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DEDUCING PROPERTIES OF TREES

FROM THEIR MATULA NUMBERS

Ivan Gutman and Yeong-Nan Yeh

Abstract. The Matula number is a natural number that uniquely characterizes a rooted
tree. It is shown how a wariety of properties of a tree can be deduced directly from the Matula
number, circumventing the reconstruction of the tree itself.

Introduction. In this paper we are concerned with trees and rooted trees,
having �nite numbers of vertices and being without loops and multiple edges. Let
T be a tree rooted at its vertex u. Let the vertices adjacent to u be denoted by
v1; . . . ; vd; d � 1. Then T has the structure shown in the �gure below. The
subtrees T1; . . . ; Td are called the branches of T .

The vertices of a tree that di�er from the root will be called non-root vertices.

Trees are bipartite graphs and their vertices can be colored by two colors (say,
black and white), so that adjacent vertices are always di�erently colored. In what
follows the color of the root vertex will always be chosen black.

In 1968 David Matula [5] pointed out the existence of a particular bijection
between the set of natural numbers and the set of rooted trees. According to
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Matula, a number n = n(T ) = n(T; u) is associated to the tree T rooted at vertex
u in the following recursive manner (cf.Figure):

n(T; u) =

dY
i=1

Pn(Ti;vi) (1)

where pt stands for the t-th prime number (p1 = 2; p2 = 3; p3 = 5; . . . ) and where
n(T0) = 1 if T0 consists of a single vertex. The number n(T ) is the Matula number
of the rooted tree T .

Matula's result was for a long time considered just as a graph-theoretical
curiosity. Only relatively recently it has been recognized that the Matula num-
bers o�er a unique opportunity in computer-aided chemical information systems,
because they enable the storage of the complete information on the structure of
certain organic compounds by means of a single integer [3,4]. This potential prac-
tical application fostered further studies of the properties of the Matula numbers
[1,2].

As already mentioned, a Matula number uniquely determines a rooted tree
and vice versa [5]. Consequently, every property of a rooted tree can - in principle
- be determined from its Matula number. The "brute-force" way of doing this
would be to �rst reconstruct T from n(T ) and then establish the property P (T )
by examing T . Bearing in mind the possible applications of the Matula numbers
in information science, it would be of particular interest to �nd procedures by
which a property P (T ) could be deduced directly from n(T ), skipping the actual
reconstruction of T . Until now such a procedure was known in only one case,
namely when P (T ) is the number of vertices of T [2]. In this paper we establish
results enabling for a number of other properties of (rooted) trees to be deduced
directly from the respective Matula numbers.

Statement of results. In what follows we will assume that n has the
following decomposition into prime numbers:

n =

dY
i=1

pti ; d � 1 (2)

where, of course, some of the primes pt1 ; . . . ; ptd may be mutually equal. In eq. (1)
it is assumed that n > 1. We now de�ne

(a) P1(T ) = number of vertices of T ;

(b) PB
2 (T ); PW

2 (T ) = number of black and white vertices of T , respectively; the
root of T is colored black;

(c) P3(T ) = width of T , i.e., the number of non-root vertices having degree one;

(d) P k
4 (T ) = number of vertices of T having degree k; k � 1;

(e) P5(T ) = maximum degree of a vertex of T ;

(f) P6(T ) = minimum degree of a vertex of T , greater than unity;
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(g) P7(T ) = eccentricity of the root i.e. the greatest distance between the root
and a vertex of T ;

(h) P8(T ) = smallest distance between the root of T and a vertex of degree one;

(i) P9(T ) = diameter of T , i.e. the greatest distance between two vertices;

(j) P k
10(T ) = number of vertices of T that are on distance k from the root, k � 1.

With the above notation our results may be formulated as the following:

Theorem. Let T be a rooted tree and n; n > 1, its Matula number whose
decomposition into primes is given by eq. (2). Then the following identities are
satis�ed, relating the above properties with the Matula number:

(a) P1(T ) = f1(n)+1, where f1(n) = d+
Pd

i=1 f1(ti) and the function f1 satis�es
the initial condition f1(1) = 0.

(b) PB
2 (T ) = fB2 (n) + 1 and PW

2 (T ) = fW2 (n), where

fB2 (n) =
Pd

i=1 f
W
2 (ti); fW2 (n) = d+

Pd

i=1 f
B
2 (ti)

and where the initial conditions are fB2 (1) = fW2 (1) = 0.

(c) P3(T ) = f3(n), where f3(n) =
Pd

i=1 f3(ti) and f3(1) = 1.

(d) P k
4 (T ) = f4(n; k) + Æd;k, where f4(n; k) =

Pd

i=1

�
f4(ti; k) + Æ
(ti);k�1

�
and

f4(1; k) = Æ1;k. By 
(ti) we denote the number of prime factors (not neces-
sarily distinct) of ti. The Kronecker Æ symbol has its usual meaning: Æu;v = 1
if u = v and Æu;v = 0 if u 6= v.

(e) P5(T ) = f5(n), where f5(n) = maxfd; f5(2ti) j i = 1; . . . ; dg and f5(2) = 1.

(f) P6(T ) = f6(n), where

f6(n) =

�
minfd; f6(2ti) j i = 1; . . . ; dg; if d � 2

f6(2t1); if d = 1:

The function f6(n) is unde�ned for n � 2, but it is consistent to formally set
f6(1) = f6(2) =1. Then we have f6(3) = 2, f6(4) = 2, etc.

(g) P7(T ) = f7(n), where f7(n) = 1 +maxff7(ti) j i = 1; . . . ; dg and f7(1) = 0.

(h) P8(T ) = f8(n), where f8(n) = 1 +minff8(ti) j i = 1; . . . ; dg and f8(1) = 0.

(i) P9(T ) = f9(n), where

f9(n) =

�
maxff9(2ti); gij j i = 1; . . . ; d; j = 1; . . . ; d; i 6= jg; if d � 2

f9(2t1); if d = 1:

The auxiliary quantities gij are de�ned via the previously introduced function
f7 as: gij = f7(ti) + f7(tj) + 2. The initial condition is f9(2) = 1.

(j) P k
10(T ) = f10(n; k), where f10(n; k) =

Pd

i=1 f10(ti; k � 1) with initial condi-
tions

f10(n; 0) = 1; for n � 1

f10(1; k) = 0; for k � 1.

Part (a) of the above results was previously reported [2]. We nevertheless
include it into the theorem for the sake of completeness.
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Proof of the theorem. The idea of the proofs of all the statements (a)-(j)
is based on the fact that certain properties of a tree T can be deduced by examining
one-by-one its branches T1; . . . ; Td (see Figure). On the other hand, the Matula
number n(T; u) is also de�ned via the Matula numbers of T1; . . . ; Td (cf. eq. (1)).

If the root is a vertex of degree one (d = 1 in eq. (1)), then the Matula number
obeys n(T; u) = pn(T1;v1). Bearing this in mind we can rewrite eq. (1) as

n(T; u) =

dY
i=1

n(Hi; ui) (3)

where the tree Hi is obtained by attaching a new vertex ui to the vertex vi of Ti
(see Figure). If not stated otherwise, it is understood that ui is the root of Hi and
vi the root of Ti.

The function f1 counts, in fact, the non-root vertices of T . Their number is
evidently equal to the sum of the vertex counts of all branches or, what is the same,
to the number of non-root vertices of Hi, i = 1; . . . ; d. Therefore

f1
�
n(T; u)

�
=

dX
i=1

f1
�
n(Hi; ui)

�
: (4)

In view of eqs. (2) and (3) we may set n(Hi; ui) = pti . Then, however, n(Ti; vi) = ti.

The number of non-root vertices of Hi is by one greater than the number of
non - root vertices of Ti (see Figure). This implies

f1(pti) = f1(ti) + 1: (5)

Part (a) of the theorem follows now by combining (4) and (5). �

The proof of part (b) of the theorem is completely analogous: The function
fB2 and fW2 count the black and white non-root vertices, respectively. We only have
to observe that in the transformation Hi ! Ti the coloring of the vertices has to
be reversed. Evidently, fB2 + fW2 = f1. �

The proof of the part (c) goes also along the same lines and is even simpler
because here (by de�nition of the width) the root does not cause any diÆculty. �

When counting the vertices of degree k we must distinguish between two
cases. The root of T is either of degree k (then k = d) or not. The function f4
counts the non-root vertices of degree k, and the term Æd;k is the adjustment for the
case when the root itself is of degree k. The trees Hi and Ti have the same numbers
of non-root vertices of degree k, except if the vertex vi in Hi is of degree k. If this
occurs then vi in Ti will be of degree k � 1 and, consequently, ti (= the Matula
number of Ti) will have exactly k � 1 prime factors. This correction is accounted
for by the term Æ
(ti);k�1.

The remaining reasoning leading to (d) is the same as in the previous three
proofs. �



Deducing properties of trees from their Matula numbers 21

To determine the maximum vertex degree in T we again have to consider two
cases. Either is this the degree of the root (= d) or the degree of some non-root
vertex. Because the maximum vertex degree in Hi is f5(pti) we have

f5(n) = maxfd; f5(pti) j i = 1; . . . ; dg: (6)

Now, the value of the maximum vertex degree of Hi will not change if we chose the
vertex vi as the root (cf. Figure). If so, then the Matula number of Hi becomes
equal to 2ti. Consequently, f5(pti) = f5(2ti) and part (e) of the theorem follows.
�

The smallest vertex degree in T is, trivially, equal to unity. The second
smallest vertex degree can be obtained from the Matula number by means of a
consideration that parallels the proof of (e). One only has to eliminate the term d

from eq. (6) in the case when d = 1. �

It is evident that the vertex being at maximal distance from the root of T is
of degree one. Suppose that this vertex is in the branch Ti and consider Ti as a
tree rooted at the vertex vi. Then the transformation T ! Ti diminishes by one
the eccentricity of the root vertex. This, together with the fact that n(Ti; vi) = ti,
implies the part (g) of the theorem. �

In order to arrive at the result stated as part (h) of the theorem observe that
the diameter of T is either the maximum distance between two vertices belonging to
the same branch of T (the root inclusive), or between vertices belonging to di�erent
branches. In the former case the diameter is given by maxff9(pti) j i = 1; . . . ; dg
because f9(pti) is the diameter of Hi. In the latter case the diameter is

maxfgij j i = 1; . . . ; d; j = 1; . . . ; d; i 6= jg

because gij is just the sum of the eccentricities of the roots of Hi and Hj . (This, of
course, can occur only if d � 2.) The greatest of the above two maxima is f9(n).

As before, the fact that the change of the root of Hi (from ui to vi) will not
a�ect the value of the diameter of Hi, infers the identity f9(pti) = f9(2ti). This,
combined with the above maxima leads to (h). �

To count the vertices that are on a distance k from the root of T it is suÆcient
to observe that their number is the sum of the numbers of vertices at distance
k � 1 from the roots of the subtrees T1; . . . ; Td. Part (j) of the theorem follows
immediately. �

By this we completed the proof of the theorem. �

Discussion. In certain cases the results stated in our Theorem can be
somewhat simpli�ed. This, in particular, happens when the Matula number is
itself a prime, i.e. when d = 1:

Corollary 1. If n = pt then the functions de�ned in the theorem conform
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to the following relations:

(a) f1(n) = f1(t) + 1 (b) fB2 (n) = fW2 (t); fW2 (n) = fB2 (t) + 1
(c) f3(n) = f3(t) (d) f4(n; k) = f4(t; k) + Æ
(t);k�1
(e) f5(n) = f5(2t) (f) f6(n) = f6(2t)
(g) f7(n) = f7(t) + 1 (h) f8(n) = f8(t) + 1
(i) f9(n) = f9(2t) (j) f10(n; k) = f10(t; k � 1):

The calculation of the functions de�ned in the theorem 1 is also facilitated
by the identities collected in the following two corollaries.

Corollary 2. Let � and � be two positive integers (not necessarily primes).
Then

f1(��) = f1(�) + f1(�)

fB2 (��) = fB2 (�) + fB2 (�); fW2 (��) = fW2 (�) + fW2 (�)

f4(��; k) = f4(�; k) + f4(�; k); k � 2

f7(��) = maxff7(�); f7(�)g

f10(��; k) = f10(�; k) + f10(�; k); k � 1:

Corollary 3. Let � and � be two integers greater than one (not necessarily
primes). Then

f3(��) = f3(�) + f3(�)

f4(��; k) = f4(�; k) + f4(�; k); k = 1

f8(��) = minff8(�); f8(�)g:
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