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GENERALIZED MIRON'S d-CONNECTION
IN THE RECURRENT K-HAMILTON SPACES

Irena �Comi�c

Abstract. For the generalized Miron's d-connection in recurrent K-Hamilton spaces, the
torsion tensor and the connection coeÆcients are determined. For special cases the already known
results are obtained.

1. Introduction. This paper is a generalization of [8], based on works of
Miron, Anastasiei, Janus, Kirhovits and others, in the Hamilton geometry. Here
the generalization is going in di�erent directions:

a) The transformation of the coordinate system is given by (2.1), where (2.1b)
is more general than in former investigations in this �eld.

b) In the metric tensor the blocks over and under the diagnal are not necessarily
equal to zero.

c) The connection coe�cients are introduced in such a way that rX :T (E
�) !

T (E�) by which we can obtain eight kinds of connection coeÆcients.

d) A consequence of c) is that the torsion tensor has also eight of components.

e) The �eld �(x; p), the vector �eld of recurrency is introduced.

The main result is that the connection coeÆcients for such a general case
are obtained explicitly. For some special cases the already known results are ob-
tained. Theorems 7.6 and 7.7 give the relations between the metric tensor and the
nonlinear connection of such K-Hamilton spaces, which allow torsion-free Miron's
d-connection.

2. Adapted bases in T (E�) and T �(E�). Let E� be an (n + mK)-
dimensional di�erentiable manifold. If u is one point of E�, then, in some local
chart, u has the coordinates

u =
�
(xi); (p1a); (p

2
a); . . . ; (p

K
a )
�
=
�
(xi); (p�a )

�
= (x; p):
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Generalized Miron's d-connection 137

where (xi) = (x1; x2; . . . ; xn) = (x), (p�a ) = (p�1 ; . . . ; p
�
m) = (p�), and a; b; c; d; e; f =

1;m; i; j; h; k; l = 1; n; �; �; ; Æ = 1;K.

We shall consider the following coordinate transformation. If
�
(xi

0

); (p�a0)
�
=

(x0; p0) are the coordinates of the same point u in the new coordinate system, then,

(a) xi
0

= xi
0

(x1; . . . ; xn); rank
h
@xi

0

=@xi
i
= n(2.1)

(b) p�a0 =
(�)

M a
a0(x1; . . . ; xn)p�a ; rank [@p�a0=@p�a ] = m:

The Einstein summation convention will be used for all three kinds of indices,
except in the case when the index appears in brackets. If (2.1) is valid, then an
inverse transformation exists, i.e.

(2.2) (a) xi = (x1
0

; . . . ; xn
0

) (b) p�a =
(�)

M a0

a (x
10

; . . . ; xn
0

)p�a0 :

The natural basis B = f(@i); (@
a
1 ); . . . ; (@

a
K)g of T (E

�) is formed by n vectors
of the type @i = @=@xi and m �K vectors of the type @a� = @=@p�a . Any vector �eld
X 2 T (E�) may be represented in the form

(2.3) X = X
i
@i +X�

a@
a
�:

With respect to the coordinate transformations (2.1) and (2.2), the basic
vectors of B obey the following law of transformation:

(2.4)

2
66664
@i
@a1
...

@aK

3
77775 =

2
666666664

@xi
0

=@xi

 
@i

(1)

Ma
a0

!
p1a . . .

 
@i
(K)

M a
a0

!
pKa

0
(1)

Ma
a0 . . . 0

...
...

...

0 0 . . .
(K)

M a
a0

3
777777775

2
66664
@i0

@a
0

1
...

@a
0

K

3
77775

(2.5)

2
66664
@i0

@a
0

1
...

@a
0

K

3
77775 =

2
666666664

@xj=@xi
0

 
@i0

(1)

Mb0

b

!
p1b0 . . .

 
@i0

(K)

M b0

b

!
pKb0

0
(1)

Ma0

b . . . 0
...

...
...

0 0 . . .
(K)

M a0

b

3
777777775

2
66664
@j
@b1
...

@bK

3
77775

Substituting (2.5) into (2.4), we obtain,

(a)
@xi

0

@xi
@xj

@xi0
= Æji (b)

(�)

M a
a0

(�)

M a0

b = Æab(2.6)

(c)

 
@i0

(�)

M b0

b

!
p�b0

@xi
0

@xi
+

 
@i
(�)

M a
a0

!
p�a

(�)

M a0

b = 0;
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where (2.6c) is the consequence of (2.4) and (2.6b).

From (2.4) and (2.5) it is obvious that @i and @i0 do not transform as ten-
sors, so we introduce a new, the so-called adapted basis B = f(Æi); (@

a
1); . . . ; (@

a
K)g

of T (E�), where by de�nition

(2.7) Æi = @i �N�
a i(x; p)@

a
�;

and N�
a i(x; p) are the coeÆcients of the nonlinear connection. These are the arbi-

trary functions, which under the coordinate transformations (2.1) and (2.2) trans-
form in the following manner:

(a) N�
a0 i0(x

0; p0) =
(�)

M a
a0

@xi

@xi0
N�

a i(x; p)� p�a
@
(�)

M a
a0

@xi
@xi

@xi0
(2.8)

(b) N�
b j(x; p) =

(�)

M b0

b

@xj
0

@xj
N�

b0 j0(x
0; p0) + p�a

(�)

M a0

b

@
(�)

M a
a0

@xj
:

Any vector �eld X 2 T (E�) in the adapted basis B is given by

(2.9) X = X iÆi +X�
a@

a
�:

The coordinates of the vector X given by (2.9) and the elements of basis B
transform as tensors in the following manner:

Æi =
@xi

0

@xi
Æi0 @a� =

(�)

M a
a0(x)@a

0

�(2.10)

X i =
@xi

@xi0
X i0 X�

a =
(�)

M a0

a (x
0)X�

a0 :

From (2.3) and (2.9) we obtain the relation between coordinates of the �eldX ,

in the bases B and B. They are connected by the relations X i = X
i
, X�

a =

X�
a +N�

a iX
i
. The subspace of T (E�) spanned by fÆig, shall be denoted by TH(E

�)
(the horizontal part) and the subspace spanned by f@a�g, by (�)TV (E

�) (the vertical
�-part). So, we have T (E�) = TH(E

�)� TV (E
�), where,

TV (E
�) =

KX
�=1

(�)TV (E
�); dimTH(E

�) = n; dim(�) TV (E
�) = m:

Here, X iÆi is the horizontal and X�
a@

a
� the vertical part of the �eld X . Now (2.9)

may be written in the from

X = XH +XV ; XH = X iÆi XV = X�
a@

a
�:

Let us consider the dual tangent space of E�, the space T �(E�). The natural
basis in T �(E�) is

B
�
=
�
dx1; . . . ; dxn; dp11; . . . ; dp

1
m; . . . ; dp

K
1 ; . . . ; dp

K
m

	
=
�
dxi; dp1a; . . . ; dp

K
a

	
:



Generalized Miron's d-connection 139

From (2.1) we obtain

(2.11) (a) dxi
0

=
@xi

0

@xi
dxi (b) dp�a0 =

@
(�)

M a
a0(x)

@xi
p�adx

i +
(�)

M a
a0(x)dp�a :

From (2.11b) it is obvious that dp�a do not transform as tensors, so we in-
truduce a new basis B� =

�
(dx1); (Æp1a); . . . ; (Æp

K
a )
	
, where,

(2.12) Æp�a = dp�a +N�
a i(x; p)dx

i:

Through the coordinate transformation (2.1) the bases B
�
and B� are related

by (2.11a) and

(2.13) (a) Æp�a =
(�)

M a0

a (x
0)Æp�a0 (b) Æp�a0 =

(�)

M a
a0(x)Æp�a :

The proof of (2.13) is obtained by using (2.12) and (2.8). Any �eld w 2 T �(E�)

can be written in the bases B
�
and B� in the following manner:

(2.14) w = widx
i + wa

�dp
�
a = widx

i + wa
�Æp

�
a

where wi = wi �N�
a iw

a
�, w

a
� = wa

�.

The subspace of T �(E�) spanned by f(dxi)g shall be denoted by T �
H(E

�) and
the subspace spanned by f(Æp�a )g by (�)T

�
V (E

�). So, we have

T �(E�) = T �
H(E

�)� T �
V (E

�); where T �
V (E

�) =

KX
�=1

�(�)T
�
V (E

�):

.

Now, (2.14) may be written in the form

w = wH + wV ; wH = widx
i; wV = wa

�Æp
�
a :

If f(dxi); (Æp1a); . . . ; (Æp
K
a )g and f(dx

i0); (Æp1a0); . . . ; (ÆpKa0 )g are two bases in T �(E�),
related by (2.11a) and (2.13), then any w 2 T �(E�) satis�es the relation

(2.15) w = widx
i + wa

�Æp
�
a = wi0dx

i0 + wa0

� Æp
�
a0 :

Substituting dxi
0

from (2.11a) and Æp�a0 from (2.13b) into (2.15) and comparing the
coeÆcients of the basis vectors, we obtain

(2.16) wi = wi0@x
i0=@xi; wa

� =
(�)

M a
a0wa0

� :

By a straightforward calculation, we can prove the following

Proposition 2.1. The adapted bases f(Æi); (@
a
1); . . . ; (@

a
K)g and f(dx

i); (Æp1a);
. . . ; (ÆpKa )g are dual to each other, i.e.


Æi; dx
j
�
= Æji ; hÆi; Æp

�
a i = 0;(2.17) 


@a�; dx
j
�
= 0;

D
@a�; Æp

�
b

E
= Æab Æ

�
�:
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3. Tensor Fields on E�. a) A horizontal tensor �eld tH has the local
representation:

tH = ti1...ipj1 . . . jq(x; p)Æi1 
 � � � 
 Æip 
 dxj1 
 � � � 
 dxjq ;

it is de�ned on

TH(E
�)
 � � � 
 TH(E

�)| {z }
p times


T �
H(E)
 � � � 
 T �

H(E
�)| {z }

q times

By the coordinate transformations given by (2.1) and (2.2) the coordinates
of the �eld tH have the following transformation law

ti
0

1
...i0p

j0
1
...j0q

=
@xi

0

1

@xi1
. . .

@xi
0

p

@xip
@xj1

@xj
0

1

. . .
@sjq

@xj
0

q

ti1...ipj1...jq :

b) The �-vertical tensor �eld (�)tV has the local representation

(�)tV = (�)t
�...�

b1...bs

a1...ar
�...� @ b1

�

 . . .@ bs

�

 Æp

�

a1

 . . .
 Æp

�

ar

(not summing over �); it is de�ned on

(�) TV (E
�)
 . . .
 (�)TV (E

�)| {z }
s times


(�) T
�
V (E

�)
 . . .
 (�)T
�
V (E

�)| {z }
r times

By changing of coordinats of kind (2.1) and (2.2) the coordinates of the �eld (�)tV ,
given above, have the following transformation law

(�)t
a0

1
...a0

r� ... �

�...� b0
1
...b0s

= (�)t
a1...ar� ...�

�...� b1...bs

(�)

M a0

1

a1
. . .

(�)

M a0

r

ar

(�)

M
b1
b0
1

. . .
(�)

M
bs
b0s
:

c) A vertical tensor �eld tV on TV (E
�)
 T �

V (E
�) has the form

tV = t
�b1

a1�
@
a1

�

 Æp

�

b1
(summing over � and �).

The coordinate transformation of the tensor tV is given by

t
�b0

1

a0

1
�

= t
�b1
a1�

(�)

M
a1

a0

1

(�)

M b0
1

b1
:

d) A tensor �eld t on

TH(E
�)
� . . .
 TH(E

�)| {z }
p times


T �
H(E

�)
 . . .
 T �
H(E

�)| {z }
q times




TV (E
�)
 � � � 
 TV (E

�)| {z }
s times

�T �
V (E

�)
 � � � 
 T �
V (E

�)| {z }
r times

;

is given by

t = ti1...ipj1...jq
�1...�sa1 ...ar
b1...bs �1...�r

(x; p)Æi1 
 . . .
 Æip


 dxj1 
 . . .
 dxjq 
 @ b1
�1

 . . .
 @ bs

�s

 Æp

�1
a1

 . . .
 Æp

�r
ar
:
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The summation is performed over all indices. The coordinate transformation of the
above tensor is given by

ti
0

1
...i0p

j0
1
...j0q

�1...�sa
0

1
...a0

r

b0
1
...b0s�1...�r

= ti1...ipj1...jq
�1...�sa1 ...ar
b1...bs �1...�r

@xi
0

1

@xi1
. . .

@xi
0

p

@xip
@xj1

@xj
0

1

. . .
@xjq

@xj
0

q

(�1)

M b1
b0
1

. . .
(�s)

M bs
b0s

(�1)

M a0

1
a1

. . .
(�r)

M a0

r
ar
:

The order of spaces TH(E
�), T �

H(E
�), (�)T

�
V (E

�) and T �
V (E

�) can be taken
arbitrarily. It has the inuence on the order of the indices of the tensor t, which is
de�ned on their tensor product.

4. The Metric Tensor. In the space T �(E�)
T �(E�), the metric tensor G,
with respect to the basis =

�
(dxi); (Æp1a); . . . ; (Æp

K
a )
	
, has the form

G = [(dxi); (Æp1a); . . . ; (Æp
K
a )]

2
666664

�
gij
� h

g b

i1

i
. . .

h
g b

iK

i
h
g
a

1j

i h
g ab
11

i
. . .

h
g ab
1K

i
...

...
...h

g
a

Kj

i h
g ab

K1

i
. . .

h
g ab

KK

i

3
777775


2
6664
dxj

Æp 1
b

...
ÆpK

b

3
7775 =

(4.1)

gijdx
i 
 dxj + g

a

�j Æp
�

a

 dxj + g

b

i�
dxi 
 Æp �

b
+ g

ab

��
Æp

�

a

 Æp �

b
:

The matrices
�
gij
�
,
h
g

b

i�

i
,
h
g
a

�j

i
and

h
g
ab

��

i
have the formats n� n, n�m,

m� n and m�m. As G is a tensor, its coordinates in the new coordinate system
(x0; p0) transform in the following manner:

gi0j0 = gij
@xi

@xi0
@xj

@xj0
; g a

0

�j0 = g
a

�j

(�)

M a0

a

@xj

@xj0
;(4.2)

g b0

i0� = g
b

i�

@xi

@xi0
(�)

M b0

b
; g a

0b0

��
= g

ab

��

(�)

M a0

a

(�)

M b0

b

We shall suppose that G is a symmetric, positive de�nite tensor �eld of rank

n +mK. From the symmetry, it follows that gij = gji, g
b

i�
= g

b

�i
, g

ab

��
= g

ba

��
.

The \covariant" coordinates of the �eld X = X iÆi +X
�

a
@
a

�
are given by

Xi = gijX
j + g

a

i�
X

�

a
; X

a

�
= g

a

�i
X i + g

ab

��
X �

b
:

The inverse matrix of G (appearing in (4.1)) is given by2
666664

�
gjk
� h

g j1
c

i
. . .

h
g jK

c

i
h
g 1k
b

i h
g 11
bc

i
. . .

h
g 1K
bc

i
...

...
...h

gKk

b

i h
g K1

bc

i
. . .

h
gKK

bc

i

3
777775
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The matrices
�
gjk
�
,
h
g j

c

i
,
h
g k
c

i
and

h
g �
bc

i
have formats n � n, n � m,

m� n and m�m. Now we have:

gijg
jk + g

b

i�
g �k
b

= Æki ; g
a

�j g
j

c
+ g

ab

��
g �
bc

= Æac Æ

�;

gijg
j

c
+ g

b

i�
g �
bc

= 0; g
a

�j g
jk + g

ab

��
g �k
b

= 0:

The contravariant coordinates w = widx
i + wa

�Æp
�
a are given by

wi = gijwj + g i�
a
wa
�; w�

a = g j�
a
wj + g ��

ab
wb
� :

Using (2.10), (2.16) and (4.2) the validity of the following transformation laws can
be shown:

Xi0 = Xi

@xi

@xi0
; Xa0

� = Xa
�

(�)

M a0

a ; wi0 = wi @x
i0

@xi
; w�

a0 = w�
a

(�)

M a
a0 :

De�nition 3.1. The di�erentiable maniod E� (in which the coordinate trans-
formations of type (2.1) are allowed) supplied with arbitrary nonlinear connectionN
(which satis�es (2.8)) and the metric tensorG (given by (4.1) is called aK-Hamilton
space and is denoted by (E�; N;G).

It is a generalization of the K-Hamilton space de�ned in [9], [10] etc., be-
cause here the metric tensor G is not necessarily obtained from the K-Hamiltonian
H(x; p). If the K-Hamilton function H(x; p) is given in the space (E�), then the
metric tensor G can be de�ned in the following way:

gij(x; p) = gij(x); g
b

i�
= 0; g

a

�j = 0;

g
ab

��
=

1

2
@
a

�
@b�H

2(x; p); for every �; � = 1;K;

where gij(x) is some metric tensor de�ned on M and M is the �� projection of E�:

��(E�) =M; ��((xi); (p1a); . . . ; (p
K
a )) = (xi):

We can not de�ne g
b

i�
(x; p) = 1

2Æi@
b
�H

2(x; p), gij(x; p) =
1
2ÆiÆjH

2(x; p), because

the above quantities do not transform as tensors. Using the metric tensor G de-
termined by (4.1), we de�ne the scalar product (X;Y ) of �elds X;Y 2 T (E�)
by

(4.3) (X;Y ) = gijX
iY j + g

b

i�
X iY �

b + g
a

�jX
�
aY

j + g
ab

��
X�

aY
�
b :

The length of X , jX j is de�ned by jX j2 = (X;X) and cos �, where � is the
angle between X and Y by

(4.4) cos � = (X;Y )=(jX j � jY j):

When cos� = 0, we say that X and Y are mutually orthogonal. For the
horizontal �eld XH we have XH = X i@i, jXH j

2 = gijX
iXj and for the vertical
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vector XV we have XV = X�
a@

a
�, jXV j

2 = g
ab

��
X�

aX
�
b . For the �eld (�)XV 2

(�)TV (E
�) we have

(�)XV = X�
a@

a
� j(�)XV j

2 = g ab

��
X�

aX
�
b (not summing over �):

Theorem 4.1. The subspaces TH(E
�), (1)TV (E

�), . . . ,(K)TV (E
�) are mu-

tually orthogonal with respect to the metric tensor G, if and only if [gbij ] = 0,h
g
a

�j

i
= 0,

h
g
ab

��

i
= 0 for every �; � = 1;K, � 6= �.

The proof follows from (4.3) and (4.4).

5. Generalized Miron's d-connection in T (E�). The distinguished
connection r, or the d-connection, in the K-Hamilton space in [15], [9], [16] and
others is de�ned as a function r : (X;Y ) ! rXY X; Y;rXY 2 T (E�) for which,
beside the usual conditions for the linear connection, the following restrictions are
valied:

rXYH 2 TH(E
�); rXYV 2 TV (E

�)for all X 2 T (E�);

all YH 2 TH(E
�); and all YV 2 TV (E

�):

For the generalized linear d-connection in T (E�) in he K-Hamilton space the
above restrictions need not be satis�ed.

De�nition 5.1. The generalized linear Miron's d-connection in T (E�) is de-
�ned by

rÆiÆj = Fj
k
iÆk + Fj


c i@

c
 ;(5.1)

rÆi@
a
� = F a

�
k
iÆk + F a

�

c i@

c
 ;

r@a�
Æj = Cj

ka

�
Æk + C

a
jc� @

c
 ;

r@a�
@b� = C

bka

� �
Æk + C ba

�c� @
c
 :

Proposition 5.1. If X;Y 2 T (E�), where X is given by (2.9), and Y =

Y jÆj + Y �
b @

b
�, then

(5.2) rXY =
�
Y k

j iX
i + Y kja�X

�
a

�
Æk +

�
Y 

cjiX
i + Y 

c j
a
�X

�
a

�
@c ;

where,

Y k
j i = ÆiY

k + Fj
k
iY

j + F
bk

� i
Y �
b ;(5.3)

Y kja� = @a�Y
k + C

ka

j �
Y j + C

bka

� �
Y �
b ;

Y

cji = ÆiY


c + F


jci Y

j + F b
�c iY

�
b ;

Y 
c j
a
� = @a�Y


c + C

a
jc�Y

j + C ba
�c�Y

�
b :
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Proof. (5.2) and (5.3) are proved by using the linearity of the connection r
and (5.1).

Proposition 5.2. If ((xi); (p�a )) and ((xi
0

); (p�a0)) are two coordinate systems

connected by (2.1) and (2.2), then

(5.4) rX0Y 0 = rXY

i� Y k
ji , Y

kja�, Y

c ji and Y 

c j
a
� transform as tensors, i.e. if

Y k0

ji0 = Y k
ji(@i0x

i)(@kx
k0

); Y k0

j�a0 = Y kj�a (@kx
k0

)
(�)

M a
a0 ;

Y 
c0 ji0 = Y 

c ji

()

Mc
c0(@i0x

i); Y 
c0 j

a0

� = Y 
c j
a
�

()

Mc
c0

(�)

M a0

a ;

or, equivalently, i� the connection coeÆcients have the following transformation

law

(5.5) (a) Fj
k
i = Fj0

k0

i0(@jx
j0 )(@k0xk)(@ix

i0) + (@i@jx
k0

)(@k0xk),

(b) Fj

c i = Fj0


c0 i0 (@jx

j0 )
()

Mc0

c (@ix
i0),

(c) F b
�
k
i = F b0

�
k0

i0

(�)

M b
b0(@k0xk)(@ix

i0),

(d) F b
�

c iY

�
b = F b0

�

c0 i0

(�)

M b
b0

()

Mc0

c (@ix
i0 )Y �

b + (@i
()

Md
c0)

()

M c0

c Y

d ,

(e) Cj
ka
� = Cj0

k0a0

� (@jx
j0 )(@k0xk)

(�)

M a
a0 ,

(f) Cj

c
a
� = Cj0


c0
a0

� (@jx
j0 )

()

Mc0

c

(�)

M a
a0 ,

(g) Cb
�
ka
� = Cb0

�
k0a0

�

(�)

M b
b0(@k0xk)

(�)

M a
a0 ,

(h) Cb
�

c
a
� = Cb0

�

c0
a0

�

(�)

M b
b0

()

Mc0

c

(�)

M a
a0 .

As Y �
b and Y 

d are the coordinates of the arbitrary vector Y , from (5.5d) it

follows that:

F a0

(�)
�
d0 i0 = F a

(�)
�
d i

(�)

M a0

a

(�)

M d
d0(@i0x

i) +

 
@i0

(�)

M a0

d

!
(�)

M d
d0(5.5.d')

F a0

�

d0 i0 = F a

�

di

(�)

M a0

a

()

Md
d0(@ix

i); � 6= :(5.5.d")

Proof. The proof is obtained by a direct calculation, using (5.2){(5.4), (2.7)
and (2.10).
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The formulae (5.5) may be obtained by using the transformation law of the
basic vectors and the linearity of the connection r.

If one nonlinear connection N�
a i is given, we have an adapted basis and using

this basis, we de�ne the linear connection r. Another nonlinear connection �N
c i

may be obtained from (5.5d). If we take Y �
p = p�p , and introduce the notation

F b
�

c ip

�
b = �N

c i, then (5.5d) becomes

�N
c i =

�N
c0 i0

()

Mc0

c (@ix
i0) +

 
@i
()

Md
c0

!
()

M c0

c p

d ;

which, compared to (2.8), shows, that �N
c i transform as a nonlinear connection.

The torsion tensor T (X;Y ) is, as usual, given by

(5.6) T (X;Y ) = rXY �rYX � [X;Y ]:

Theorem 5.1. The torsion tensor T (X;Y ) for the connection r has the

form

T (X;Y ) = THHH + THHV + THVH + THV V + TV HH + TV HV + TV V H + TV V V ;

where, for instance, TV V H = [T (XV ; YV )]H , TV HH = [T (XV ; YH)]H . The compo-

nents of the torsion tensor are

(a) THHH = (Fj
k
i � Fi

k
j)X

iY jÆk = Tj
k
iX

iY jÆk(5.7)

(b) THHV = (Fj

c i � Fi


c j + ÆiN


c j � ÆjN


c i)X

iY j@c = Tj

c iX

iY j@c

(c) THVH = (F b
�
k
i � Ci

kb
�)X

iY �
b Æk = T b

�
k
iX

iY �
b Æk

(d) THV V = (F b
�

c i � Ci


c
b
� � @b�N


c i)X

iY �
b @

c
 = T b

�

c iX

iY �
b @

c


(e) TV HH = (Cj
ka
� � F a

�
k
j)X

�
aY

jÆk = Tj
ka
�X

�
aY

jÆk

(f) TV HV = (Cj

c
a
� � F a

�

c j + @a�N


c j)X

�
aY

j@c = Tj

c
a
�X

�
aY

j@c

(g) TV V H = (Cb
�
ka
� � Ca

�
kb
�)X

�
aY

�
b Æk = T b

�
ka
�X

�
aY

�
b Æk

(h) TV V V = (Cb
�

c
a
� � Ca

�

c
b
�)X

�
aY

�
b @

c
 = T b

�

c
a
�X

�
aY

�
b @

c
 :

Proof. The proof is obtained by a direct calculation by using (5.2), (5.3)
and (5.6).

De�nition5.2. The K-Hamiltonian space (E�; N;G), supplied with the linear
connection r de�ned by (5.1) and an arbitrary torsion tensor T , given by (5.7) is
denoted by (E�; N;G;r; T ).
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6. Generalized Miron's d-connection in T �(E�) Using the duality of the
bases B and B� of T (E�), and T �(E�), respectively expressed by (2.17) one can
obtain

Theorem 6.1. The connection on T �(E�) acts in the following way:

rÆidx
j = �Fk

j
idx

k � F c

j
iÆp


c ; rÆiÆp

�
b = �Fk

�
b idx

k � F c

�
b iÆp


c ;(6.1)

r@a�
dxj = �Ck

ja
�dx

k � Cc

ja
�Æp


c ; r@a�

Æp�b = �Ck
�
b
a
�dx

k � Cc

�
b
a
�Æp


c :

Using the properties of the linear connection r and relations (4.1) and (6.1),
we see that the following relations are satis�ed:

rXG =
�
gijjkX

k + gij j
c
X


c

�
dxi 
 dxj +

�
gj

b
� jkX

k + gi
b
�j
c
X


c

�
dxi 
 Æp�b+�

ga�jjkX
k + ga�j j

c
X


c

�
Æp�a 
 dxj +

�
ga�

b
� jkX

k + ga�
b
� j
c
X


c

�
Æp�a 
 Æp�b ;

where,

(6.2) gijjk = Ækgij � ghjFi
h
k � gdÆjFi

Æ
dk � gihFj

h
k � gi

d
ÆFj

Æ
dk,

gij j
c
 = @cgij � ghjCi

hc
 � gdÆjCi

Æ
d
c
 � gihCj

hc
 � gi

d
ÆCj

Æ
d
c
 ,

gi
b
� jk = Ækgi

b
� � gh

b
�Fi

h
k � gdÆ

b
�Fi

Æ
dk � gihF

b
�
h
k � gi

d
ÆF

b
�
Æ
dk,

gi
b
� j
c
 = @cgi

b
� � gh

b
�Ci

hc
 � gdÆ

b
�Ci

Æ
d
c
 � gihC

b
�
hc
 � gi

d
ÆC

b
�
Æ
d
c
 ,

ga�
b
� jk = Ækg

a
�
b
� � gh

b
�F

a
�
h
k � gdÆ

b
�F

a
�
Æ
dk � ga�hF

b
�
h
k � ga�

d
ÆF

b
�
Æ
dk,

ga�
b
� j
c
 = @cg

a
�
b
� � gh

b
�C

a
�
hc
 � gdÆ

b
�C

a
�
Æ
d
c
 � ga�hC

b
�
hc
 � ga�

d
ÆC

b
�
Æ
d
c
 .

De�nition 6.1. The space (E�; N;G;r; T ) is called the recurrentK-Hamilton
space and denoted by (E�; N;G;r; T; �), if tensor �elds �k(x; p) and �

c
(x; p) exist,

so that

gijjk = �kgij ; gij j
c
 = �cgij ; gi

b
� jk = �kgi

b
�; gi

b
� j
c
 = �cgi

b
� ;(6.3)

ga�jjk = �kg
a
�j ; ga�j j

c
 = �cg

a
�j ; ga�

b
� jk = �kg

a
�
b
� ; ga�

b
� j
c
 = �cg

a
�
b
� :

De�nition 6.2. The recurrent K-Hamilton space will be called the metric
K-Hamilton space and denoted by (E�; N;G;r; T; 0), if

gijjk = 0; gij j
c
 = 0; gi

b
� jk = 0; gi

b
� j
c
 = 0;

ga�jjk = 0; ga�j j
c
 = 0; ga�

b
� jk = 0; ga�

b
� j
c
 = 0:

Theorem 6.2. In the recurrent K-Hamilton space, the coordinates of the

inverse metric tensor satisfy the following relations

glkj h = ��hg
lk; gl�b jh = ��hg

l�
b ; gÆd

�
b jh = ��hg

Æ
d
�
b ;(6.4)

glkjc = ��cg
lk; gl�b j

c
 = ��cg

l�
b ; gÆd

�
b j
c
 = ��cg

Æ
d
�
b :
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Proof. It follows, from (4.4), that

(a) �hÆ
k
i + gijg

jk
j h + gi

b
�g

�
b
k
j h = 0(6.5)

(b) �hÆ
a
cÆ


a + ga�jg

j
c jh + ga�

b
�g

�
b

c jh = 0

(c) gijg
j
c jh + gi

b
�g

�
b

c jh = 0

(d) ga�jg
jk

jh + ga�
b
�g

�
b
k
j h = 0

The sum of (6.5a), multiplied by gil, and (6.5d) multiplied by gla�, yields
glkj h = ��hg

lk. The other relations in (6.4) may be obtained in a similar way.

The raising and lowering of the middle index of the connection coeÆcients
are given by the following formulae�

Fijk
Fi

a
�k

�
=

�
gjhgj

d
Æ

ga�hg
a
�
d
Æ

��
Fi

h
k

Fi
Æ
dk

�
,

�
Fi

h
k

Fi
Æ
dk

�
=

�
ghjgh�a
gÆd

jgÆd
�
a

� �
Fijk
Fi

a
�k

�
(6.6)

�
F a
�ik

F a
�
b
�k

�
=

�
gihgi

d
Æ

gb�hg
b
�
d
Æ

� �
F a
�
h
k

F a
�
Æ
dk

�
,

�
F a
�
h
k

F a
�
Æ
dk

�
=

�
ghigh�b
gÆd

igÆd
�
b

� �
F a
�ik

F a
�
b
�k

�
;

�
Cij

c


Ci
a
�
c


�
=

�
gjhgj

d
Æ

ga�hg
a
�
d
Æ

� �
Ci

hc


Ci
Æ
d
c


�
,

�
Ci

hc


Ci
Æ
d
c


�
=

�
ghjgh�a
gÆd

jgÆd
�
a

� �
Cij

c


Ci
a
�
c


�
;

�
Ca
�i

c


Ca
�
b
�
c


�
=

�
gihgi

d
Æ

gb�hg
b
�
d
Æ

��
Ca
�
hc


Ca
�
Æ
d
c


�
,

�
Ca
�
hc


Ca
�
Æ
d
c


�
=

�
ghigh�b
gÆd

igÆd
�
b

� �
Ca
�i

c


Ca
�
b
�
c


�

By using (6.1) and the above notations, (6.2) may be written in the following
form:

gijjk = Ækgij � Fijk � Fjki; gij j
c
 = @cgij � Cij

c
 � Cji

c
 ;(6.7)

gi
b
� jk = Ækgi

b
� � Fi

b
�k � F b

�ik ; gi
b
� j
c
 = @cgi

b
� � Ci

b
�
c
 � Cb

�i
c
 ;

ga�
b
� jk = Ækg

a
�
b
� � F a

�
b
�k � F b

�
a
�k; ga�

b
� j
c
 = @cg

a
�
b
� � Ca

�
b
�
c
 � Cb

�
a
�
c
 :

7. The Connection CoeÆcients in Recurrent k-Hamilton Spaces.

Theorem 7.1. In a recurrent K-Hamilton space (E�; N;G;r; T; �), the

connection coeÆcients are determined by

(a) 2Fijk = (Ækgij + Æigjk � Æjgki)� (�kgij + �igjk � �jgki)(7.1)

+ (F �
kij + F �

ikj + F �
kji);

(b) F �
kij = Fkij � Fjik = gih(Fk

h
j � Fj

h
k) + gi

d
Æ(Fk

Æ
dj � Fj

Æ
dk)

= gihTk
h
j + gi

d
ÆTk

Æ
dj ; (see 5.7)
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(a) 2Fi
a
�k = (Ækgi

a
� + Æig

a
�k � @a�gik)� (�kgi

a
� + �ig

a
�k � �a�gik) +A(7.2)

(b) A = (Fi
a
�k � Fk

a
�i)� (F a

�ki � Cik
a
�)� (F a

�ik � Cki
a
�)

= ga�hTi
h
k + ga�

d
ÆTi

Æ
dk � gihT

a
�
hk � gkhT

a
�
h
i

� gi
d
Æ(T

a
�
Æ
dk + @a�N

Æ
dk)� gk

d
Æ(T

a
�
Æ
di + @a�N

Æ
di)

+ ga�
d
Æ(ÆiN

Æ
dk � ÆkN

Æ
di);

2F a
�ik = (Ækg

a
�i + @a�gik � Æigk

a
�)� (�kg

a
�i + �a�gik � �igk

a
�)�A;(7.3)

(a) 2F a
�
b
�k = (Ækg

a
�
b
� + @a�g

b
�k � @b�gk

a
�)(7.4)

� (�kg
a
�
b
� + �a�g

b
�k � �b�gk

a
�) +B;

(b) B = (F a
�
b
�k � Ck

b
�
a
�)� (F b

�
a
�k � Ck

a
�
b
�) + (Ca

�k
b
� � Cb

�k
a
�)

= gb�
d
Æ@

a
�N

Æ
dk � ga�

d
Æ@

b
�N

Æ
dk + gb�hT

a
�
h
k + gb�

d
ÆT

a
�
Æ
dk

� ga�hT
b
�
h
k � ga�

d
ÆT

b
�
Æ
dk + gkhT

a
�
hb
� + gk

d
ÆT

a
�
Æ
d
b
� ;

(a) 2Cij
a
� = (@a�gij + Æigj

a
� � Æjg

a
�i)� (�a�gij + �igj

a
� � �jg

a
�i) + C;(7.5)

(b) C = (Fi
a
�j � Fj

a
�i) + (F a

�ij � Cji
a
�)� (F a

�ji � Cij
a
�)

= ga�hTi
h
j + ga�

d
Æ(Ti

Æ
dj + ÆiN

Æ
dj � ÆjN

Æ
di) + gihT

a
�
h
j

� gjhT
a
�
h
i + gi

d
Æ(T

a
�
Æ
dj + @a�N

Æ
dj)� gj

d
Æ(T

a
�
Æ
di + @a�N

Æ
di)

(a) 2Ck
a
�
b
� = (@b�gk

a
� + Ækg

a
�
b
� � @a�g

b
�k)� (�b�gk

a
� + �kg

a
�
b
� � �a�g

b
�k)(7.6)

�D �E;

(b) D = (F a
�
b
�k � Ck

b
�
a
�) + (F b

�
a
�k � Ck

a
�
b
�)

= gb�hT
a
�
h
k + ga�hT

b
�
h
k + gb�

d
Æ(T

a
�
Æ
dk + @�aN

Æ
dk)

+ gad�Æ(T
bÆ
�dk + @b�N

Æ
dk);

(c) E = Ca
�k

b
� � Cb

�k
a
� = gkhT

a
�
hb
� + gk

d
ÆT

a
�
Æ
d
b
� ;

2Ca
�k

b
� = (@b�g

a
�k + @a�gk

b
� � Ækg

b
�
a
�)� (�b�g

a
�k + �a�gk

b
� � �kg

b
�
a
�)(7.7)

+D +E;

(a) 2Ca
�
b
�
c
 = (@cg

a
�
b
� + @a�g

b
�
c
 � @b�g

c

a
�)� (�cg

a
�
b
� + �a�g

b
�
c
 � �b�g

c

a
�)(7.8)

+ (C�c

a
�
b
� + C�a

�
c

b
� � C�c


b
�
a
�);

(c) C�c

a
�
b
� = Cc


a
�
b
� � Cb

�
a
�
c
 = ga�hT

c

hb
� + ga�

d
ÆT

c

Æ
d
h:

Proof. The proof follows from (6.7), (6.6), (6.3) and (5.7).

De�nition7.1. The recurrent K-Hamilton space, in which T (X;Y ) = 0, for
all X;Y 2 T (E�), is called torsion free recurrent K-Hamilton space and is denoted
by (E�; N;G;r; 0; �).
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Theorem 7.2. In the forsion-free recurrent K-Hamilton space (E�; N;G;r;
0; �), the connection coeÆcients are determined by

2Fijk = (Ækgij + Æigjk � Æjgki)� (�kgij + �igjk � �jgki);(7.9)

2Fi
a
�k = (Ækgi

a
� + Æig

a
�k � @a�gik)� (�kgi

a
� + �ig

a
�k � �a�gik)

� (gi
d
Æ@

a
�N

Æ
dk + gk

d
Æ@

a
�N

Æ
di) + ga�

d
Æ(ÆiN

Æ
dk � ÆkN

Æ
di);

2F a
�ik = (Ækg

a
�i + @a�gik � Æig

a
�)� (�kg

a
�i + �a�gik � �igk

a
�)

+ (gi
d
Æ@

a
�N

Æ
dk + gk

d
Æ@

a
�N

Æ
di)� ga�

d
Æ(ÆiN

Æ
dk � ÆkN

Æ
di)

2F a
�
b
�k = (Ækg

a
�
b
� + @a�g

b
�h � @b�gk

a
�)� (�kg

a
�
b
� + �a�g

b
�k � �b�gk

a
�)

+ gb�
d
Æ@

a
�N

Æ
dk � ga�

d
Æ@

b
�N

Æ
dk;

2Cij
a
� = (@a�gij + Æigj

a
� � Æjg

a
�i)� (�a�gij + �igj

a
� � �jg

a
�i)

+ ga�
d
Æ(ÆiN

Æ
dj � ÆjN

Æ
di) + gi

d
Æ@

a
�N

Æ
dj � gj

d
Æ@

a
�N

Æ
di;

2Ck
a
�
b
� = (@b�gk

a
� + Ækg

a
�
b
� � @a�g

b
�k)� (�b�gk

a
� + �kg

a
�
b
� � �a�g

b
�k)

� (gb�
d
Æ@

a
�N

Æ
dk + ga�

d
Æ@

b
�N

Æ
dk);

2Ca
�k

b
� = (@b�g

a
�k + ga�gk

b
� � Ækg

b
�
a
�)� (�b�g

a
�k � �a�gk

b
� � �kg

b
�
a
�)

+ (gb�
d
Æ@

a
�N

Æ
dk + ga�

d
Æ@

b
�N

Æ
dk);

2Ca
�
b
�
c
 = (@cg

a
�
b
� + @a�g

b
�
c
 � @b�g

c

a
�)� (�cg

a
�
b
� + �a�g

b
�
c
 � �b�g

c

a
�):

De�nition 7.2. The metric K-Hamilton space in which T (X;Y ) = 0 for
all X;Y 2 T (E�), is called torsion-free metric K-Hamilton space and denoted
by (E�; N;G;r; 0; 0).

Theorem 7.3. In the torsion free metric K-Hamilton space (E�; N;G;r; 0;
0), the connection coeÆcients are given by (7.9) if we substitute in them �i = 0,
�j = 0, �k = 0, �a� = 0, �b� = 0 and �c = 0.

De�nition 7.3. The torsion-free, metricK-Hamilton space, in which [gk
a
�] = 0

for all � = 1;K (i.e. TH(E
�) is orthogonal to (�)TV (E

�), for all � = 1;K, or
equivalently, TH(E

�) is orthogonal to TV (E
�)), will be denoted by (E�; N;GH ;

GV ;r; 0; 0).

Theorem 7.4. In (E�; N;GH ; GV ;r; 0; 0) the connection coeÆcients are

determined by

2Fijk = Ækgij + Æigjk � Æjgki;(7.10)

2Fi
a
�k = �@a�gik + ga�

d
Æ(ÆiN

Æ
dk � ÆkN

Æ
di);

2F a
�ik = @a�gik � ga�

d
Æ(ÆiN

Æ
dk � ÆkN

Æ
di);

2F a
�
b
�k = Ækg

a
�
b
� + gb�

d
Æ@

a
�N

Æ
dk � ga�

d
Æ@

b
�N

Æ
dk;
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2Cij
a
� = @a�gij + ga�

d
Æ(ÆiN

Æ
dj � ÆjN

Æ
di);

2Ck
a
�
b
� = Ækg

a
�
b
� � (gb�

d
Æ@

a
�N

Æ
dk + ga�

d
Æ@

b
�N

Æ
dk);

2Ca
�k

b
� = �Ækg

b
�
a
� + (gb�

d
Æ@

a
�N

Æ
dk + ga�

d
Æ@

b
�N

Æ
dk);

2Ca
�
b
�
c
 = @cg

a
�
b
� + @a�g

b
�
c
 � @b�g

c

a
�:

It is obvious that in (7.10), F a
�ik = �Fi

a
�k, Ck

a
�
b
� = �Ca

�k
b
�. In the recurrent

K-Hamilton space in which TH(E
�) is orthogonal to TV (E

�), i.e. where the metric
tensor has the property [gi

a
�] = 0 for all � 2 1;K (in space (E�; N;GH ; GV ;r; T; �))

we obtain from (6.6):

Fi
h
k = ghjFijk ; Fi

Æ
dk = g�a

Æ
dFi

a
�k; F a

�
h
k = ghiF a

�ik ;(7.11)

F a
�
Æ
dk = gÆd

�
b F

a
�
b
�k; Ci

hc
 = ghjCij

c
 ; Ci

Æ
d
c
 = gÆd

�
aCi

a
�
c
 ;

Ca
�
kc
 = gkiCa

�i
c
 ; Ca

�
Æ
d
c
 = gÆd

�
bC

a
�
b
�
c
 :

The connection coe�cients, which appear on the right-hand side of (7.11) for
(E�; N;GH ; GV ;r; 0; 0), are determined by (7.10).

Theorem 7.5. The necessary and suÆcient conditons that in (E�; N;GH ;
GV ;r; 0; 0) the connection coeÆcients satisfy the relations

Fi
a
�k = 0 , Fi

Æ
dk = 0; F a

�ik = 0 , F a
�
h
k = 0;(7.12)

Ca
�i

c
 = 0 , Ca

�
hc
 = 0; Ci

a
�
c
 = 0 , Ci

Æ
d
c
 = 0;

(for the nonlinear connection N) are

(7.13) @a�gik � ga�
d
Æ(ÆiN

Æ
dk � ÆkN

Æ
di) = 0; Ækg

b
�
a
�� (gb�

d
Æ@

a
�N

Æ
dk + ga�

d
Æ@

b
�N

Æ
dk) = 0:

Equations (7.12) and (7.13) should be satis�ed for all a; b; d 2 1;m, all h; i 2 1; n,
all �; �; Æ 2 1;K.

Proof. The proof follows from (7.10) and (7.11).

Theorem 7.6. In (E�; N;GH ; GV ;r; 0; 0) the generalized connection r, de-

�ned by (5.1), reduces to the Miron's d-connection de�ned by

rÆiÆj = Fj
k
iÆk; rÆi@

a
� = F a

�

c i@

c
 ;(7.14)

r@a�
Æj = Cj

ka
�Æk; r@a�

@b� = Cb
�

c
a
�@

c
 ;

i� the nonlinear connection N and the meric tensor G are connected by (7.13).
The connection coeÆcients of the d-connection are determined by

2Fi
h
k = gkj(Ækgij + Æigjk � Æjgki);(7.15)

2F a
�

c k = gc

�
b Ækg

a
�
b
� + gc

�
b (g

b
�
d
Æ@

a
�N

Æ
dk � ga�

d
Æ@

b
�N

Æ
dk);

2Ci
ha
� = ghj(@a�gij + ga�

d
Æ(ÆiN

Æ
di � ÆjN

Æ
di));

2Ca
�
�
b
c
 = g�b

Æ
d(@

c
g

a
�
b
� + @a�g

b
�
c
 � @b�g

c

a
�):



Generalized Miron's d-connection 151

Proof. (7.14) follows from Theorems (7.5) and (5.1). (7.15) follows from
(7.10), (7.11) and (7.13).

From (7.14) it is obvious that the d-connection is the linear connection, for
which rX :TH(E

�)! TH(E
�) and rX :TV (E

�)! TV (E
�) for all X 2 T (E�).

Theorem 7.7. The space (E�; N;GH ; GV ; 0; 0), with integrable nonlinear

connection N :

(7.16) ÆiN
Æ
dk � ÆkN

Æ
di = 0;

allows a d-connection i�

(7.17) (a) @a�gik = 0; (b) Ækg
b
�
a
� = gb�

d
Æ@

a
�N

Æ
dk + ga�

d
Æ@

b
�N

Æ
dk:

((7.17a) means that the horizontal metric tensor is a function only of x).

The connection coeÆcients of such a d-connection are given by

Fi
h
k = 2�1ghj(@kgij + @igjk � @jgki); F a

�

c k = @a�N


c k;

Ca
�
Æ
d
c
 = 2�1g�b

Æ
d(@

c
g

a
�
b
� + @a�g

b
�
c
 � @b�g

c

a
�): Ci

ha
� = 0;

Proof. From Theorem 7.6, it follows that the space (E�; N;GH ; GV ; 0; 0)
allows a d-connection i� the relations (7.13) are satis�ed. (7.13) and (7.16) result
(7.17). Relation (7.17b) can be obtained if in (5.7d) we substitute THV V = 0
(torsion equal to zero) and Ci


c
b
� = 0 (for the case of a d-connection).
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