} be a class of semigroups, and let $\rho \in \text{Con } S$. Then ρ is a \mathcal{C} - congruence if $S/\rho \in \mathcal{C}$, and ρ is over \mathcal{C} if $(\forall e \in E(S))e\rho \in \mathcal{C}$.

In the paper, σ , η , α , ν , Y, o denote the least group, semilattice, rectangular band, Clifford, inverse and orthodox congruences on S, respectively. Also, μ and τ denote the greatest idempotent separating and idempotent pure congruences on S, respectively.

AMS Subject Classification (1985): Primary 20 M 17

Research supported by Science Fund of Serbia, Grant 0401A, through Matematički Institut

LEMMA 1. Let C be a class of semigroups closed for homomorphisms and let $\gamma = \gamma_S$ be the least C-congruence on S. If $\rho \in \text{Con } S$, then

- (1) ρ is a C-congruence on $S \Leftrightarrow \rho \supseteq \gamma$,
- (2) $\gamma_{S/\rho} = (\rho \lor \gamma)/\rho.$

Proof. (1) Clearly, if $S/\rho \in C$, then $\rho \supseteq \gamma$. Conversely, if $\rho \supseteq \gamma$, then $S/\gamma/(\rho/\gamma) \in C$, i.e. $S/\rho \in C$.

(2) From (1) it follows that $(\rho \lor \gamma)/\rho \supseteq \gamma_{S/\rho}$. Since $\rho \subseteq \overline{\gamma}_{S/\rho}$ and $\overline{\gamma}_{S/\rho}$ is a \mathcal{C} -congruence on S, we get $\rho \lor \gamma \subseteq \overline{\gamma}_{S/\rho}$, which yields $(\rho \lor \gamma)/\rho \subseteq \gamma_{S/\rho}$.

For $a \in S$, let V(a) denote the set of all inverses of a in S. Let \mathcal{U} and \mathcal{V} be equivalences on S defined by $a\mathcal{U}b \Leftrightarrow V(a)\mathcal{H} = V(b)\mathcal{H}$, and $a\mathcal{V}b \Leftrightarrow V(a) = V(b)$.

RESULT 1. [9] If $\rho, \xi \in \text{Con } S$, then

(1) $\rho T \xi \Leftrightarrow \overline{\mathcal{H}}_{S/\rho} = \overline{\mathcal{H}}_{S/\xi}$ and $\rho^T = \overline{\mathcal{H}}_{S/\rho}^\circ$, $\rho_T = (\operatorname{tr} \rho)^*$, (2) $\rho K \xi \Leftrightarrow \overline{\tau}_{S/\rho} = \overline{\tau}_{S/\xi}$ and $\rho^K = \overline{\tau}_{S/\rho}$, (3) $\rho U \xi \Leftrightarrow \overline{\mathcal{U}}_{S/\rho} = \overline{\mathcal{U}}_{S/\xi}$ and $\rho^U = \overline{\mathcal{U}}_{S/\rho}^\circ$, $\rho_U = (\rho \cap \leq)^*$, (4) $\rho V \xi \Leftrightarrow \overline{\mathcal{V}}_{S/\rho} = \overline{\mathcal{V}}_{S/\xi}$ and $\rho^V = \overline{\mathcal{V}}_{S/\rho}^\circ$.

In particular we have $\varepsilon^T = \mathcal{H}^\circ = \mu$, $\varepsilon^K = \tau$, $\varepsilon^U = \mathcal{U}^\circ$, $\omega_U = (\leq)^*$ and $\varepsilon^V = \mathcal{V}^\circ$, where ε is the equality, and ω is the universal relation on S.

COROLLARY 1. For $\rho \in \operatorname{Con} S$ we have $\rho^T / \rho = \mathcal{H}^{\circ}_{S/\rho} = \mu_{S/\rho}, \ \rho^K / \rho = \tau_{S/\rho}, \ \rho^U / \rho = \mathcal{U}^{\circ}_{S/\rho}, \ \rho^V / \rho = \mathcal{V}^{\circ}_{S/\rho}.$

RESULT 2. [9] A congruence ρ on S is over completely simple semigroups if and only if $\rho \subseteq \mathcal{U}$.

RESULT 3. [8] Let L be a complete lattice and C be a complete congruence on L. Then for any $x \in L$ the C-class xC is the interval $[x_C, x^C]$ of L, and for any $A \subseteq L$,

$$(\bigvee_{x \in A} x)_C = \bigvee_{x \in A} x_C, \quad (\bigwedge_{x \in A} x)^C = \bigwedge_{x \in A} x^C.$$

RESULT 4. [7] Let S be a regular semigroup and $\rho, \xi \in \text{Con } S$. Then

(i) if ξ is idempotent separating, then $\rho \lor \xi = \rho \circ \xi \circ \rho$. In particular $\rho \lor \mu = \rho \circ \mu \circ \rho$;

- (ii) if S is completely regular, then $\rho \lor \eta = \rho \circ \eta \circ \rho$;
- (iii) if S is orthodox, then $\rho \lor Y = \rho \circ Y \circ \rho$.

2. Completely regular congruences. In this section we establish certain characterizations of completely regular congruences.

LEMMA 2. For a regular semigroup S, the following are equivalent:

- (i) S is completely regular,
- (ii) $\eta \subseteq \mathcal{U}$,
- (iii) $\eta = \mathcal{U}$.

Proof. Since any completely regular semigroup is a semilattice of completely simple semigroups, the equivalence (i) \Leftrightarrow (ii) follows immediately from Result 2.

By definition of \mathcal{U} , it follows that $\mathcal{U} \subseteq \mathcal{D}$, and if S is completely regular, then $\mathcal{D} = \eta$. Hence, (ii) \Leftrightarrow (iii).

THEOREM 1. For $\rho \in \text{Con } S$, the following are equivalent:

- (i) ρ is a completely regular congruence,
- (ii) ρ^U is a semilattice congruence,

(iii)
$$\rho^U = \rho \lor \eta$$

(iv) $\rho U(\rho \lor \eta)$.

Proof. (i) \Rightarrow (iii) $\rho \in \operatorname{CRCon} S \Leftrightarrow S/\rho$ is completely regular

$$\begin{array}{ll} \Leftrightarrow \mathcal{U}_{S/\rho} = \eta_{S/\rho} & \text{(by Lemma 2)} \\ \Leftrightarrow \bar{\mathcal{U}}_{S/\rho} = \rho \lor \eta & \text{(by Lemma 1)} \\ \Rightarrow \rho^U = \rho \lor \eta & \text{(by Result 1).} \end{array}$$

 $(iii) \Rightarrow (iv)$ This is evident.

(iv)
$$\Rightarrow$$
 (ii) $\rho U(\rho \lor \eta) \Rightarrow \rho \lor \eta \subseteq \rho^U \Rightarrow \rho^U$ is a semilattice congruence.
(ii) \Rightarrow (i) $\eta \subseteq \rho^U \Rightarrow \rho \lor \eta \subseteq \rho^U$
 $\Rightarrow (\rho \lor \eta)/\rho \subseteq \rho^U/\rho$
 $\Rightarrow \eta_{S/\rho} \subseteq \mathcal{U}_{S/\rho}$ (by Lemma 1 and Corollary 1)
 $\Rightarrow S/\rho$ is completely regular (by Lemma 2).

Let SCon S denote the lattice of all semilattice congruences on S.

COROLLARY 2. (1) $(\forall \rho, \xi \in \operatorname{CRCon} S)(\rho U \xi \Leftrightarrow \rho \lor \eta = \xi \lor \eta),$ (2) $\operatorname{CRCon} S = [\eta_U, \omega] = [\eta, \omega] U$ and $\eta U = [\eta_U, \eta],$ (3) $\operatorname{SCon} S = [\eta, \omega] = \{\rho \in \operatorname{CRCon} S \mid \rho^U = \rho\},$ (4) $\mu \subseteq \mathcal{U}^\circ \subseteq \eta.$

PROPOSITION 1. For $\rho \in \operatorname{CRCon} S$, $\rho \lor \eta = \rho \circ \eta \circ \rho$.

Proof. Let δ denote the least completely regular congruence on S. By Corollary 2 we have $\delta = \eta_U \subseteq \rho$. According to Lemma 1 we get $\eta_{S/\delta} = (\delta \lor \eta)/\delta = \eta/\delta$. So we have

$$(\rho/\delta) \lor (\eta/\delta) = (\rho/\delta) \circ (\eta/\delta) \circ (\rho/\delta) \quad \text{(by Result 4(ii))}$$

$$\Leftrightarrow \qquad (\rho \lor \eta)/\delta = (\rho \circ \eta \circ \rho)/\delta$$

$$\Leftrightarrow \qquad \rho \lor \eta = \rho \circ \eta \circ \rho.$$

From (1) of Corollary 2 and the implication (i) \Rightarrow (iii) of Theorem 1 we get Proposition 8.1 of [9].

COROLLARY 3. For S the following are equivalent:

(i) S is completely regular,

(ii) $(\forall \rho \in \operatorname{Con} S) \rho^U = \rho \lor \eta$,

- (iii) $\eta = \mathcal{U}^{\circ}$,
- (iv) $\varepsilon U\eta$.

The next result is an analogue of Theorem 1 of [1].

THEOREM 2. For $\rho \in \text{Con } S$, the following are equivalent:

- (i) ρ is a completely simple congruence,
- (ii) ρ^T is a rectangular band congruence,
- (iii) $\rho^T = \rho \lor \alpha$,
- (iv) $\rho T(\rho \lor \alpha)$,
- (v) $\rho U\omega$.

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) follows immediately from [1].

(i) \Leftrightarrow (v) ρ is a completely simple congruence

 $\Leftrightarrow \omega / \rho$ is over completely simple semigroups

 $\Leftrightarrow \rho U \omega$ (by Theorem 4.10 of [9]).

Let $\operatorname{CSCon} S$ (RBCon S) denote the lattice of all completely simple (rectangular band) congruences on S. Then we have

- COROLLARY 4. (1) $(\forall \rho, \xi \in \operatorname{CSCon} S)\rho T \xi \Leftrightarrow \rho \lor \alpha = \xi \lor \alpha$,
 - (2) CSCon $S = [\alpha_T, \omega] = [\alpha, \omega]T$ and $\alpha T = [\alpha_T, \alpha],$
 - (3) RBCon $S = [\alpha, \omega] = \{\rho \in \operatorname{CSCon} S \mid \rho^T = \rho\},\$
 - (4) $\alpha_T = \omega_U = (\operatorname{tr} \alpha)^* = (\leq)^*.$

COROLLARY 5. For S the following are equivalent:

- (i) S is completely simple,
- (ii) $(\forall \rho \in \operatorname{Con} S) \rho^T = \rho \lor \alpha$,
- (iii) $\mu = \alpha$,
- (iv) $\mathcal{U}^{\circ} = \omega$,
- (v) $\varepsilon U\omega$.

PROPOSITION 2. For $\rho \in CSCon S$, $\rho \lor \alpha = \rho \circ \alpha \circ \rho$.

Proof. Let ζ denote the least completely simple congruence on S. By Corollary 4 we have $\zeta = \alpha_T \subseteq \rho$. According to Lemma 1 we get $\alpha_{S/\zeta} = (\zeta \lor \alpha)/\zeta = \alpha/\zeta$. Hence, by Corollary 5, $\mu_{S/\zeta} = \alpha/\zeta$. Thus

$$(\rho/\zeta) \lor (\alpha/\zeta) = (\rho/\zeta) \circ (\alpha/\zeta) \circ (\rho/\zeta) \qquad \text{(by Result 4(i))}$$

$$\Leftrightarrow \qquad (\rho \lor \alpha)/\zeta = (\rho \circ \alpha \circ \rho)/\zeta$$

$$\Leftrightarrow \qquad \rho \lor \alpha = \rho \circ \alpha \circ \rho.$$

3. Orthodox congruences. Now we describe orthodox congruences on S in terms of K and V. Let $\rho \in \text{Con } S$. It is easy to see that ρ is an orthodox congruence if and only if ker ρ is a subsemigroup of S.

40

LEMMA 3. For a regular semigroup S, the following are equivalent:

- (i) S is orthodox,
- (ii) $Y = \mathcal{V}$,
- (iii) $Y \subseteq \mathcal{V}$,
- (iv) $Y \subseteq \tau$.

Proof. (i) \Rightarrow (ii) It is proved in [3] and [14].

(ii) \Rightarrow (iii) This is evident.

(iii) \Rightarrow (iv) $Y \subseteq \mathcal{V} \Rightarrow Y \subseteq \mathcal{V}^{\circ} = \varepsilon^{V} \subseteq \varepsilon^{K} = \tau$.

 $(iv) \Rightarrow (i)$ Since Y is orthodox, ker Y is a subsemigroup of S. Thus $Y \subseteq \tau \Leftrightarrow \ker Y = E(S) \Rightarrow E(S)$ is a subsemigroup of $S \Leftrightarrow S$ is orthodox.

THEOREM 3. For $\rho \in \text{Con } S$ the following are equivalent:

- (i) ρ is an orthodox congruence,
- (ii) ρ^V is an inverse congruence,
- (iii) $\rho^V = \rho \lor Y$,
- (iv) $\rho V(\rho \lor Y)$,
- (v) $\rho K(\rho \lor Y)$,
- (vi) ρ^K is an inverse congruence.

$$\begin{array}{ll} \textit{Proof.} & (\mathrm{i}) \Rightarrow (\mathrm{iii}) \ \rho \ \mathrm{is} \ \mathrm{orthodox} \Leftrightarrow \mathcal{V}_{S/\rho} = Y_{S/\rho} & (\mathrm{by} \ \mathrm{Lemma} \ 3) \\ \Leftrightarrow \bar{\mathcal{V}}_{S/\rho} = \rho \lor Y & (\mathrm{by} \ \mathrm{Lemma} \ 1) \\ \Rightarrow \rho^V = \rho \lor Y. & (\mathrm{by} \ \mathrm{Result} \ 1). \end{array}$$

(iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) This is evident. (vi) \Rightarrow (i) $Y \subseteq \rho^K \Rightarrow \rho \lor Y \subseteq \rho^K$

$$\begin{array}{cccc} P & \xrightarrow{} & \rho \lor I \subseteq \rho \\ & \Rightarrow (\rho \lor Y) / \rho \subseteq \rho^K / \rho \\ & \Leftrightarrow Y_{S/\rho} \subseteq \tau_{S/\rho} & \text{(by Lemma 1 and Corollary 1)} \\ & \Leftrightarrow \rho & \text{is orthodox} & \text{(by Lemma 3).} \end{array}$$

 $(iii) \Rightarrow (ii) \Rightarrow (vi)$ This is evident.

Let ICon S denote the set of all inverse congruences on S.

COROLLARY 6. (1)
$$(\forall \rho, \xi \in \operatorname{OCon} S)\rho V \xi \Leftrightarrow \rho \lor Y = \xi \lor Y,$$

(2) $\operatorname{OCon} S = [o, \omega] = [Y, \omega]V$ and $YV = [o, Y],$
(3) $\operatorname{ICon} S = [Y, \omega] = \{\rho \in \operatorname{OCon} S \mid \rho^V = \rho\},$
(4) $\mathcal{V}^\circ \subseteq Y.$

From Corollary 6(1) and the implication (i) \Rightarrow (iii) of Theorem 3 we get Proposition 8.5 of [9], and from (i) \Rightarrow (v) of Theorem 3 we get oKY [6] and Lemma 2.1 of [2].

COROLLARY 7. For S the following are equivalent:

- (i) S is orthodox,
- (ii) $(\forall \rho \in \operatorname{Con} S) \rho^V = \rho \lor Y$,

(iii) $Y = \mathcal{V}^{\circ}$,

(iv) εVY .

Using Result 4(iii), the proof of the following proposition is similar to the proof of the Proposition 1.

PROPOSITION 3. For $\rho \in OCon S$, $\rho \lor Y = \rho \circ Y \circ \rho$.

In the following we describe orthodox completely regular (i.e. orthogroup) congruences and orthodox completely simple congruences on S. By [5], any orthodox completely simple semigroup is a rectangular group and conversely.

THEOREM 4. For $\rho \in \text{Con } S$, the following are equivalent:

- (i) ρ is an orthogroup congruence,
- (ii) ρ^V is a Clifford congruence,
- (iii) $\rho^V = \rho \lor \nu$,
- (iv) $\rho V(\rho \lor \nu)$.

Proof. (i) \Rightarrow (ii) By Theorem 3, ρ^V is an inverse completely regular congruence, i.e. a Clifford congruence.

(ii)
$$\Rightarrow$$
 (iii)
 ρ^{V} is a Clifford congruence $\Rightarrow \rho^{V} = \rho \lor Y$ (by Theorem 3)
 $\Rightarrow \rho^{V} \subseteq \rho \lor \nu \subseteq \rho^{V}$ (since $Y \subseteq \nu$)
 $\Rightarrow \rho^{V} = \rho \lor \nu$.

 $(iii) \Rightarrow (iv)$ This is evident.

 $(iv) \Rightarrow (i)$ By Theorem 3, $\rho V(\rho \lor \nu)$ implies that ρ is orthodox. On the other hand,

$$\begin{split} \rho V(\rho \lor \nu) \Rightarrow \rho U(\rho \lor \nu) & (\text{since } V \subseteq U) \\ \Rightarrow \rho & \text{is completely regular} & (\text{by Theorem 1}) \end{split}$$

Hence ρ is an orthogroup congruence.

Let OGCon S (SGCon S) denote the lattice of all orthogroup (Clifford) congruences on S. Then we have

COROLLARY 8. (1) $(\forall \rho, \xi \in \operatorname{OGCon} S)\rho V\xi \Leftrightarrow \rho \lor \nu = \xi \lor \nu$. (2) $\operatorname{OGCon} S = [\nu_V, \omega] = [\nu, \omega]V$ and $\nu V = [\nu_V, \nu]4$. (3) $\operatorname{SGCon} S = [\nu, \omega] = \{\rho \in \operatorname{OGCon} S \mid \rho^V = \rho\}.$

COROLLARY 9. For S the following are equivalent:

- (i) S is an orthogroup,
- (ii) $(\forall \rho \in \operatorname{Con} S) \rho^V = \rho \lor \nu$,
- (iii) $\mathcal{V}^{\circ} = \nu$,
- (iv) $\varepsilon V \nu$.

THEOREM 5. For $\rho \in \text{Con } S$, the following are equivalent:

- (i) ρ is a rectangular group congruence,
- (ii) ρ^V is a group congruence,

42

- (iii) $\rho^V = \rho \lor \sigma$,
- (iv) $\rho V (\rho \lor \sigma)$.

Proof. (i) \Rightarrow (ii) By Theorem 3, ρ^V is an inverse completely simple congruence, i.e. ρ^V is a group congruence.

(ii) \Rightarrow (iii) If ρ^V is a group congruence, then $\rho^V = \rho^K = \rho \lor \sigma$, by Theorem 3 of [1]. (iii) \Rightarrow (iv) This is evident.

 $(iv) \Rightarrow (i) \rho V(\rho \lor \sigma) \Rightarrow \rho$ is orthodox (by Theorem 3). On the other hand,

$$\rho V(\rho \lor \sigma) \Rightarrow \rho U(\rho \lor \sigma) U \omega \qquad (\text{by Theorem 2})$$

 $\Rightarrow \rho$ is completely simple. (by Theorem 2).

Hence, ρ is a rectangular group congruence.

Let $\operatorname{RGCon} S$ $(\operatorname{GCon} S)$ denote the lattice of all rectangular group (group) congruences on S. Then we have

COROLLARY 10. (1)
$$(\forall \rho, \xi \in \operatorname{RGCon} S)\rho V\xi \Leftrightarrow \rho \lor \sigma = \xi \lor \sigma.$$

(2) $\operatorname{RGCon} S = [\sigma_V, \omega] = [\sigma, \omega]V$ and $\sigma V = [\sigma_V, \sigma],$
(3) $\operatorname{GCon} S = [\sigma, \omega] = \{\rho \in \operatorname{RGCon} S \mid \rho^V = \rho\}.$

COROLLARY 11. For S the following are equivalent:

- (i) S is a rectangular group,
- (ii) $(\forall \rho \in \operatorname{Con} S) \rho^V = \rho \lor \sigma$,
- (iii) $\mathcal{V}^{\circ} = \sigma$,
- (iv) $\varepsilon V \sigma$.

4. Some complete epimorphisms. Using the results of Theorems 1–5 and the Result 2 we get the following

THEOREM 6. Let	S be a regular	semigroup.	The mappings
$\varphi_1 : \operatorname{CRCon} S \longrightarrow$	$\operatorname{SCon} S$	defined by	$\varphi_1(\rho) = \rho \lor \eta,$
$\varphi_2 : \operatorname{CSCon} S \longrightarrow$	$R \operatorname{RBon} S$	defined by	$\varphi_2(\rho) = \rho \lor \alpha,$
$\varphi_3: \operatorname{OCon} S \longrightarrow$	$\operatorname{ICon} S$	defined by	$\varphi_3(\rho) = \rho \lor Y,$
$\varphi_4: \operatorname{OGCon} S \longrightarrow$	$\operatorname{SGCon} S$	defined by	$\varphi_4(\rho) = \rho \lor \nu,$
$\varphi_5 : RG \operatorname{Con} S \longrightarrow$	$\operatorname{GCon} S$	defined by	$\varphi_5(\rho) = \rho \lor \sigma$

are complete epimorphisms. The classes of the complete congruence $\bar{\varphi}$ induced by the epimorphism φ are U-classes, if $\varphi = \varphi_1$; T-classes, if $\varphi = \varphi_2$; and V-classes, if $\varphi = \varphi_i$, i = 3, 4, 5.

For a completely regular semigroup S, the statement concerning the mapping φ_1 is given in [12] (Theorem 4.3(i)).

$$(\mathbf{v}) \quad (\cap_{\rho \in F} \rho) \lor \sigma = \cap_{\rho \in F} (\rho \lor \sigma) \qquad (F \subseteq \operatorname{RGCon} S)$$

From (i) of this corollary we get Theorem 4.7 of [7], and from (iii) we get Theorem 2.4 of [2].

REFERENCES

- Alimpić, B.P. and D.N.Krgović, Some congruences on regular semigroups, Proc. Conf. Oberwolfach 1986, Lect. Not. Math. 1320 Springer-Verlag, 1-9.
- [2] Eberhart, C. and W. Williams, Congruences on an orthodox semigroup via the minimum inverse semigroup congruence, Glasgow Math. J. 18 (1977), 181-192.
- [3] Hall, T.E., On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208.
- [4] Howie, J.M., An Introduction to Semigroup Theory, Academic Press, London 1976.
- [5] Ivan, J., On the decomposition of a simple semigroup into a direct product, Mat.-Fyz. Časopis 4 (1954), 181-202 (In Slovak: Russian summary).
- [6] Jones, P.R., The least inverse and orthodox congruences on a completely regular semigroup, Semigroup Forum 27 (1983), 390-392.
- [7] Jones, P.R., Joins and meets of congruences on a regular semigroup, Semigroup Forum 30 (1984), 1-16.
- [8] Pastijn, F., and M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc. 295 (1986), 607-633.
- [9] Pastijn, F., and M. Petrich, The congruence lattice of a regular semigroup, J. Pure Appl. Algebra 53 (1988), 93-123.
- [10] Pastijn, F., and P.G. Trotter, Lattices of completely regular semigroup varieties, Pacific J. Math. 119 (1985), 191-214.
- [11] Petrich, M., Structure of Regular Semigroups, Cahiers Math., Montpellier, 1977.
- [12] Petrich, M., Congruences on completely regular semigroups, Can. J. Math., 41 (1989), 439-461.
- [13] Reilly, N.R., and K.E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349-360.
- [14] Schein, B.M., On the theory of generalized groups and generalized heaps, Theory of Semigroups and its Applications, Saratov Univ. (1966), 286-324 (in Russian).

(Received 29 09 1992)

Matematički fakultet	Matematički institut
Studentski trg 16	Kneza Mihaila 35
11001 Beograd, p.p. 550	11001 Beograd, p.p. 367