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ON THE LAURENT COEFFICIENTS OF

CERTAIN DIRICHLET SERIES

Aleksandar Ivi�c

Abstract. Explicit expressions for the coeÆcients of the Laurent (Taylor) expansions of
certain Dirichlet series are given. These are used for the evaluation of certain integrals containing
the error terms of some well-known problems of multiplicative number theory.

1. Expressions for the Laurent and Taylor coeÆcients

Let 0 = �1 < �2 < . . . ; limn!1 �n = +1 , and let

f(s) =

1X
n=1

ane
��ns =

1X
n=1

an`
�s
n (`n = e�n) (1.1)

be a (general) Dirichlet series (s = �+it; �; t 2 Re) such that the counting function

A(x) =
X
`n�x

an (1.2)

may be written in the form

A(x) = xa(
MX

m=0

cm logm x) + u(x) (1.3)

with cM > 0 and
u(x) = O(xb) (0 � b < a); (1.4)

where u(x) is integrable for x > 0. Thus u(x) may be thought of as the error term
in the asymptotic formula for the counting function A(x). This type of situation
often occurs in many problems of analytic number theory, and some examples will
be discussed in the sequel. It can be shown without diÆculty that f(s) can be
analytically continued to a function which is regular for Re s > b, except for a pole
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at s = a of order M + 1. We are interested in explicit expressions for the coeÆ-
cients of the Laurent (Taylor) expansion of f(s) for Re s > b. Such problems were
investigated, under various hypotheses, by several authors such as Balakrishnan
[1], [2] and Briggs-Buschmann [3]. It appears that the previous authors focused
their attention on the Laurent expansion near the pole of the Dirichlet series in
question, whille we want to provide expressions for the Taylor coeÆcients at other
points as well. Our �rst result is

Theorem 1. If f(s) satis�es the above hypotheses, then its Laurent expan-

sion at s = a is

f(s) =

M+1X
m=1

Dm(s� a)�m +

1X
k=0

Ek(s� a)k; (1.5)

where

Dm = (m� 1)!acm�1 +m!cm (m = 1; . . . ;M); DM+1 =M !acM ; (1.6)

Ek =
(�1)k

k!

Z 1

1�0

x�a(logx)xdu(x) (k = 0; 1; . . . ): (1.7)

The Taylor series of f(s) at s = s0 (s0 6= a; Re s0 > b) is

f(s) =

1X
k=0

Ek(s
0)(s� s0)k (js� s0j < js0 � aj; Re s > b); (1.8)

where for k = 0; 1; . . . ,

Ek(s
0) =

(�1)k

k!

(
M+1X
m=1

m(m+ 1) . . . (m+ k � 1)Dm(s
0 � a)�m�k

+

Z 1

1�0

x�s
0

(log x)kdu(x)

)
:

(1.9)

Proof. By the Stieltjes integral representation we have, for Re s > a,

f(s) =

Z 1

1�0

x�sdA(x) =

MX
m=0

cm

Z 1

1

xa�s�1(a logm x+m logm�1 x)dx

+

Z 1

1�0

x�sdu(x);

(1.10)

since `1 = e0 = 1. Such representations of Dirichlet series by Stieltjes integrals are
very useful, and have been systematically used e.g. by Karamata [8], [9]. One can
evaluateZ 1

1

xa�s�1 logm x � dx =

Z 1

0

e�(s�a)uumdu = (s� a)�m�1
Z 1

0

e�ttmdt

= (s� a)�m�1�(m+ 1) = m!(s� a)�m�1;

(1.11)
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and obtain by integration by partsZ 1

1�0

x�sdu(x) = �u(1� 0) + s

Z 1

1

u(x)x�s�1dx: (1.12)

In view of (1.4) it follows that the integral on the right-hand side of (1.12) converges
absolutely for Re s > b, and in that region it represents a regular function of s. Thus
from (1.10) and (1.11) we have, for Re s > b,

f(s) =

M+1X
m=1

Dm(s� a)�m +

Z 1

1�0

x�sdu(x) (1.13)

with Dm given by (1.6). The relation (1.13) provides analytic continuation of f(s)
to the region Re s > b, where f(s) is regular except for a pole of order M + 1 at
s = a. To obtain (1.7) note thatZ 1

1�0

x�sdu(x) =

Z 1

1�0

x�ae�(s�a) log xdu(x)

=

Z 1

1�0

x�a
1X
k=0

(�1)k

k!
logk x � (s� a)kdu(x)

=

1X
k=0

n (�1)k
k!

Z 1

1�0

x�a logk x � du(x)
o
(s� a)k:

(1.14)

To justify the inversion of summation and integration note thatZ 1

1�0

x�a logk x � du(x) = "ku(1� 0)�

Z 1

1

u(x)(�a logk x+ k logk�1 x)x�a�1dx

("0 = 1 and "k = 0 for k � 1), so that by (1.4) the integral on the right-hand side
is absolutely convergent. Inserting (1.14) in (1.13) and comparing with (1.15) we
obtain (1.7), since Laurent expansions of analytic functions are unique.

To obtain (1.9) note that for Re s > b; s 6= a and k = 0; 1; . . . we have from
(1.13)

f (k)(s) =

M+1X
m=1

Dm(�1)
km(m+ 1) . . . (m+ k � 1)(s� a)�m�k

+(�1)k
Z 1

1�0

x�s logk x � du(x);

(1.15)

since we may use (1.12) in (1.13) and di�erentiate under the integral sign in view
of the absolute convergence of the integral in question. On the other hand, for
Re s0 > b; s0 6= a,

f(s) =

1X
k=0

f (k)(s0)

k!
(s� s0)k (js� s0j < js0 � aj;Re s > b): (1.16)
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The condition js � s0j < js0 � aj in (1.16) stems from the fact f(s) has a pole at
s = a. Replacing s by s0 in (1.15) we obtain (1.8) with Ek(s

0) given by (1.9). This
�nishes the proof of Theorem 1.

Before we proceed further some remarks are in order. No attempts have been
made to make Theorem 1 as general as possible, and there are several ways in which
it could be generalized. First, the condition (1.3) can be naturally generalized to
read

A(x) =
X
`n�x

an =

kX
i=1

MiX
j=0

ci;jx
�i logj x+ u(x); (1.17)

where the ci;j 's are real constants (c1;m1
> 0),

�1 > �2 > . . . > �k > 0; (1.18)

and the constant b in (1.4) is to satisfy now 0 � b < �k. The analysis made in the
proof of Theorem 1 remains valid with the obvious changes. Namely, there will be
poles as s = �i of order Mi + 1, and (1.13) will be replaced by

f(s) =

kX
i=1

Mi+1X
j=1

Di;m(s� �i)
�j +

Z 1

1�0

x�sdu(x) (Re s > b) (1.19)

with suitable constants Di;m.

Another possibility for generalization is to consider, instead of (1.3), the case
when

A(x) = xaL(x) + u(x); (1.20)

where u(x) satis�es (1.4), and L(x) is a slowly varying function in the sense of
J. Karamata. For our purposes this will mean that L(x) is a positive, continuous
function for x � 1 such that

lim
x!1

L(cx)

L(x)
= 1

for any c > 0. Then one has (see e.g. E. Seneta [12])

L(x) = B(x) exp

�Z x

1

�(t)
dt

t

�
; (1.21)

where limx!1B(x) = B > 0, limx!1 �(t) = 0 with B(x) continuous and �(t)
integrable. The sum of logarithms appearing in (1.3) is obviously a slowly varying
function.

For technical reasons we have assumed in (1.1) that �1 = 0, and this condition
may be removed with the obvious modi�cations in the proof. However, in the most
often encountered applications in multiplicative number theory the Dirichlet series
are of the form f(s) =

P1
n=1 ann

�s , which is the case �n = logn of (1.1), where
�1 = 0 is ful�lled.
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2. Case of the Riemann zeta-function

It seems natural to consider �rst the classical case when f(s) in (1.1) reduces
to the Riemann zeta-function. We take

f(s) =

1X
n=1

n�s = �(s) (Re s > 1);

so that in the notation of Section 1

A(x) =
X
n�x

1 = x+ u(x); u(x) = [x]� x; a = 1; M = b = 0; D1 = 1:

In this case we have

�(s) =
1

s� 1
+

1X
k=0


k(s� 1)k; (2.1)

where (1.7) gives (the constant in (2.1) are traditionally denoted by 
k)


k =
(�1)k

k!
lim

N!1

 Z N

1�0

x�1 logk x � d([x] � x)

!

=
(�1)k

k!
lim

N!1

0
@X

n�N

logk n

n
�

logk+1N

k + 1

1
A :

(2.2)

For s = s0 and s0 6= 1, Re s0 > 0 we have

�(s) =
1X
k=0


k(s
0)(s� s0)k; (2.3)

where by (1.9)


k(s
0) = (�1)k(s0 � 1)�k�1 +

(�1)k

k!
lim

N!1

 Z N

1�0

x�s
0

logk x � d([x] � x)

!

= (�1)k(s0 � 1)�k�1 +
(�1)k

k!
lim

N!1

0
@X

n�N

n�s
0

logk n�

Z N

1

x�s
0

logk xdx

1
A :

Evaluating the last integrals by successive integrations by parts we obtain, for
k � 1,


k(s
0) =(�1)k(s0 � 1)�k�1

+
(�1)k

k!
lim

N!1

(X
n�N

n�s
0

logk n+
N1�s0

s0 � 1

�
logkN +

k logk�1N

s0 � 1

+
k(k � 1) logk�2N

(s0 � 1)2
+ . . . +

k!

(s0 � 1)k

�)
:

(2.4)
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The representation (2.2) is the classical one due to Stieltjes (1885), and the con-
stants 
k are commonly called the Stieltjes constants. Their numerical values have
been calculated by Israilov [4], [5], and the �rst few are


 = 
0 = 0:57721 . . . ; 
1 = 0:07281 . . . ; 
2 = �0:00485 . . . ; 
3 = �0:00034 . . . :

The constant 
 = 
0 = �
R1
0

e�x logx � dx is traditionally known as the Euler con-
stant. It was proved by Mitrovi�c [11] that each of the inequalities 
2n > 0; 
2n < 0,

2n�1 > 0, 
2n�1 < 0 holds for in�nitely many n. For the expression (2.4) I have
not been able to �nd a reference in the literature.

3. Finite zeta-products

In many problems of multiplicative number theory the generating Dirichlet
series is of the form

f(s) = �J
j=1(�

(rj)(�js))
kj�M

m=1(�
(qm)(�ms))

�`m ; (3.1)

where rj ; qm � 0; kj ; `m � 1 are integers, and

0 < �1 < �2 < . . . < �J ; �1 < �2 < . . . < �M (�j 6= �m)

are real numbers such that �1 < �1. For Re s > 1=�1

f(s) =

1X
n=1

ann
�s; (3.2)

where an is a suitable arithmetic function (sequence), and the series in (3.2) con-
verges absolutely. We can writeX

n�x

an =M(x) +E(x); (3.3)

where M(x) and E(x) may be thought of as the main term and the error term,
respectively, for the summatory function of an. By applying Perron's inversion
formula for Dirichlet series (see e.g. the Appendix of [7]) and using the residue
theorem it is seen that we may assume M(x) to be of the form

M(x) =

J0X
j=1

x
1=�jQrj+kj�1(logx); (3.4)

where Qp(t) denotes a suitable polynomial of degree p in t, and J 0 is the largest

integer such that �J0 > �1=2, since �(q1)(�1s) certainly has zeros in the region
Re s � �1=2. We also suppose that we can obtain, by elementary or analytic
arguments,

E(x) = O(x�); 0 � � < 1=�J0 : (3.5)

Then we have



On the Laurent coeÆcients of certain Dirichlet series 29

Theorem 2. If f(s) is generated by the �nite zeta-product (3.1), then for

Re s0 > � and any integer k � 0Z 1

1

x�s
0�1
�
logk x

�
E(x)dx (3.6)

can be expressed as an explicit �nite sum involing the coeÆcients 
k and 
k(s
0)

given by (2.2) and (2.4), respectively.

Proof. At the point s = s0 the k-th Taylor coeÆcient (or Laurent coeÆcient,
if s0 = �j for some 1 � j � J 0) of f(s) can be expressed as an explicit �nite
sum involving the constants 
k or 
k(s

0). This follows directly from the product
representation (3.1), since the Taylor (Laurent) series for �(q)(s) may be obtained
by di�erentiating the Taylor (Laurent) series of �(s) term by term q times. The
coeÆcients of 1=�(q)(s) may be found from the relation 1 = �(q)(s) � 1=�(q)(s) in
terms of the 
k's or 
k(s

0)'s.

On the other hand, by following the proof of Theorem 1, it is seen that the
k-th coeÆcient of f(s), say ck, may be expressed in terms ofZ 1

1�0

x�s
0

logk x � dE(x) =�E(1� 0)"k + (s0 + 1)

Z 1

1

x�s
0�1 logk x � E(x)dx

� k

Z 1

1

x�s
0�1 logk�1 x � E(x) dx:

If we compare the two expressions for ck we shall obtain a linear recurrent relation
between dk and dk�1, where

dk =

Z 1

1

x�s
0�1 logk x �E(x) dx;

and by solving this recurrent relation for dk the assertion of the theorem follows. It
is clear that in the general case the expression for dk is complicated, so no attempt
is being made to write it down explicitly. In the next section several examples of
�nite zeta-products will be worked out in detail.

4. Some examples of �nite zeta-products

4.1. The general Dirichlet divisor problem. Consider

f(s) =
1X
n=1

dM (n)n�s =

 
1X
n=1

n�s

!M

= �M (s) (M 2 N; Re s > 1); (4.1)

so that, for M � 2 �xed, the multiplicative function dM (n) denotes the number of
ways n may be represented as a product of M factors. In this case we know that

A(x) =
X
n�x

dM (n) = xPM�1(log x) + �M (x); (4.2)

where PM�1(t) is a suitable polynomial in t of degree M � 1. The estimation of
the error term �M (x) in (4.2) is known as the general Dirichlet divisor problem
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(the case M = 2 being known as the Dirichlet divisor problem). An elementary
argument (see Ch.12 of Titchmarsh [13]) easily shows that

�M (x) = O(x1�1=M logM�2 x) (M � 2);

while for the main term we have

PM�1(logx) = Ress=1x
s�1�M (s)s�1;

so that the coeÆcients of PM�1 may be expressed in terms of the Stieltjes constants

k. In the notation of (1.3) this means that a = 1; u(x) = �M (x), and near s = 1
we have the Laurent expansion

�M (s) =

MX
j=1

dj;M (s� 1)�j +

1X
j=0


j;M (s� 1)j ; (4.3)

where by (1.7)


j;M =
(�1)j

j!

Z 1

1�0

x�1 logj x � d�M (x): (4.4)

In view of (4.2) we can write down explicitly


j;M =
(�1)j

j!
lim

N!1

 X
n�N

dM (n) logj n � n�1

�

Z N

1

x�1 logj x �QM�1(log x) � dx

!
;

(4.5)

where QM�1(t) = PM�1(t) + P 0M�1(t), and the integral in (4.5) may be easily
evaluated elementarily. Of course, when M = 1, then 
j;1 = 
j , as given by (2.2).
On the other hand by (2.1) we have

�M (s) =
� 1

s� 1
+

1X
j=0


j(s� 1)j
�M

; (4.6)

and developing the right-hand side of (4.6) by the multinominal theorem and com-
paring with (4.3), it follows that each 
j;M may be expressed as a suitable �nite sum
of the form

P

r1j1 . . . 


rM
jM

with non-negative integer exponents r1; . . . ; rM . However

from (4.4) we have


j;M =
(�1)j

j!
(�"j�M (1� 0) +

Z 1

1

�M (x)x�2 logj x � dx);

where as before "0 = 1 and "j = 0 for j � 1; �M (1� 0) = �PM�1(0). Hence this
shows that each integralZ 1

1

�M (x)x�2 logj x � dx (M � 2; j = 0; 1; . . . )
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may be expressed as a �nite sum involving the Stieltjes constants 
k. In particular,
this method easily shows thatZ 1

1

�2(x)x
�2dx = (
0 � 1)2 + 2
1; (4.7)

Z 1

1

�3(x)x
�2dx = (
0 � 1)3 + 3(
1 � 
2) + 6
0
1: (4.8)

The identitites (4.7) and (4.8) were obtained, in a more complicated way, by Lavrik
et al. [10].

4.2. Squarefree numbers. A number n is squarefree if n = 1 or if
n = p1 . . . pr, where the pi's are distinct primes. Thus n is squarefree if and only if
�2(n) = 1, where �(n) denotes the M�obius function. Hence

f(s) =

1X
n=1

�2(n)n�s = �(s)=�(2s) (Re s > 1);

A(x) =
X
n�x

�2(n) = 6��2x+R(x);
(4.9)

where R(x) = O(x1=2) follows by elementary arguments (see. Ch. 14 of [7] for a
sharper result). In this case (1.7) of Theorem 1 may be directly applied to yield

Ek =
(�1)k

k!

Z 1

1�0

x�1(log x)kdR(x)

=
(�1)k

k!
(�"kR(1� 0) +

Z 1

1

x�2 logk xR(x)dx � k

Z 1

1

x�2 logk�1 xR(x)dx)

with "0 = 1 and "k = 0 for k � 1. Since R(1� 0) = �6��2, we have

E0 = 6��2 + F0;

Ek =
(�1)k

k!
(Fk � kFk�1) = Gk +Gk�1 (k � 1);

(4.10)

where

Fk =

Z 1

1

x�2 logk x �R(x) dx; Gk =
(�1)k

k!
Fk:

From (4.10) we have, since G0 = F0 = E0 � 6��2,

Gk =

kX
j=0

(�1)k�jEj + (�1)k+16��2;

hence

Fk = k!
kX

j=0

(�1)jEj � k!6��2: (4.11)
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On the other hand

�(s)

�(2s)
=
� 1

s� 1
+
0+
1(s�1)+
2(s�1)2+. . .

��
d0+d1(s�1)+d2(s�1)2+. . .

�
:

From (2.3) and (2.4) one has dk = 2k
k(2), but it is perhaps more convenient to
note that

dk =
1

k!

� 1

�(2s)

�(k)����
s=1

=
(�2)k

k!

1X
n=1

�(n) logk n � n�2: (4.12)

Therefore

Ek =

kX
j=0


jdk�j + dk+1: (4.13)

Inserting (4.13) in (4.11) we obtain

Theorem 3. If R(x) is de�ned by (4.9), 
k by (2.2) and dk by (4.12), then
for k = 0; 1; 2; . . .

Z 1

1

x�2R(x) logk x dx = k!

kX
j=0

(�1)j

 
jX

r=0


rdj�r + dj+1

!
� k!6��2;

and in particular Z 1

1

x�2R(x) dx = (
0 � 1)6��2 � 72��4� 0(2):

It is clear that instead of squarefree integers we may consider r-free integers
(generated by �(s)=�(rs)). Also, for Re s0 > 3=2 and j = 0; 1; . . . the integralR1
1 x�s

0

R(x) logk x dx may be explicitly evaluated in terms of the Stieltjes con-
stants 
j and 
j(s

0)'s as stated in Theorem 2.

4.3. Squarefull numbers. A number n is squarefull if n = 1 or if

n = p�11 . . . p�rr (�1 � 2; . . . ; �r � 2);

where the pi's are distinct primes. Let A(x) =
P

n�x an, where an = 1 if n is

squarefull and zero otherwise, so that A(x) is the number of squarefull integers not
exceeding x. Then we have (see Ch. 14 of [7])

f(s) =

1X
n=1

ann
�s =

�(2s)�(3s)

�(6s)
(Re s > 1=2); (4.12)

A(x) =
�(3=2)

�(3)
x1=2 +

�(2=3)

�(2)
x1=3 +E(x); (4.13)

where for some C > 0

E(x) = O(x1=6exp(�C log3=5 x(log logx)�1=5)): (4.14)
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Here again we have an example of a �nite zeta-product, and we shall give explicit
formulas for I(3=2) and I(4=3), where

I(s) =

Z 1

1

x�sE(x) dx: (4.15)

In view of (4.14) and Theorem 2 it follows that I(s) may be explicitly evaluated for
Re s � 7=6 in terms of the constants 
j and 
j(s

0). In the neighborhood of s = 1=2
we have

f(s) =

Z 1

1�0

x�sdA(x) =
�(3=2)

2�(3)

Z 1

1

x�s�1=2dx

+
�(2=3)

3�(2)

Z 1

1

x�s�2=3dx+

Z 1

1�0

x�sdE(x)

=
�(3=2)

2�(3)(s� 1=2)
+

�(2=3)

3�(2)(s� 1=3)
+

Z 1

1�0

x�sdE(x)

=
�(3=2)

2�(3)(s� 1=2)
+

2�(2=3)

�(2)
+

Z 1

1�0

x�1=2dE(x) +

1X
j=1

ej(s�
1

2
)j

for suitable constants ej . On the other hand

f(s) =
�(2s)�(3s)

�(6s)
=
� 1

2s� 1
+ 
 + 
1(2s� 1) + . . .

�
�

�
��(3=2)
�(3)

+ (
d�(3s)=�(6s)

ds
)

����
s= 1

2

(s�
1

2
) + . . .

�
;

so that by comparing the constant terms in the two forms of the Laurent expansion
for f(s) near s = 1=2 we obtain

2�(2=3)

�(2)
+

Z 1

1�0

x�1=2dE(x) =

�(3=2)

�(3)
+

3�(3)� 0(3=2)� 6�(3=2)� 0(3)

2�2(3)
:

Since Z 1

1�0

x�1=2dE(x) = �E(1� 0) +
1

2

Z 1

1

x�3=2E(x) dx

=
�(3=2)

�(3)
+
�(2=3)

�(2)
+

1

2

Z 1

1

x�3=2E(x) dx;

we obtain the explicit expression for I(3=2), and in a similar way the formula for
I(4=3) may be found. The �nal formulas are contained in

Theorem 4. If 
 is Euler's constant and E(x) is given by (4.13), I(s) by

(4.15), then

I(
3

2
) = 2(
 � 1)

�(3=2)

�(3)
�

6�(2=3)

�(2)
+

3�(3)� 0(3=2)� 6�(3=2)� 0(3)

�2(3)
;

I(
4

3
) = 3(
 � 1)

�(2=3)

�(2)
�

6�(3=2)

�(3)
+

2�(2)� 0(2=3)� 6�(2=3)� 0(2)

�2(2)
:
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4.4. The generalized von Mangoldt function. This is the function
de�ned by

�k(n) =
X
djn

�(d)(log
n

d
)k;

where k is a natural number. For Re s > 1,

1X
n=1

�k(n)n
�s = (�1)k �

�(k)(s)

�(s)
= fk(s):

It is known (see [6] or Ch. 12 of [7]) thatX
n�x

�k(n) = xPk�1(logx) +Rk(x);

where Pk�1(t) is a suitable polynomial of degree k�1 in t with the leading coeÆcient
equal to k, and

Rk(x) = O(x � exp(�Ck log
3=5 x(log logx)�1=5)) (Ck > 0):

Thus near s = 1 we have, by Theorem 1,

fk(s) =

kX
j=1

Bj;k(s� 1)�j +

1X
j=0

Cj;k(s� 1)j ;

where

Cj;k =
(�1)j

j!

Z 1

1�0

x�1 logj x � dRk(x): (4.16)

Now we have, near s = 1,

(�1)k�(k)(s) = k!(s� 1)�k�1 +

1X
j=0

Dj;k(s� 1)j (4.17)

and
1

�(s)
=

1X
j=1

aj(s� 1)j : (4.18)

By Th. 3.13 of Titchmarsh [13]

1

�(s)
=

1X
n=1

�(n)n�s (Re s � 1);

so that

aj =
1

j!

� 1

�(s)

�(j)����
s=1

=
(�1)j

j!

1X
n=2

�(n)n�1 logj n: (4.19)
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Therefore from (4.17)-(4.19) we obtain

C0;k =
(�1)k+1

k + 1

1X
n=2

�(n)n�1 logk+1 n;

but since (4.16) gives

C0;k = �Rk(1� 0) +

Z 1

1

x�2Rk(x) dx = Pk�1(0) +

Z 1

1

x�2Rk(x) dx;

we obtain

Theorem 5.Z 1

1

x�2Rk(x)dx =
(�1)k+1

k + 1

1X
n=2

�(n)n�1 logk+1 n� Pk�1(0): (4.20)

It may be remarked that the integral in (4.20) could be also expressed by
the Stieltjes constants 
j , but the expression would be complicated, whereas the
right-hand side of (4.20) has simple form. In the case k = 1 it is not diÆcult to see
that (4.20) reduces to the known identity

Z 1

1

x�2

0
@X

n�x

�(n)� x

1
A dx = �1� 
;

where �(n) � �1(n) is the classical von Mangoldt function.
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