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NON-COMPLETE EXTENDED P-SUM OF GRAPHS,

GRAPH ANGLES AND STAR PARTITIONS

Drago�s Cvetkovi�c and Slobodan Simi�c

Abstract. The NEPS (Non-complete Extended P -Sum) of graphs is a graph operation in
which the vertex set of the resulting graph is the Cartesian product of the vertex sets of starting
graphs. The paper contains a survey on NEPS and some new results concerning graph angles and
star partitions of NEPS.

1. Introduction. This is a paper on a very general graph operation called
NEPS (non-complete extended p-sum) [18].

De�nition 1.1. Let B � f0; 1gn n f(0; . . . ; 0)g be a set of binary n-tuples.
NEPS with basis B of graphs G1; . . . ; Gn is the graph whose vertex set is the
Cartesian product of the vertex sets of graphs G1; . . . ; Gn in which two vertices,
say (x1; . . . ; xn) and (y1; . . . ; yn), are adjacent if and only if there exists an n-tuple
(�1; . . . ; �n) 2 B such that xi = yi holds whenever �i = 0, and xi is adjacent to yi
(in Gi) whenever �i = 1.

Let G be a graph with vertices 1; . . . ; n and let A = A(G) be the (0,1)-
adjacency matrix of G. Let �1; . . . ; �m (�1 > . . . > �m) be the distinct eigenvalues
of G with corresponding eigenspaces E(�1); . . . ; E(�m). Let fe1; . . . ; eng be the
standard orthonormal basis of Rn.

De�nition 1.2. The numbers �ij = cos�ij (i = 1; . . . ;m; j = 1; . . . ; n),
where �ij is the angle between E(�i) and ej , are called angles of G. The m � n
matrix A = (�ij) is called the angle matrix of G.

We may order the columns of A lexicographically so that A becomes a graph
invariant. Rows of A are associated with eigenvalues and are called eigenvalue angle
sequences, while columns of A are associated with vertices and are called vertex
angle sequences.

De�nition 1.3. The main angles of G are the cosines of the angles between
the eigenspaces of G and the all-1 vector.
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Let
A = �1P1 + . . . + �mPm (1.1)

be the usual spectral decomposition of the adjacency matrix A of a graph G;

the matrix Pi = (p
[i]
jk) represents the orthogonal projection onto the eigenspace

E(�i) (i = 1; . . . ;m). We have �ij = kPiejk and (when Piej , Piek, are non-zero)

p
[i]
jk = �ij�ikcos

[i]
jk;

where 
[i]
jk is the angle between Piej and Piek. In particular, p

[i]
jj = �2ij . Hence, the

main diagonal of Pi contains squares of members of the angle sequence of �i.

Let V be a Euclidean space. The span of the subset fv1; . . . ; vkg is denoted
by hvi

�� i = 1; . . . ; ki. Let (x; y) be the inner product of vectors x; y 2 V and let
kxk be the norm of x. A star in V is a �nite set of vectors which span V . For a
star S = fv1; . . . ; vkg

1o S is orthogonal, if (vi; vj) = 0 (i 6= j);

2o S is spherical, if kvik = kvjk for all i; j.

Let U be a non-trivial subspace of V . A eutactic star in U is the orthogonal
projection onto U of an orthogonal spherical basis of V .

More generally, suppose that A is a real symmetric matrix with distinct eigen-
values �1 > . . . > �m, and corresponding eigenspaces E(�1); . . . ; E(�m). Let
ki (= dim(E(�i)) be the multiplicity of �i and let V = Rn with (x; y) = xT y.
Denote by Pi the orthogonal projection of V onto E(�i). Let E be the standard
basis fe1; . . . ; eng of V , and let Fi be the eutactic star fPie1; . . . ; Pieng obtained
by projecting the star E onto E(�i). (Piej is one of the arms of the star Fi and the
angle �ij is the norm kPiejk of this arm.) In [21] the following question was posed.

Question. Given A, is it possible to �nd a basis B of Rn consisting of vectors
from [mi=1Fi such that (for Pies, Pjet 2 B) the condition

Pies 6= Pjet ) s 6= t

holds?

If such a basis B exists, then there is a 1-1 correspondence between E and B.

If a set X is partitioned into sets X; . . . ; Xn we shall write X = X1

�

[ � � �
�

[Xn and
call X1; . . . ; Xn the cells of the partition. A cell Xi is called non-trivial if jXij > 1.

De�nition 1.4. A star basis of Rn, corresponding to a symmetric matrix
A, is a basis B = fPies

��s 2 Xi; i = 1; . . . ;mg, where Pi is de�ned as above, and

X = X1

�

[ � � �
�

[Xm is a partition of the set f1; . . . ; ng. The corresponding partition
is called a star partition. Cells in a star partition are called star cells.

The existence of star bases and star partitions has been proved in [21]. The
following theorem from [21] will be useful in further considerations.

Proposition 1.5. If X = X1

�

[ � � �
�

[Xm is a partition of f1; . . . ; ng, the
vertex set of a graph G, such that �i is not an eigenvalue of G�Xi (i = 1; . . . ;m),
then this partition is a star partition of G.
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Section 2 represents a survey of results on NEPS. In Section 3 (Section 4) we
study the angles (the star partitions) in a NEPS.

2. A survey of results on NEPS. NEPS was introduced in [18] and has
been rediscovered in [38]. It generates a lot of binary graph operations in which the
vertex set of the resulting graph is the Cartesian product of vertex sets of graphs
on which the operation is performed (see [16, p.p. 65{66], and the references cited
in [16]).

We now recall some special cases of NEPS. Let G be the NEPS with basis B
of graphs G1; . . . ; Gn.

In particular, if n = 2 and

if B = f(0; 1); (1; 0)g; G (= G1 +G2) becomes the sum of G1 and G2;

if B = f(1; 1)g; G (= G1 �G2) becomes the product of G1 and G2;

and if B = f(0; 1); (1; 0); (1; 1)g; G (= G1 �G2) becomes the strong product
of G1 and G2.

The p-sum of graphs is a NEPS with the basis containing all n-tuples with
exactly p 1's.

The odd (even) sum of graphs is a NEPS with the basis containing all n-tuples
with an odd (even) number of 1's.

The mixed sum of graphs is a NEPS with the basis containing all n-tuples in
which the number of 1's is congruent to 1 or 2 modulo 4.

The J-sum (or extended p-sum) of graphs, where J is a subset of f1; . . . ; ng,
is a NEPS with the basis containing all n-tuples in which the number of 1's belongs
to J .

The notion of NEPS has arisen in a natural way when studying spectral
properties of graphs obtained by binary operations of the mentioned type. Main
ideas are essentially described in [2]. Early references [3{5] have been summarized
and generalized in [6].

In [19], the de�nition of NEPS of graphs has been extended to digraphs
(digraphs may have multiple arcs and/or loops) and in [27] and [35] to in�nite
graphs in two di�erent ways.

There are some other graph operations in which the resulting graph has as
its vertex set the Cartesian product of vertex sets of the starting graphs. In [8], the
so called Boolean operations of graphs are de�ned, while [40] introduces a more
general operation called the generalized direct product of graphs containing NEPS
and Boolean operations as special cases. The generalized direct product of graphs
has been extended to digraphs in [31{34]. The generalized direct product of graphs
does not posess some useful properties of NEPS and therefore we consider here only
NEPS.

The following two theorems are taken from [18].

Theorem 2.1. Let A1; . . . ; An be adjacency matrices of graphs G1; . . . ; Gn,
respectively. The NEPS G with basis B of graphs G1; . . . ; Gn has the adjacency
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matrix given by

A =
X
�2B

A�1
1 
 � � � 
A�n

n :

Here A0
i = I (of the same order), A1

i = Ai, and 
 denotes the Kronecker
product of matrices.

Theorem 2.2. If, for i = 1; . . . ; n, �i1; . . . ; �ini is the spectrum of Gi

(ni being its number of vertices), then the spectrum of G which is the NEPS of
Gi; . . . ; Gn with basis B consists of all possible values �i1;... ;in where

�i1;... ;in =
X
�2B

��11i1 . . .�
�n
nin

(ik = 1; . . . ; nk; k = 1; . . . ; n):

In particular, if �1; . . . ; �n and �1; . . . ; �m are the eigenvalues of G and H ,
respectively, then

�i + �j (i = 1; . . . ; n; j = 1; . . . ;m) are eigenvalues of G+H ;

�i�j (i = 1; . . . ; n; j = 1; . . . ;m) are eigenvalues of G�H ;

�i + �j + �i�j (i = 1; . . . ; n; j = 1; . . . ;m) are eigenvalues of G �H .

Theorem 2.2 has been extended in [26,27,35,36] to in�nite digraphs.

It is a well-known fact that the product of two connected graphs G1 and
G2 is disconnected if both G1 and G2 are bipartite. Similar situations appear in
a NEPS. The conditions under which a NEPS is connected or bipartite can be
eÆciently studied through graph eigenvalues, as it was done in papers [3], [6], [7]
(see also Section 7.4 in [16]). For the same type of problems with Boolean functions
and generalized direct product of graphs and digraphs see [8], [19], [2], [3].

Two graphs are said to be almost cospectral if their non-zero eigenvalues
(and their multiplicities) coincide. In [11], it was conjectured that, if the NEPS
of bipartite graphs is disconnected, its components are almost cospectral. This
conjecture is true for the product of graphs (see [11]).

The notion of the NEPS has been used in [10] (see also [15, pp. 54{59]) to
construct some strongly regular graphs.

Theorem 2.3. The odd sum Fn of n (n � 2) copies of the graph K4 is a
strongly regular graph with eigenvalues 22n�1 � (�1)n�12n�1, 2n�1, �2n�1.

Theorem 2.4. The mixed sum Hs of 4s (s � 1) copies of the graph K2 is a
strongly regular graph with eigenvalues 24s�1 � (�1)s22s�1, 22s�1, �22s�1.

It was noted in [10] that F4p and H2p are cospectral, and the problem of
solving graph equation O4p(G) = M2p(H), where On(G) and Mn(G) denote the
odd and the mixed sum of n copies of the graph G, was posed.

Spectra of regular graphs can be used for determining the number of spanning
trees. The next theorem can be found, for example, in [16, p. 39].

Theorem 2.5. If �1 = r, �2; . . . ; �n is the spectrum of a regular graph G of
degree r, then the number of spanning trees of G is equal to

(1=n)(r � �2) � � � (r � �n):
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It is easy to see that the NEPS of regular graphs is again a regular graph and
Theorem 2.5 can be applied. Several interesting graphs can be expressed in the
form of a NEPS of regular graphs and their numbers of spanning trees have been
determined in [7]. See also [16, Section 7.6].

It is known (see, for example, [16, p. 44]) that the number Nk of walks of
length k in a graph with distinct eigenvalues �1; . . . ; �m is given by

C1�
k
1 + . . . + Cm�

k
m; (2.1)

where Ci (i = 1; . . . ;m) are constants.

Theorem 2.6 (c.f. [4],[6]). Let
P

ij
Cjij�

k
jij

(j = 1; . . . ; n) denote the

number of walks of length k for the graph Gj . Then the NEPS with the basis B of
graphs G1; . . . ; Gn contains

X
i1;... ;in

C1i1 . . .Cnin

0
@X

�2B

��11i1 . . .�
�n
nin

1
A

k

walks of length k.

A formula for the number of walks of length k, between two speci�ed vertices
in a NEPS, has been derived in [9]. It was applied to the NEPS of complete graphs
thus solving a problem of enumeration of ways in which a rook (chess piece) can
make a series of k moves between two speci�ed cells of a chess-board. A similar
problem for a knight was solved in [22, pp. 67{68]. Here we reproduce (Problem
2.7) our solution to Problem E 2392 [37]. See also [1] for some comments to di�erent
solutions of this problem.

Problem 2.7. Let the distance between the two cells of the (in�nite) chess-
board be de�ned as the minimum number of steps for a knight to move from one cell
to another. Denote by D(0; P ) the distance between cells 0 = (0; 0) and P = (a; b)

Solution: To determine D(0; P ), we �rst determine Nk
(0;0);(a;b), the number

of ways for a knight to move from the cell (0; 0) to the cell (a; b) (or, equivalently,
from the cell (1,1) to the cell (a + 1; b + 1)) in exactly k steps. For this purpose,
we shall observe, for suÆciently large n, a chess-board of dimension n � n on a
torus, and a graph which represents the knight movement on this chess-board. The
adjacency matrix A of this graph can be represented in the form

A = A
 (A2 � 2I) + (A2 � 2I)
A; (2.2)

where A is the adjacency matrix of a cycle of length n. It is well known that
the eigenvalues �i of the matrix A are given by �i = 2cos(2�i=n) (i = 1; . . . ; n),

while xil = 1
n
exp

8>>:2�i
n
lj

9>>;; l = 1; . . . ; n; j2 = �1, are the coordinates of the

eigenvector corresponding to �i. Hence, the eigenvalues and the eigenvectors of the
matrix (2.2) are determined by

�i;l = (�i + �l)(�i�l � 2); Xil = xi 
 xl; i; l = 1; . . . ; n:
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It can easily be checked that, for 0 � a; b � n and k < n, we have

Nk
(0;0);(a;b) = (Ak)(1;1);(a+1;b+1) =

nX
p;q=1

xp1xq1xp;a+1xq;b+1�
k
p;q

=

nX
p;q=1

4k

n2
exp

8>>:2�

n
(�pa� qb)j

9>>;
8>>:cos

2�

n
p+ cos

2�

n
q

9>>;
k

�

�

8>>:2cos
2�

n
p cos

2�

n
q � 1

9>>;
k

:

By letting n! +1, we obtain

Nk
(0;0);(a;b)

=
4k�1

�2

Z 2�

0

Z 2�

0

exp(�j(ax+ by))(cosx+ cosy)k(2cosxcosy � 1)kdx dy

=

kX
t=0

(�2)k�t
�
k

t

� kX
s1;s2=0

k!

s1!s2!

�
s1 + t

1
2 (s1 + t� a)

��
s2 + t

1
2 (s2 + t� b)

�
;

(2.3)

where
�
m
�

�
= 0 if � 62 f0; 1; . . . ;mg.

Thus
D(0; P ) = minfk

�� Nk
(0;0);(a;b) 6= 0g: (2.4)

Without a loss of generality, we may assume that a � b and a > 2. By a
simple, but tedious analysis of formula (2.3), making use of (2.4), we obtain

D(0; P ) =

8<
:

a+ b� 2[(a+ b)=3]; a � 2b

a+ b� 2

�
a

2

�
� 2

�
1

2

8>>:b�
�
a

2

�9>>;
�
; a � 2b:

An alternative form of this formula was given in [1], together with an equiv-
alent formula due to M. Goldberg.

De�nition 2.8. An eigenvalue (of a graph) is called main if its eigenspace
contains a vector not being orthogonal to (1; . . . ; 1).

The next proposition was proved in [29, 30].

Proposition 2.9. An eigenvalue of a NEPS of graphs is main if and only
if, when expressed in terms of eigenvalues of graphs on which the operation is
performed, it depends only on main eigenvalues of these graphs.

Let nearly equal mean di�ering by at most one. A graph is cordial if there
exists a partition of its vertex set into two nearly equal in size subsets V1 and V2,
such that the set edges with both end-points in V1 or both end-points in V2 is nearly
equal in size to the set of edges which have one end point in V1 and the other in
V2.

It was proved in [24] that the class of balanced symmetric cordial graphs is
closed under NEPS. Some similar results are proved too. In proving these results,
spectral techniques were used.
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Angles of a NEPS have been considered in [20]. The result from [20] will be
extended and generalized in Section 3.

An elementary proof of Lloyd's theorem from coding theory is given in [17].
It uses the spectrum of a NEPS. A version of this proof is given in [16, pp. 131-132]
and reproduced in [22, pp. 129-130].

The de�nition and some properties of NEPS appear in textbooks [12], [13],
[22]. Expository texts on NEPS are contained in monographs [16], [15], in biblio-
graphic survey [23], in the paper [28] and in the report [25].

We conclude this review section by the following theorem which summarizes
some known results and adds some new ones.

Theorem 2.10. The following classes of graphs are closed under NEPS
operation:

1o regular graphs, 5o integral graphs,
2o eulerian graphs, 6o transitive graphs,
3o balanced symmetric cordial graphs, 7o walk-regular graphs,
4o singular graphs, 8o quasi-group graphs.

1o and 2o follow from the fact that vertex degrees in a NEPS can be expressed
in terms of vertex degrees of graphs on which the operation is performed. 3o was
proved in [24]. 4o and 5o follow from Theorem 2.2. 6o and 8o were proved in [38].
7o follows from the result on angles (see Section 3, Remark 3.5) and the fact that a
graph is walk-regular if and only if all vertices have the same vertex angle sequences
[20].

Remark 2.11. In Theorem 2.10 we call a graph eulerian if all its vertices have
even degrees. A graph is singular if zero belongs to its spectrum. A graph is called
integral if all its eigenvalues are integers. If the number of closed walks of length
k (k = 1; 2; . . . ) starting and terminating at a vertex is independent of the vertex,
a graph is called walk-regular.

3. Angles. The following preparatory lemma is a direct consequence of the
distributivity of the Kronecker product w.r.t. the matrix addition.

Lemma 3.1. Given matrices A1; . . . ; Ak (in particular, the adjacency ma-
trices of graphs G1; . . . ; Gk, respectively) with spectral decompositions

m1X
s1=1

�(1)s1
P (1)
s1

; . . . ;

mkX
sk=1

�(k)sk
P (k)
sk

:

Then
A1 
 � � � 
Ak =

X
(s1;... ;sk)

�(1)s1
. . .�(k)sk

(P (1)
s1


 � � � 
 P (k)
sk

): (3.1)

Remark 3.2. If some of the products �
(1)
s1 . . .�

(k)
sk (1 � si � mi; i = 1; . . . ; k)

coincide, then (3.1) can be written in the form

A1 
 � � � 
Ak =
X
r

�rPr; (3.2)
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where �1 > . . . > �t are di�erent products of the form �
(1)
s1 . . .�

(k)
sk (= �r for some

r); Pr =
P

P
(1)
s1 
� � �
P

(k)
sk where the sum is taken over all k-tuples (s1; . . . ; sk) such

that �
(1)
s1 . . .�

(k)
sk = �r. Actually, (3.2) is a spectral decomposition of A1
� � �
Ak.

To prove (3.2) it is suÆcient to prove that PiPj = ÆijI . For this purpose we
make use of the fact that�X

Xi1 
 � � � 
Xik

��X
Yj1 
 � � � 
 Yjk

�
=
X

(Xi1 � Yj1 )
 � � � 
 (Xik � Yjk ):

Remark 3.2 just�es the following de�nition.

De�nition 3.3. A NEPS of some graphs is called coincidence-free if no two
eigenvalues obtained by Theorem 2.2 coincide.

In [20] (see Proposition 5) the same result as in Remark 3.2 was deduced for
the Kronecker product of two matrices, but expressed in the terms of graph angles.
Namely, the following proposition has been proved in [20].

Proposition 3.4. Let A;B be real symmetric square matrices of orders
m;n respectively. Let � be an eigenvalue of A and let � be an eigenvalue of B.
Let �i1 ; . . . ; �it and �i1 ; . . . ; �it be all the distinct eigenvalues of A;B respectively
such that �� = �i1�i1 = � � � = �it�it . Let �ikg be the angle corresponding to
the eigenvalue �ik and the coordinate g (g = 1; 2; . . . ;m; k = 1; 2; . . . ; t) and let
�ikh (h = 1; 2; . . . ; n; k = 1; 2; . . . ; t) be the angle corresponding to the eigenvalue
�ik and the coordinate h. Then the angle gh corresponding to the eigenvalue ��
of A
B and the coordinate pair (g; h) satis�es

2gh = �2i1g�
2
i1h

+ �2i2g�
2
i2h

+ � � �+ �2itg�
2
ith
:

Having in mind that diagonal entries of projection matrices Pi are squares of
angles, Remark 3.2, and especially formula (3.2), yield Proposition 3.4 for k = 2.
Both Remark 3.2 and Proposition 3.4 can be generalized to hold for any NEPS,
but we avoid such more general statements in order to avoid technical diÆculties
which would not contribute much to the essence of the matter.

Remark 3.5. We see that in a coincidence-free NEPS the angles are the prod-
ucts of the corresponding angles on which the operation is performed. Moreover,
we see that the angles of a NEPS are independent of the basis if the change of the
basis does not a�ect the coincidences between the eigenvalues.

Now we turn to the main angles. From (1.1) we get

Ak = �k1P1 + . . . + �kmPm: (3.3)

Comparing (2.1) with (3.3) we get that Ci from (2.1) is equal to the sum of
all entries of Pi from (1.1). On the other hand, it is known [14] that

Nk = n

mX
i=1

�2i �
k
i ; (3.4)
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where �i is the main angle of the eigenvalue �i. Hence we can formulate the
following proposition.

Proposition 3.6. We have

�i =

r
1

n
sumPi (i = 1; . . . ;m);

where sum X denotes the sum of all entries of the matrix X.

It is easy to see that sum(X 
 Y ) = sum X sum Y . In a coincidence-free
NEPS we get, from Lemma 3.1 and Proposition 3.6, that the main angle of the

eigenvalue �
(1)
s1 � � ��

(k)
sk is equal to

r
1

n
sum (P

(1)
s1 
 � � � 
 P

(k)
sk ) =

r
1

n1
sumP

(1)
s1 � � �

1

nk
sumP

(k)
sk ) = �(1)s1

. . .�(k)sk
;

where n1; . . . ; nk are numbers of vertices of graphs G1; . . . ; Gk. Hence, we have
proved the following proposition.

Proposition 3.7. In a coincidence-free NEPS, main angles are products of
the corresponding main angles of graphs on which the operation is performed.

Remark 3.8. In the case of coinciding eigenvalues we have for the main angles
the same e�ect as with the angles as described in Proposition 3.4. Note that the
main angles of a NEPS are also independent of the basis, if the change of the basis
does not a�ect the coincidences between eigenvalues.

We point out that we now have a new proof of Theorem 2.6. The proof is
based on (3.3), Theorem 2.2 and Proposition 3.7.

Remark 3.8. The eigenvalue �i is main if and only if the corresponding
main angle �i is di�erent from zero [14]. This fact, together with Proposition 3.7,
provides another proof of Proposition 2.9.

4. Star partitions. We relate now the star partitions of some graphs to
the star partitions of the graph obtained from them by NEPS. For this purpose let

us recall (see [21]) that if X1

�

[ . . .
�

[Xm is a star partition of some graph, then its
eigenvector matrix (its rows being the eigenvectors) can be represented in the form

0
BBB@

X1 X2 Xm

E1 Ik1 � . . . �
E2 � Ik2 . . . �

...
...

. . .
...

Em � � . . . Ikm

1
CCCA; (4.1)

if the columns (i.e. vertices of a graph) are appropriately labeled. Here � denotes a
block of an appropriate size. In other words, if j is a vertex of G belonging to a star
cell Xi, there exists an eigenvector of G (say x(j)) corresponding to �i and assigned
to j, such that all components of x(j), corresponding to vertices from Xi are zero,
except one (which is equal to 1) which corresponds to j itself. In the following we
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shall say that such an eigenvector corresponds to the vertex j. The converse (as
already remarked in [21] and proved in [36]) is also true.

Theorem 4.1. Suppose that the eigenvector matrix of a graph G has the

form given by (4.1). Then X1

�

[ � � �
�

[Xm is a star partition of G.

Theorem 4.1 will be used to prove a theorem on star partitions of NEPS.
Suppose that G1; . . . ; Gk are graphs having

�
(1)
1 ; . . . ; �(1)m1

; . . . ; �
(k)
1 ; . . . ; �(k)mk

as distinct eigenvalues and

X
(1)
1

�

[ . . .
�

[X(1)
m1
; . . . ; X

(k)
1

�

[ . . .
�

[X(k)
mk

;

as star partitions, respectively. If so, we have:

Theorem 4.2. If G is a graph obtained from G1; . . . ; Gk by NEPS over any

basis B, then the sets X
(1)
s1 � . . .�X

(k)
sk (1 � s1 � m1; . . . ; 1 � sk � mk ) comprise

a star partition of G whenever the eigenvalues �s1;... ;sk (obtained from �
(1)
s1 ; . . . ; �

(k)
sk

by theorem 2.2) do not coincide (i.e., �s1;... ;sk 6= �t1;... ;tk if (s1; . . . ; sk) 6=
(t1; . . . ; tk)):

Proof. Suppose x
(1)
j1

. . .x
(k)
jk

are the eigenvectors of graphs G1; . . . ; Gk corre-

sponding to vertices j1; . . . ; jk. Then x
(1)
j1

� � �
x

(k)
jk

is an eigenvector corresponding

(in G) to a vertex (j1; . . . ; jk). If there is no coincidence among the eigenvalues
of G, then we get the required number of corresponding eigenvectors of G for any
of its eigenvalues. In other words, the eigenvector matrix of G is then in the form
(3.3). Thus, by Theorem 3.2, we complete the proof.

De�nition 4.3. Star partition in a NEPS of graphs G1; . . . ; Gk, de�ned in
the statement of Theorem 4.2, is called the Cartesian product of star partitions of
graphs G1; . . . ; Gk.

Assuming this de�nition, Theorem 4.2 can be reformulated in the following
way. If G is a graph obtained from graphs G1; . . . ; Gk as a coincidence-free NEPS,
then the Cartesian product of any star partitions of graphs G1; . . . ; Gk is a star
partition of G. We also see that such a star partition is independent of the basis
of the NEPS, as long as the NEPS remains coincidence-free.

We shall now show that Theorem 4.2 is the best possible result in this context.
Namely, in general, it is not true that a star partition of some graph (resulting from
NEPS) can be obtained by amalgamating the aforementioned cells corresponding
to the coinciding eigenvalues.

Example 4.4. We have K2 � K2 = K2 [ K2. The only star partition of
K2 consists of two trivial cells, each corresponding to eigenvalues 1 or �1. Now,
we indeed have the coincidence of eigenvalues in K2 � K2 (since 1 = 1 � 1 =
(�1)� (�1)). By amalgamating the cells, as in Theorem 2.2, we get that each copy
of K2 in the resulting graph should be a cell corresponding to eigenvalues 1 or �1.
The latter is impossible by Proposition 1.5.
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This phenomenon is, at the �rst glance, not expected in view of the behaviour
of angles and main angles under the coincidence of eigenvalues of NEPS (see Section
3). The explanation is as follows. When two eigenvalues coincide, the corresponding
eigenspaces are joined in the sense of direct sum. The union of star bases of these
eigenspaces is indeed a basis of the resulting eigenspace, but not necessarily a star
basis. An actual star basis could correspond to vertices having no relation to the
union of cells corresponding to original eigenspaces.

Remark 4.5. Note that the representation of graphs as a NEPS with a
�xed basis of some graphs need not be unique. For example, we have C4 = C4 +
K1 = K2 +K2. In view of such non-uniqueness of representation the property of
being coincidence-free makes sense only with respect to a �xed representation. For
example, C4 is coincidence-free with respect to the �rst representation, but not
with respect to the second one.

In view of Theorem 3.2, it is reasonable to pose the following question.

Question. Is it true that any star partition in a coincidence-free NEPS is
induced by the Cartesian product of some star partitions of the starting graphs?

The negative answer to this question is given by the following example.

Example 4.6. We have K3 �K2 = C6 and a few star partitions of C6 are
displayed in the �gure below. Vertices in a star cell are labeled by the corresponding
eigenvalue.

Only the �rst one is induced by (essentially unique) star partitions of K3 and
K2, while the others are not. The fact that the given partitions are star partitions
indeed, can easily be veri�ed by Proposition 1.5.

Theorem 4.7 If Bi is a star basis of the graph Gi (i = 1; . . . ; k) then
Bi 
 � � � 
 Bk is a star basis of NEPS of graphs G1; . . . ; Gk provided there is no
coincidence between eigenvalues of NEPS.

Proof. Let ei1; . . . ; eini be the standard basis of Rni (i = 1; . . . ; k). LetPmi

si=1
�
(i)
si P

(i)
si be the spectral decomposition of the adjacency matrix of Gi (i =

1; . . . ; k). The set

Bi = fP (i)
si
eiji
�� ji 2 X(i)

si
; si = 1; . . . ;mig

is the star basis of Gi corresponding to the star partition X
(i)
1

�

[ � � �
�

[X
(i)
mi .
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In the case of non-coincidencing eigenvalues of NEPS (given by Theorem 2.2),

the projection operator for the eigenvalue �s1;... ;sk is equal to P
(1)
s1 
� � �
P

(k)
sk (see

(3.1)). Since

(P (1)
s1


 � � � 
 P (k)
sk

)(e1j1 
 � � � 
 ekjk ) = (P (1)
s1

e1j1)
 � � � 
 (P (k)
sk

ekjk );

where ji 2 X
(i)
si ; si = 1; . . . ;mi; i = 1; . . . ; k, we can easily complete the proof.
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